Commentationes Mathematicae Universitatis Carolinas

Jan Kratochvíl; Jiří Matoušek NP-hardness results for intersection graphs

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 4, 761--773

Persistent URL: http://dml.cz/dmlcz/106799

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NP-hardness results for intersection graphs

Jan Kratocivíl, Jıří Matoušek

Abstract

Intersection graphs of segments (the class SEG) and of other simple geometric objects in the plane are considered. We show the NP-hardness of membership problems for several such classes of graphs (e.g. string graphs, intersection graphs of segments, intersection graphs of convex sets) in an unified way.

Keywords: intersection graph, string graph, NP-hard problem
Classification: 05C99

1.Introduction.

In this paper we will consider the intersection graphs of segments and of other simple geometric objects in the planc. We concentrate on the lower bound on the complexity of the membership problem for such classes of intersection graphs among all graphs or among the graphs of some wider class. For more background information and related results see the paper [KM].

The study of intersection graphs with geometric flavor began probably by the investigation of interval graphs, which turned out to have a nice structure ([FG], [LB], [GH]), are easily recognized ([BL]) and have many applications (in biology etc.). Other examples of polynomially recognizable classes are circle graphs (intersection graphs of chords in a circle - [Bou], [Fou]), path-graphs (intersection graphs of paths in tress, [Gav]), circular-arc graphs ([Tuc]) and intersection graphs of subtrees in trees (which are just the chordal graphs, [Gav]). Much more complicated is the structure of string graphs (the intersection graphs of simple curves in the plane). These were introduced by Sinden [Sin] in connection with thin film RCcircuits. Tarjan et al. [EET] studied them independently from a theoretical point of view; for other results see [KGK]. Until recently, it has been an open problem whether the recognition of string graphs is NP-hard (solved affirmatively in [Kra1]). On the other hand, it is not known whether this problem is even decidable. All the graphs we consider are special cases of string graphs.

2.Statement of results.

By a graph we will mean a simple undirected graph (without loops and multiple edges). The vertex set of a graph G is denoted by $V(G)$ and the edge set of G by $\mathrm{E}(\boldsymbol{G})$. An edge with vertices u and v will be denoted by $u v$.

Let us define the classes of graphs we will consider. If \mathbf{C} is a class of sets (geometric objects in our case), then the class of intersection graphs of \mathbf{C}, denoted by IG(C), will be the class of all simple undirected graphs, isomorphic to graphs of the form $G=(V, E)$, where $V \subseteq C$ and $e=u v \in E$ iff $u \cap v \neq 0$. We call
this V a representation of (the isomorphism class of) G. Usually we will treat a representation of a given graph as a mapping from $V(G)$ into \mathbf{C}.

We put
STRING $=$ IG($\{$ all simple curves in the plane $\})$,
CONV $=\operatorname{IG}(\{$ all convex sets in the plane $\})$,
k-SEG $=\mathrm{IG}(\{$ all piecewise linear curves consisting of $\leq k$ segments $\}), k \geq 1$,
SEG = 1-SEG,
k - $\operatorname{DIR}\left(d_{1}, \ldots, d_{k}\right)=\operatorname{IG}\left(\left\{\right.\right.$ all segments with slopes among $\left.\left.d_{1}, \ldots, d_{k}\right\}\right), d_{1}, \ldots, d_{k}$ real numbers,
k-DIR $=U\left\{k\right.$ - $\operatorname{DIR}\left(d_{1}, \ldots, d_{k}\right) ; d_{1}, \ldots d_{k}$ real numbers $\}$.
We will use the term "SEG-representation of G " instead of "the representation of G by segments", and similarly in all other cases.

Other interesting classes of intersection graphs arise when we put some additional restrictions on the relative positions of the objects representing the graphs. We express it by the notation $\operatorname{IG}(\mathbf{C}) \mid R$, which will be the class of all graphs of $\operatorname{IG}(\mathbf{C})$, such that they have a representation $V \subseteq \mathbf{C}$ satisfying the restriction R. We put
k-CROSS $=$ STRING|(every two curves meet in $\leq k$ points, and they cross at the intersections),

PURE- k-DIR $\left(d_{1}, \ldots, d_{k}\right)=k$-DIR $\left(d_{1}, \ldots, d_{k}\right) \mid$ (no two segments of the same direction intersect each other),

PURE- k-DIR $=\cup\left\{\right.$ PURE- k-DIR $\left(d_{1}, \ldots, d_{k}\right) ; d_{1}, \ldots d_{k}$ real numbers $\}$.
The algorithmic problems concerning intersection graphs of geometric objects we will deal with have features rather unusual for graph-theoretic problems: in many cases, they do not belong to NP or their membership in NP presents an open problem. Here we concentrate on the NP-hardness results. If A, B are classes of intersection graphs, $A \subseteq B$, we denote by RECOG $(A \mid B)$ the following decision problem:

INPUT: A B-representation of a graph G.
QUESTION: Does G belong to the class A ?
In particular, RECOG (A) will be RECOG ($A \mid$ \{all graphs $\}$).
The results are summarized in the following theorem:
Theorem 1. The problems RECOG(STRING), RECOG(CONV) and RECOG (k$S E G$), for every $k \geq 1$, are $N P$-hard.

The problems RECOG(k-CROSS), for every $k \geq 1$, and RECOG(k-DIR) and RECOG(PURE-k-DIR), for every $k \geq 2$, are NP-complete.

RECOG(1-SEG|2-SEG) is NP-hard and RECOG(1-CROSS|2-CROSS) is NPcomplete.

Remark. The NP-membership for RECOG(PURE- k-DIR) and RECOG(k-DIR) for every fixed k is non-trivial and it is proved in [KM].

3.Proofs.

We divide the proof of Theorem 1 into several steps.

Proposition 2. The problems RECOG(STRING), RECOG(1-CROSS), RECOG(SEG) and RECOG(CONV) are NP-hard.

Remarks. The NP-hardness of RECOG(STRING) and RECOG(1-CROSS) is proved in [Kra1]. Here we are going to provide a reduction which will prove the NP-hardness of all the fouk problems at once. Hence it follows that for every $k \geq 2$, RECOG (k-SEG) is NP-hard and RECOG(k-CROSS) is NP-complete. We are using the following problem, which is shown to be NP-complete in [Kra2].

P3C3SAT (Planar 3-comnected 3-satisfiability)
INSTANCE: A formula Φ with a set of clauses C and a set of variables X satisfying
(i) every clause contains exactly 3 variables,
(ii) the graph $G_{\Phi}=(X \cup C,\{x c \mid x \in c \in C$ or $\neg x \in c \in C\})$ is planar and (vertex) 3-connected.
QUESTION: Is Φ satisfiable?
Proof of Proposition 2: Take an instance Φ of P3C3SAT and fix a planar drawing $D_{\boldsymbol{\Phi}}$ of $G_{\boldsymbol{\Phi}}$ in which edges are drawn straight (i.e. a Fáry embedding of $G_{\boldsymbol{\Phi}}$. Such a drawing can be constructed in polynomial time [FPP]). We are going to construct a graph $G(\Phi)$ such that every STRING representation of $G(\Phi)$ (if it exists) resembles the drawing D_{Φ}. To guarantee this, we use two auxiliary graphs called variableand clause-gadgets. The graph $G(\Phi)$ arises from G_{Φ} by replacing every variable by a copy of the variable-gadget and every clause by a clause-gadget. Every edge $x c$ of $G_{\boldsymbol{\Phi}}$ is replaced by two vertices adjacent to certain vertices in the corresponding variable- and clause-gadgets. In a STRING representation of $G(\Phi)$ these vertices are represented by two parallel curves, and the order in which these curves meet the boundary of the clause-gadget indicates whether x is TRUE or FALSE in c.

Let us describe the construction more precisely. For every edge e of $G_{\boldsymbol{\phi}}$ we insert two vertices, $L(e)$ and $R(e)$. These vertices will be also involved in the gadgets. Let x be a variable and let $c_{1}, c_{2}, \ldots, c_{k}, c_{k+1}, \ldots, c_{r}$ be the clauses containing x (or $\neg x$) labeled in the clock-wise order as the edges $x c_{i}$ leave the vertex x in $D_{\boldsymbol{\phi}}$, so that both the directed angles $c_{1} x c_{k}$ and $c_{k+1} x c_{r}$ are convex. The variable-gadget G_{x} is depicted in fig. 1 , where for $i=1,2, \ldots, r(x)$

$$
A_{i}=\left\{\begin{array}{l}
L\left(x c_{i}\right) \\
R\left(x c_{i}\right)
\end{array} \quad \text { and } \quad B_{i}=\left\{\begin{array} { l }
{ R (x c _ { i }) } \\
{ L (x c _ { i }) }
\end{array} \quad \text { if } \quad \left\{\begin{array}{c}
\neg x \in c_{i} \\
x \in c_{i}
\end{array}\right.\right.\right.
$$

Let c be a clause and let x_{1}, x_{2}, x_{3} be the variables occurring in c ordered as the edges $x_{i} c$ leave the vertex c in D_{Φ} (again in the clock-wise orientation). The clause gadget G_{c} is depicted on fig 2.

We put

$$
G(\Phi)=\bigcup_{x \in X} G_{x} \cup \bigcup_{c \in C} G_{c}
$$

We claim that Φ is satisfiable if and only if $G(\Phi) \in$ STRING, and in that case even $G(\Phi) \in$ SEG. Suppose $G(\Phi)$ is representable by curves, and let R be such a representation. Call $C(x)$ the cycle $C_{1} C_{2} \ldots C_{4 r}$ in G_{x}. The curves which represent
the vertices of $C(x)$ form a cycle in the plane, which divides the plane into two regions. We will call the inner region Ω_{1} and the outer one Ω_{2}. Since the graph $G_{\Phi}-x$ is connected, the curves representing the vertices of $G(\Phi)-G_{x}$ lie either all inside Ω_{1} or all inside Ω_{2}. Without loss of generality we may assume that they lie in Ω_{2} (otherwise we apply a homeomorphism similar to the circle inversion).

Analogously, we may suppose that R is such that for every clause c, all the curves representing the vertices of $G(\Phi)-G_{c}$ lie outside the cycle $r_{v_{1}} r_{v_{2}} \ldots r_{v_{6}}$. (Here and later on, r_{u} is the curve in R which represents a vertex $u \in V(G(\Phi))$. Thus there exist pairwise disjoint regions $\Omega_{x}, x \in X$ and $\Omega_{c}, c \in C$ such that all the curves representing the vertices of $G_{x}-\left\{A_{1}, B_{1}, A_{2}, B_{2}, \ldots, A_{r(x)}, B_{r(x)}\right\}$ lie inside Ω_{x}, and all the curves representing the vertices of $G_{c}-\left\{L\left(x_{1} c\right), R\left(x_{1} c\right), \ldots, R\left(x_{3} c\right)\right\}$ lie inside Ω_{c}. Then $\Omega(\Phi)=\left(\left\{\Omega_{x}: x \in X\right\} \cup\left\{\Omega_{c}: c \in C\right\},\left\{r_{L(x)}, r_{R(x)}: x \in c \in C\right.\right.$ or $\neg x \in c \in C\}$) (the drawing obtained from R by contracting the regions Ω_{x} and Ω_{c} into single points)is a planar drawing of $G_{\boldsymbol{\Phi}}$ (only the edges are doubled). Since $G_{\boldsymbol{\Phi}}$ is 3 -connected, it has a unique (from the topological point of view) planar drawing, and $\Omega(\Phi)$ is homeomorphic to D_{Φ}. Thus we may suppose without loss of generality that R is such that the regions Ω_{x} and Ω_{c} are placed around the corresponding vertices x and c in D_{Φ}, and the curves $r_{L(x c)}$ and $r_{R(x c)}$ follow the drawings of the corresponding edges $x c$. Consider a variable x. The pairs of curves $\left(A_{i}, B_{i}\right)$ leave the boundary of Ω_{x} in this (clock-wise) order, the two curves $r_{A_{i}}, r_{B_{i}}$ being always close to each other. It follows that the variable gadget G_{x} may be represented in exactly two essentially different ways, depicted in fig. 3 . We put $F(x)=$ TRUE if G_{x} is represented as in fig. 3 left and $F(x)=$ FALSE if it is represented as in fig. 3 right. Note that in the former case the curves $r_{A_{i}}, r_{B_{i}}$ leave the boundary of Ω_{x} in the order $A_{1}, B_{1}, A_{2}, B_{2}, \ldots, A_{r}, B_{r}$, while in the latter case they leave it in the order $B_{1}, A_{1}, B_{2}, A_{2}, \ldots, B_{r}, A_{r}$. It follows that the curves $r_{L(x)}, r_{R(x)}$ arrive to the boundary of Ω_{c} in this order (with respect to the clock-wise orientation), if and only if x receives the value TRUE in c (cf. fig.4).

Now consider a clause c and the realization of the clause gadget G_{c} in R. To obtain all the necessary intersections of the curves $r_{w_{1}}, r_{w_{2}}, \ldots, r_{w_{6}}$, these curves must lie entirely inside the cycle formed by the curves $r_{v_{1}}, r_{v_{2}}, \ldots, r_{v_{6}}$ (in fact this is the boundary of Ω_{c}). If we extend the curves $r_{w_{i}}$ along the corresponding $r_{L(x c)}$ (or $r_{R(x c)}$) to the boundary of Ω_{c}, we obtain a representation of the complement of the cycle of length 6 inside Ω_{c} with the curves meeting the boundary in the order determined by the truth values of the variables occurring in c. In particular, if all the three variables receive the value FALSE in c, the order is $w_{1}, w_{2}, \ldots, w_{6}$ and it is known, that then such a representation does not exist ([Sin], [Kral]). On the other hand, if the order of at least one pair $w_{2 i-1}, w_{2 i}$ is permuted, the representation exists and is realizable by straight line segments (see fig. 5).

Therefore if $G(\Phi)$ is representable by curves, the truth valuation $F(x)$ defined above satisfies Φ. On the other hand, if Φ is satisfiable, a representation of $G(\Phi)$ by segments is constructed in an obvious way (using fig. 5).This completes the proof.

Using different clause gadgets in the above described construction of the graph $G(\Phi)$, we can prove

Proposition 3. RECOG(SEG|2-SEG) is NP-hard.
Proof : Use the clause gadget depicted in fig. 6. It turns out that it is not representable by convex sets when all three variables receive the value FALSE in the clause. (Its representations in all other cases are in fig. 8.) Suppose for the contrary that G_{c} is representable by convex sets. Then we have a region Ω_{c} and convex sets $W_{1}, W_{2}, \ldots, W_{6}$ lying inside Ω_{c} and meeting its boundary in this order, such that $W_{i} \cap W_{j} \neq \emptyset$ iff $w_{i} w_{j} \in E\left(G_{c}\right)$. Denote by P_{i} an intersecting point of W_{i} and the boundary of Ω_{c} and by $P_{i j}$ an intersecting point of W_{i} and W_{j} (if $W_{i} \cap W_{j} \neq \emptyset$). Let $\Omega_{i j}$ be the region bounded by the arc of the boundary of Ω_{c} between P_{i} and P_{j} and the sets W_{j} and W_{i} (see fig.7).

We see that $W_{2} \subset \Omega_{13}$, the segment $P_{4} P_{24}$ crosses the segment $P_{1} P_{13}$ and so P_{4} and P_{24} lie in opposite halfplanes determined by the line $P_{1} P_{13}$. We may suppose that $P_{14}=P_{4} P_{24} \cap P_{1} P_{13}$. Since $P_{5} \in \Omega_{41}$ and $W_{5} \cap W_{3} \neq \emptyset, W_{5}$ crosses the segment $P_{1} P_{14}$, say in the point P_{15}. Now $P_{6} \in \Omega_{51}$, and so we may suppose that $P_{16}=P_{1} P_{15}$. Also $W_{6} \cap W_{4} \neq \emptyset$. However, every segment $P_{6} X$, with $X \in W_{4}$, either crosses the segment $P_{5} P_{35}$ or leaves the region Ω_{c}, a contradiction. A 2-SEG representation of this case is in fig. 12.

Remark. The theorem says that given a representation formed by piece-wise linear curves, each consisting of at most two linear pieces, it is NP-hard to decide whether the curves of the representation can be stretched so that the intersection graph remains unchanged. ${ }^{1}$

Proposition 4. RECOG(1-CROSS|2-CROSS) is NP-complete.
Proof : Use the clause gadget depicted in fig. 9. It turns out that the gadget is representable by curves, each pair of them sharing at most one common crossing point, whenever at least one variable receives the value TRUE in the clause. On the other hand, when all three variables receive the value FALSE in the clause, the gadget is only representable by curves, one pair them sharing two intersecting points (see fig. 10,11).

Remark. The theorem says that given a system of curves in the plane, each pair of them sharing at most two crossing points, it is NP-complete to decide whether the representation can be rearranged so that any two curves share at most one common point and the intersection graph remains unchanged.

Proposition 5. For every $k \geq 2$, RECOG (k-DIR) and RECOG (PURE- k-DIR) are NP-complete problems.
Proof : Using the same clause gadgets as in the proof of Proposition 3, but modifying slightly the construction of the graph $G(\Phi)$, one gets the NP-completeness of recognizing k-DIR and PURE- k-DIR graphs for $k \geq 3$. The case of 2-DIR and

[^0]PURE-2-DIR graphs requires not only another construction of the clanse gadget, but also the reduction starts with a slightly more restrictive satisfiability problem. The proof in detail is given in [Kra2].

Fig. 1

Fig. 2
Fig. 6

x false in e

x TRUE in c

Fig. 4

Fig. 5

Fig. 3

Fig. 7

Fig. 8

Fig. 10

Fig. 9

Fig. 11
Fig. 12

References

[BL] K.S.Booth, G.S. Lucker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. Syst. Sci 13 (1976), 255-265.
[Bou] A.Bouchet, Reducing prime graphs and recognizing circle graphs, Combinatorica 7 (1987), 243-254.
[EET] G.Ehrlich, S.Even, R.E.Tarjan, Intersection graphs of curves in the plane, J. Combin. Theory Ser. B 21 (1976), 8-20.
[FPP] H.Fraysseix, J.Pach, R.Pollack, Small sets representing Fáry embeddings of planar graphs, Proceedings STOC 1988.
[Fou] J.C.Fournier, Une caracterization dęs graphes de cordes, C. R. Acad. Sci. Paris 286 A (1978), 811-813.
[FG] D.F.Fulkerson, O.A.Gross, Inczdence matrices with the consecutive 1's property, Bull. Amer. Math. Soc. 70 (1965), 681-684.
[Gav] F.Gavril, Algorithms for a maximum clıque and maximum independent set of a circle graph, Networks 4 (1973), 261-273.
[GH] P.C.Gilmore, A.J.Hoffman, A characterization of interval graphs and of comparability graphs, Canad. Math. J. 16 (1964), 539-548.
[KGK] J.Kratochvil, M.Goljan, P.Kućera, String graphs, Academia, Prague 1986.
[KM] J.Kratochvil, J.Matoušek, Intersection graphs of segments, KAM Series, Charles University Prague, 1989.
[KK] J.Kratochvíl, M.Křivánek, Satısfiability of almost satisfied formulas, (in Czech), in Proceedings Czechoslovak Conference on Graph Theory, Hrubá Skála 1989., Acta Univ. Hamm. Ham. 1 (1989), 11.
[Kral] J.Kratochvil, String graphs II Recognizing string graphs is NP-hard, to appear in J. Comb. Theory Ser. B.
[Kra2] J.Kratochvil, A special planar satisfiability problem and some consequences of its NP-completeness, submitted.
[LB] C.B.Lekkerker, J.C.Boland, Representation of finite graphs by a set of intervals on the real line, Fund. Math 51 (1962), 45-64.
[Sin] F.W.Sinden, Topology of thin film RC-cırcuits, Bell System Tech. J. (1966), 1639-1662.
[Tuc] A.C.Tucker, An algorithm for circular-arc graphs, SIAM J. Computing 31.2 (1980), 211-216.

Department of Algebra, Charles University, Sokolovská 83, 18600 Praha 8, Czechoslovakia
Department of Computer Science, Charles University, Malostranské nám. 25, 11800 Praha 1, Czechoslovakia

[^0]: ${ }^{1}$ Actually even more is true. It follows from the concept of almost satisfied formulas that given a system of straight line segments and one piece-wise linear curve consisting of two linear pieces, it is NP-hard to decide whether this curve can be stretched (and the others rearranged) so that the intersection graph remains unchanged [KK]. A similar strengthening applies to the remark after Proposition 4.

