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Compact symplectic four dimensional 
manifolds not admitting polarizations 

MARISA FERNÁNDEZ, MANUEL DE LEON 

Abstract. We construct a family of compact 4-dimensional symplectic manifolds which 
admit no Kahler structures, and hence no Kahler polarizations. Moreover, we prove that 
these spaces have no polarizations with non-zero real index. 
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Classification: 53C55, 53C15, 81D07 

1. Introduction. 
As it is well known, the most important in the geometric quantization of a sym

plectic manifold is the choice of polarization ([1], [2], [3]). The existence of sym
plectic manifolds which do not admit polarizations has significant implications for 
geometric quantization theory. Few examples of such manifolds are known. For, 
instance, the symplectic manifold S2 x S2 has no polarizations with non-zero real 
index. On the other hand, a symplectic manifold carries totally complex (respec
tively Kahler) polarizations iff it admits compatible complex (respectively Kahler) 
structures [2], So the bundles E4 of [4] (which are circle bundles over circle bundles 
over a torus T2) with b\(E4) = 2 or 3 have no Kahler polarizations. Moreover, if 
&i(E4) = 2, then E4 has no complex polarizations. Gotay [5] has obtained a class of 
symplectic 4-manifolds E4 which do not admit polarizations of any type whatever. 
These E$ are constructed by repeatedly blowing up E4 with &i(J5J4) = 2. Recently, 
Cordero, Fernandez, de Leon and Saralegui [6] have obtained, by a similar way, a 
new class of compact symplectic four solvmanifolds without polarization. 

In this paper, we extend the results of Gotay in the following sense. We consider 
circle bundles E4 over the product manifold Mg x 5 1 , where Mg is a Riemann 
surface of geometric genus g > 1. Then E4 possesses a symplectic structure but 
carries no Kahler structures. Therefore, E4 has no Kahler polarizations. Moreover, 
following the construction of Gotay, we obtain a family of compact 4-dimensional 
symplectic manifolds E4(X) blowing up E4 at X distinct points. We prove: 

(1) E4(X) has no Kahler structures, and then E4(X) has no Kahler polarizations; 
(2) JS?*(A) has no polarizations with non-zero real index. 

2. The manifolds E4. 
Let Mg be a compact Riemann surface of geometric genus g > 1. Then there 

exist 2g harmonic differential 1-forms £i>•••>&,- on M9 such that Hl(Mg,Z) =-
{Ri}> • • •»fo?)}- Let Fg be the Kahler form corresponding to the canonical Kahlerian 
structure on Mg. Therefore we have H2(Mg, Z) = {[F9]}« We denote by • the ttodge 
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star operator on Mg. Then we can suppose that *f, = £i+g7 *Zi+g = —(i, 1 < i < g. 
Consequently we have 

ini = I>A*6]. 

The classification of circle bundles over a manifold is well known (see [7], [8]). 
We shall use the following result: 

Theorem 2.1. Let M be a manifold. Then there is a one to one correspondence 
between equivalence classes of circle bundles over M and the cohomology group 
H2(M,Z). Furthermore, given a harmonic 2-form $ on M there is a circle bundle 
w : E —i• M with connection form n such that $ is the curvature of n, that is, 
7r*$ = dn. 

Then, since H2(Mg,Z) = {[Fff]}, for any integer n there is a circle bundle 
Eg(n) —> Mg corresponding to n[Fg]. Obviously, when n = 0, Eg(0) is a prod
uct Mg x S 1 . 

The Gysin sequence can be used to compute the integral cohomology groups of 
Eg(n). For n ^ 0 they are given by 

H°(E3
g(n),Z) = Z,H\E3

g(n),Z) = Z2», 
( ' H2(E](n), Z) = Z2' © Z|„|, H3(E3

g(n), Z) = Z. 

Moreover, the real cohomology of Eg(n) can be written out explicitly in terms of 
differential forms. In fact, Theorem 2.1 implies that the connection for form 7 of 
Eg(n) —> Mg can be chosen so that the curvature of 7 is nFg (we remark that the 
same notation for differential forms on Mg and their pullbacks to Eg(n) is used). 
Then (1) can be rewritten as 

Ha(E3
g(n), Z) = {[1]}, H*(E3

t(n), Z) = { & ] , . . . [6 , ]} , 

ff2(^(n)^) = {(6A7] , . . . , [6,A7]} , 
H3(E3(n),Z) = {[FgA1\). 

Let us now recall the following result due to Bouyakoub [9]. 

Theorem 2.2. Let E be a circle bundle over a compact, orieniable, connected 8~ 
dimensional manifold M. If M is fibred over S1 and b\(M) > 2, then there is a 
symplectic structure on E. 

From Theorem 2.2, we have been interested in the circle bundles Eg over Eg(n) 
such that Eg(n) is fibred over S1 . Eg(n) is a Seifert manifold with associated surface 
Mg. Since a Seifert manifold E (with associated surface Mg) which is fibred over 
S1 must have first Betti number 2g + 1, we conclude that the only circle bundle 
Eg(n) which is fibred over S1 is, precisely, the trivial bundle Mg x S1 . 

Next, let us consider a circle bundle Eg —*• Eg(Q). These bundles are clas
sified by H2(E*(Q), Z), which is Z2-*+1. In particular, for each (2g + l)-tupla 
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(pi , . . . ,p , , ,9i , ,g.7 , r) € z2ff+1, there is a circle bundle corresponding to the coho-
mology class 

9 

$^(PiKiA7l+«iKiA7])+rFf. 
i = l 

Again we can use Kobayashi's theorem and conclude that the connection form 17 
on E4 —> E|(n) can be chosen so that its curvature form dq is 

9 

X ) t o ( 6 A 7) + qi«i A 7)) + rFg. 
i-sl 

(As above, we use the same notation for differential forms on Eg(n) and their 
pullbacks to Eg.) In the sequel, we denote by Eg the circle bundle over Eg(0) 
corresponding to (p\,..., pg, q\,..., qg, 0) € Z29+1, where one of p^ qi is different 
from zero. 

Theorem 2.3. E4 has a symplectic structure but no Kdhler structures. 

PROOF : In fact, Qg = 7 A TJ + Fg is closed and has maximal rank 4. Hence Ug is 
a symplectic form on Eg. On the other hand, the first Betti number of Eg is odd; 
in fact, b\(Eg) = 2g + 1. Consequently, E4 can have no Kahler s t ru^ure. • 

3 . The manifolds E4(A). 
First, we recall some facts about the manifolds Eg considered in Theorem 2.3. 

They are compact symplectic manifolds. Moreover, they have Euler characteristic 
and signature zero. In fact, their Betti numbers are 60(Eg) = b+(Eg) = 1, b\(Eg) = 
63(^4) = 25f + l a n d 6 2 ( ^ 4 ) = ^ . 

Now, blow up these E* at A distinct points using the technique of Gromov and 
McDuff (see [10]). The resulting manifolds Eg(\) are compact 4-manifolds diffeo-
morphic to 

El#\CP\ 

where CP denotes CP2 with the reversed orientation. Then Eg(\) has signature 
<r(i!/4(A)) = —A and Betti numbers 

60(E4(A)) = 64(E4(A)) = 1, 

b\(E4
g(\)) = h(E4

g(\)) = 2g+l, 

&2(E
4(A)) = 4(? + A. 

Therefore the Euler characteristic of E4(A) is x(Eg(\)) = A. 

Proposition 3 .1 . The manifolds Eg(\) have a symplectic structure but no Kahler 
structures. 

PROOF : That E*(\) are symplectic is a direct consequence of [10, Proposition 
3.7]. Now, since 61(.£?4(A)) = 2^ + 1, then E^(\) cannot be Kahlerian. • 
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To end this section, we shall prove our main result. First, let us recall some well 
known facts about polarizations of symplectic manifolds (see [1], [2], [5]). 

Let (X,uS) be a 2n-dimensional symplectic manifold. A polarization of (X,UJ) is 
an integrable complex subbundle P of the complexified tangent bundle TcX which 
is Lagrangian with respect to the complexification u)C of u>, that is, 

(1) P is of rank n, 
(2) uc/P x P = 0, __ 
(3) the involutive real distribution L defined by Lc = P C\ P has constant di

mension, and ___ 
(4) the real distribution A' defined by Kc — P + P is involutive. 

The dimension / of L is called the real index of P. When / = n, P = P and P is 
said to be the real polarization. Then L = K = P H TX. Now, let J be an almost 
complex structure on X determined by w (see [2]). We have a Lagrangian splitting 
TX = L e JL so that (TX, J) may be identifies with Lc. It follows that the odd 
real Chern classes of (TX, J) vanish. 

On the other hand, when / = 0, P is called a totally complex.polarization. Then 
Pf\P = 0, K = TX and P determines an almost complex structure J on K, which 
is actually a complex structure because P is integrable (see [2]). Moreover, since 
v(Ju, Jv) = u;(u,t;) for all u, v £ TX, we can define an Hermitian metric (,) on X 
by (u, v) = w(u, Jv). If (,) is positive definite, then (K, J, (,)) is a Kahler manifold 
and P is said to be Kahler. 

Remark. The symplectic manifold E* cannot admit Kahler polarizations since 
Theorem 2.3. 

Theorem 3.2. 

(1) The symplectic manifolds E*(X) have no polarizations of the real index / ^ 0. 
(2) Moreover, E*(X) have no Kahler polarizations. 

PROOF : (2) follows directly from Proposition 3.L To prove (1), we shall consider 
two cases, depending upon the value of the real index /, 1 < / < 2. 
/ = 1: In this case L would define a field of line elements on E*(X). But this is 
impossible since x(-^J(A)) = A^-0. 
/ = 2: In this case the first real Chern class of (TE*(A), J) must vanish. But we 
have c\(T£*(A), J) = 3<r(EJ(A)) 4- 2 X ( ^ ( A ) ) = -A ^ 0. • 
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