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The sequentially is equivalent to the 
/•-Fr^chet-Urysohn property 

B . BOLDJIEV AND V . MALYHIN 

Dedicated to the memory of Zdenek Frolik 

Abstract. Some relations among sequentially, .F-Frechet-Urysohn property and .T-sequen-
tiality are shown. 

Keywords: sequential, Frechet-Urysohn, ultrafilter 

Classification: 54A20, 54A35 

The main results of the paper (necessary definitions wiU be given below): 

Theorem 1. There exists a filter T on D such that every Hausdorff sequential 
space is T-Frechet-Urysohn. 

Example 1, [CH]. For every ultrafilter p onw which is a P-point inut* there exists 
a compact Franklin's space whose index of p-sequentiality equals 2. 

Example 2, [CH]. There exists a sequential compact space which is *p-Fr£chet-
Urysohn for no P-point p € « * . 

Theorem 2 . Every compact Franklin's space is p-Frichet-Urysohn for no P-point 
p€u*. 

In 1968 M. Katetov [1] introduced the foUowing concept of an .F-limit point. Let 
T be a filter on w. A point x of a topological space X is called an .F-limit point of 
A C X if there exists a sequence {an: n € a;} such that {n € u>: an € Ox} € T for 
all neighborhoods Ox of x. It is obvious that if J1" is a frechet filter, i.e. the filter of 
cofinite subsets of u, then an /"-Hmit point is the ordinary Hmit of some convergent 
sequence lying in the corresponding subset. So, the concept of an .F-limit point is 
a generalization of that of a convergent sequence. 

The property of a space being p-sequential or .F-FVechet-Urysohn is very natural, 
as weU. 

A topological space X is said to be T-Fbechet-Urysohn if each Hmit point of any 
subset A C X is an .F-Umit point. 

A topological space X is caUed /"-sequential if the nonclosedness of any subset 
A C X is equivalent to the existence of an T-himt point of the subset A laying in 
X \ A. This notion is due to A. P. Kombarov [2]. 

When T is an ultrafilter p, the notion of p-FVechet-Urysohn has been studied by 
I. Savchenko. 
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PROOF of Theorem 1: First, we recall the notion of the sum of a family of filters 
{Ta: a £ A} over another filter T on the set A. Suppose that filters Ta are defined 
on disjoint sets Ktt. Let K be the union U{K<*' a £ A}. The filter on K consisting 
of all subsets M C K with {a £ A: M p | K 0 € Ta} £ T is called the sum of the 
family {Ta: a £ A} over the filter T and is denoted by J^Jv 

T 
Let {Xn : n € w } b e a disjoint family of countable infinite sets Xn and let X be 

the sum U{Kn: n £w}. For each n £ w we fix a bijection <pn: X <—• X n . 
Let T be a FVechet filter on X and let T1 = T. 
We describe the first step of the transfinite process of length LO\ . 
For each n £ u let T1 = ^ ( - F 1 ) and let J^ = E-Fn- We remark that T1 C T2, 

T 
hence, for each n 6 w w e have T\ = v?n(Jr2) D Tn. Second, we define T3 = J2^n. 

T 
on X thus T2 C T3 and, for each n £ u we have ^ = y?n(Jr3) D T%. And so 
on. At the u>-th step we define Tw = YJ^H o n X- It -s obvious, that ,Fn C T" 

T 
for all n € u>, therefore, T% = V?

n(/*u;) D J*n for all n, k € u>. Hence, if we define 
jrw+i = ^fg^ then all the natural inductive assumptions are fulfilled. 

T 
Now, let a be a limit ordinal and u> < a < u>i. Let {Gn: n £ w} be an increasing 

sequence of ordinals in a with sup {6 n : n £ w} = a. We define Ta = £.r^fn o n 

X. It is clear that T? C J70 for all 0 < a, therefore, 5 J = <pn(Ta) D Tg for all 
n Ew and /? < a . Hence, if we define Jror+1 = J^J*" then all the natural inductive 

T 
assumptions are fulfilled. 

So we have the increasing families of filters {Ta : a € w i } o n J , {Tn = <pn(Ta): 
a € c*>i} on every Kn, where fQ+1 = ^ J^ for all a £ ti>i and .F* = ]T) J\Jf n for some 

j - T 
increasing sequence of ordinals {B n : n £ u>} in a such that sup{0 n : n £ to} = a. 

Then ^ l = U f ^ <* € u>i} is a filter on X and ^ = IJ {^f: a £ u>j} = 
n€w 

<pn(TWx) is a filter on Kn for each n£w. It is not hard to verify that £ T%l = T"1. 
T 

We shall show now that TUl is the requested filter. Let Z be any HausdorfF 
sequential space. We denote by 6 its index of sequentially, hence, if A C Z and 
z £ A then 6(z,A) is a countable ordinal a. Suppose that the corresponding 
inductive conditions are fulfilled. Let z be the limit of the convergent sequence 
{zn: n £ u>} with 6(zn,A) = /5n < a for all n £ w. Since Z is a HausdorfT space, 
there exists a disjoint family {Vn} of neighborhoods of the points zn. By the 
inductive assumption, each zn is an TWl -limit of a sequence from A f) Vn, hence an 
Tn

x-limit of the same sequence. Consequently, z is an T"1 -limit of the union of the 
sequences, which completes the proof. • 

CONSTRUCTION of Example 1: Let us assume that CH is true. Let p be a P-point 
in v*. We shall construct an infinite maximal family EJ of disjoint non-empty 
clopen subsets of u>* such that the set T(p) of all ultrafilters of the same type as p 
is contained in U-->-

Under the assumption of CH, |T(p)| = Ni. Let T(p) = {pa: a £ u>i}. 
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We shall construct the family EJ by transfinite induction. We assume that a 
countable part E* of E* has already been constructed: E* = {V*: /? € a?}, where 
pp € \JEa for ell (} £ a. Let us describe the a-th step of the transfinite procedure. 
If pa £ UE*„ then E* + 1 = E*„ otherwise we put S J + 1 = E£ \J{V£} where Va* is a 
clopen neighborhood of pa disjoint with U ^ o -

Let EJ = U ( s a : <* € u>i}. It is evident that T(p) C U S J **-<* SJ « maximal, 
i.e. [U Ej] = w*. The index of p-sequentiality of the corresponding Franklin space 
F(s;) is 2. • 
CONSTRUCTION of Example 2: Again, suppose that CH is true. For any P-point 
p e u* denote by Fp a copy of F(EJ) (see the previous example) and by F the 
disjoint topological sum of all these copies. Thus F is locally compact. If F* is the 
one—point compactification of F, then F* is sequential and its index of sequentiality 
equals 2. Let p be a P-point in u>*. Then F* is not p-Frechet-Urysohn, because Fp 

is clopen and Fp is not p-FVechet-Urysohn. • 

Theorem 2 easily follows from the following lemma. 

Lemma. If A is an infinite disjoint family of non-empty clopen subsets inuj*, then 
Fr(U A) contains ultrafilters of all types except of P-points. 

PROOF : Indeed, it is evident, that if B C A, so Fr(U#) C Fr(U-4). If ( is 
not a P-point, then there exists a countable C of non-empty clopen subsets in u;* 
such that f € Fr(Uc)- Let B be any infinite countable subfamily of A. There 
exists a permutation <p: w <—* u> such that the extension if*: /3a; *—• /3u> moves C 
onto 5 , therefore Fr((jB) contains the same types of ultrafilters as Fr(Uc)- This 
completes the proof. • 

Question. Is it consistent with ZFC that every Hausdorff sequential (compact) 
space is ultra- Frechet-Urysohn? 

(A space is said to be ultra-Frechet-Urysohn if it is f-FYechet-Urysohn for all 
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