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Ordered ultraconnected rings 

M .HENRIKSEN, F .A .SMITH 

Dedicated to the memory of Zdenek Frolik 

Abstract A ring R with identity element 1 is called ultraconnected if for each unital 
homomorphism <j> of Zw into R, there is an t < u; such that <j>(f) = /( t) • 1 for every 
/ € Zu. Our main result is that if no sum of nonzero squares in R is 0 and R has only 
trivial idempotents, then R fails to be ultraconnected iff R contains a subring isomorphic 
to Z" /P for some free minimal prime ideal P of Zw . 

Keywords: Unital homomorphism, ordered ring, connected ring, nonstandard model of Z 

Classification: 06F25, 13A17 

1. Introduction. 
We assume throughout that all rings have an identity element, usually denoted 

by 1, and let Hom(5, R) be the set of all unital homomorphisms of S into a ring R. 
A (not necessarily commutative) ring whose only idempotents are 0 and 1 is said 
to be connected. 

In [BR], R.Borger and M.Rajagopalan study rings R such that unital homomor­
phisms from direct products of rings into them are determined by one coordinate. To 
be more precise, they say a ring R has property Pa if for every collection {.->.*}.*<<* °f 
rings and <j> G Hom(U^<aS^1 R) there is a £ < a and a homomorphism # : 5$ —» R 
such that <j>(f) = #(/(£)) • 1 for every / € n^<a5 /5. In this case <j> is said to be 
determined be the coordinate £. Borger and Rajagopalan show there is no loss of 
generality in assuming that each Sp is the ring of integers, in which case*we write 
nj8<a5/9 as Za. They also show that R has Pn for n finite if and only if R is 
connected and no ring has Pa for a a nonmeasurable cardinal. (For further discus­
sion of measurable cardinals see Chapter 12 of [GJ]). Given these preliminaries, we 
rephrase a definition of [BR], 

Definition 1. A ring R is said to be ultraconnected if it satisfies Pu: that is, for 
each </> € Eom(Zu\ R) there is an n < u> such that </>(f) = f(n) • 1 for every / 6 Zw. 

In [BR] a pot pourri of results on ultraconnected rings are presented. It is shown, 
for example, that every connected ring of characteristic 0 of cardinality less than 
2W, and the real field 91 are ultraconnected, while the p-adic fields, rings of p-adic 
integers, the complex field and the integers mod j?m for any prime p and positive 
integer m fail to be ultraconnected. Borger and Rajagopalan pose the problem of 
characterizing ultraconnected rings. 

The main purpose of this article is to characterize connected rings that admit a 
partial order in which squares are positive and which are not ultraconnected. In 



42 M.Henrikscn, F.A.Smith 

Section 2, Theorem 9 we show that every such ring contains a particular kind of 
nonstandard model of the integers. These were studied by N.Ailing in [A] and 
using results of A.Dow [D] it is known that all of those nonstandard models of Z 
are isomorphic if and only if the continuum hypothesis holds. 

2. Nonultraconnected rings. 
It is shown in [BR] that every ultraconnected ring is connected. Some of the 

following results apper in [BR] though not always in the same form. 
If A C <*>, let XA denote the characteristic function of A and let Xi = X{i} for any 

i < u>. For any / 6 Z», let Z(f) = /_ 1(0) and let coz(f) = w - Z(f). We will 
denote Xc**(/) by x(/)« Clearly x i» multiplicative since coz(f) f) coz(g) = coz(fg) 
for any / , g € Zw. 

Lemma 2. If R is a connected ring and <f> € Hom(Z", R) then: 

a) either $(Xn) = 0 for all n < u>, or there is a unique i < LJ such that <f>(f) = 
/ ( 0 • 1 for all f € Z», and 

b) iff € Z" then </>(f) = 0 if and only if <t>(\f\) = 0. 

PROOF : a) Since R is connected and <f> maps idempotents to idempotents, if 
4(Xi) ¥> 0 for s o m e * t h e n MXi) =1. Hi £ h then 0 = x»X;> so <£(0) = <t>(Xi)<t>(Xj) = 
^(Xi)» whence t is unique. 

If / € Z» then / = fxi + /(I - Xi) so *(/) = WMxd + *(/)*(l " Xi) = 
^(/Wx0 = /(0-i 

b) Let / € Z» and k € Z" be defined by k(i) = 1 if / ( 0 > 0, and *(t) = - 1 if 
f(i) < 0. Now | / | = kf and / = ]b|/|, so / € ker^ if and only if | / | € ker <j>. m 

Let HZ" denote the direct sum of u; copies of Z and note that Szu/ is an ideal 
of Z", which yields the following 

Corollary 3. A connected ring is not ultraconnected if and only if ker </> D Szw 

for some <f> 6 Hom(Zu,,R). 

If / is* an ideal of a ring S, let E(I) denote its set of idempotents. The next 
theorem relies implicitly, but not explicitly on some of the results in [M]. We being 
with some definitions. 

Definition 4. An ideal I of a commutative ring is said to be generated by its 
idempotents if E(I)S = I. 

If a is in the commutative ring 5, then the annihilator A(a) of a is given by 
A(a) = {b € S : ab = 0}. K A(a) = {0}, then a is called a regular element of S. 

For a commutative ring S, let Qci(S) denote its classical ring of fractions. That is, 
Qd(S) = {a/b : a,b € S and A(b) = 0}, with the usual addition and multiplication 
of fractions; see [L, Section 4.6] for background. 

Let Q denote the field of rational numbers, and recall that Q" is a Von Neumann 
regular ring; that is for every / € Qw, there is a g € Qu such that f2g = / . Note 
also that fg is an idempotent; see [L, Section 3.5]. 

The next theorem is the principal result of this section. 
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Theorem 5. Suppose R is a connected commutative ring and (j> G Hom(Z<",R) is 
a surjection. Then the following are equivalent. 

(a) Ker $ is generated by its idempotents 
(b) / G ker^ implies x(f) € ker^ 
(c) <f> has a surjectivc extension <f>* G Hom(Qu,,Qci(R)) 
(d) Ker <j> is a minimal prime ideal. 

PROOF : Assume (a) and / G ker^. There is an e G E(ker<l>) and a g G Z" such 
that eg = / , since, as is noted in [P] and [A], finitely generated ideals of Zw are 
principal. So x(f) = x(*g) = x(e)x(.?)> whence <f>(x(f)) = <l>(x(c))<l>(x(9)) = 0 since 
c € ker^. Thus (b) holds. 

Next, assume (b) and F G Qw, where for each n < w, F(n) = f(n)/g(n), if 
f,g€Z" and g(n) ^ 0. We show that <l>(g) is a regular element of 4[ZW). 

To see this, assume </>(g)<f>(h) = 0 for some h € Zw. Then, by (b), 0 = <j>(gh) = 
<t>(x(gh)) = ^MflOMxW) = kx(h)) since coz(g) = a>. Hence x(h) G ker <f> as does 
h = x(h)h* so <j>(g) is a regular element of ftZ"]. 

If we let t*(F) = <fr(f)/<l>(g), then <fr*(F) is in Qa(R), and it is clear that 
<l>* € Hom(QUf,Qci(R)) and is a surjection that extends </>, so (c) holds. 

Finally, let 4>* satisfy the conditions of (c). Since Q" is a Von Neumann regular 
ring, if / € ker </>*, there is a g G Zw such that / = (/.?)/. As noted above, fg is an 
idempotent in ker^*. Hence ^(ker^*)^ = ker^*, so 

(t) £?(ker <£*)<?" nZw = ker^* n Zw. 

Clearly .E(ker^*) = E{keT 4>) and since idempotents assume only values 0 and 1, 
the left hand side of (f) is equal to E(keT fyZ", while its right hand side is ker^. 
Thus (a) holds, and the equivalence of (a), (b), and (c) has been established. 

Assume (b), fg G ker^, and / £ ker<£. Since / = * ( / ) / , --er^ cannot have 
x(f) as an element. Since R is connected, this yields <l>(x(f)) = 1- Thus, by (b), 
0 = <t>(x(f§)) = <t>(x(f))Hx(9)) = ttxti))- Thus X(S) belongs to ker<£ as does 
g = x(d)9\ and we know that kert̂  is a prime ideal. As is noted in [GJ], to show 
that ker ̂  is a minimal prime ideal, we need only find, for each g G ker <f>, an element 
in A(g) that is not in ker^. By (b), 1 — x(§) plays that role, so ker^ is a minimal 
prime ideal and (d) holds. 

Finally, assume (d). Ailing shows in Theorem 1.1 of [A] that since ker^ is a 
minimal prime ideal of Z", U = {Z(f) : f G ker^} is an ultrafilter on u> such that 
ker^ = {/ G Z" : A(f) G U). Since Z(f) = Z(X(A)), it follows that X(f) € ker<£ 
whenever / G ker^. So (b) holds and the proof of the theorem is complete. • 

In [A], Ailing shows that Z^/P is a totally ordered integral domain if P is a 
minimal prime ideal and that it can be ordered in only one way. We generalize 
these results in what follows. 

We include the following definition from [FGL]. 

Definition 6. A ring R is formally real if no sum of nonzero squares is zero. A 
partially ordered ring (R, <) is quasireal if a2 > 0 for all a G R. 
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Clearly a formally real ring is reduced (i.e., the only nilpotent element is 0) and 
has characteristic 0. It is known [FGL,Theorem 8.3] that any formally real ring 
admits a quasireal partial ordering and the one whose positive cone is all sums of 
squares is the smallest such. Further, any reduced quasireal partially ordered ring 
is formally real. 

Our next result shows that the existence of a homomorphism of zw into a con­
nected formally real ring severely restricts the quasireal orderings. 

Theorem 7. If R is a connected quasireal ring and </> e Hom(Z("iR) then 

a) ker <j> is a minimal prime ideal, and 
b) <t>[Z^] is a totally ordered integral domain. 

PROOF : a) Since every integer is a sum of four squares, every nonnegative element 
of Zu is also. Thus, since R is quasireal, <j> is order preserving. 

If / € ker<£, then| / | € ker<£ by lemma 2(b) and since 0 < x(f) < l/l a*1*-
<j>(\f\) = 0, we have x(f) € keT</>. Thus by Theorem 5, ker<£ is a minimal prime 
ideal. 

b) If <!>(}) € <#z"), then <j>(ff = # / 2 ) = «K|/|2) = ^ ( | / | ) 2 so <t>(f - \f\)</>(f + 
l/l) = 0. Since by (a), ker^ is prime, <f>[Zu] = zw/ker^ is an integral domain, and 
R is quasireal, either <f>(f) = </>(\f\) > 0 or </>(f) = -<f>(\f\) < 0, and <j>[Zu) is totally 
ordered. • 

An integral domain that is elementarily equivalent to Z without being isomorphic 
to Z is called a nonstandard model of Z. For the definition of elementary equivalence 
and more discussion of nonstandard models of Z, see [A], [CK] or [LS]. As noted 
in [A], if P is a minimal prime ideal of Z" containing E z w and P' is a prime ideal 
of Zw containing P, then Z^/P1 and (ZW/P)/(P'/P) are isomorphic, so zw/P' 
is a homomorphic image of Z"/P. For this reason we call Zw/P an ^-maximal 
nonstandard model of Z. 

The proof of the first part of the next lemma is an exercise, and the second part 
is shown in [BR, 1.8]. 

L e m m a 8. Suppose R is a ring. 

(a) If R fails to be ultraconnected, then any ring containing R as a subring fails 
to be ultraconnected. 

(b) If S ultraconnected, R is connected, and Hom(R, S) is nonempty, then R is 
ultraconnected. 

The following characterization theorem is an immediate consequence of Theorem 
5,7 and Lemma 8. 

Theorem 9. A connected formally real ring fails to be ultraconnected if and only 
if it contains an ^-maximal nonstandard model of Z as a subring. 

In section 4 of [A] a number of properties of nonstandard models of Z are given 
including finitely generated ideals are principal, and ±1 are the only invertible 
elements. In section 5 of [A] other properties applicable to w-maximal nonstandard 
models of Z are given. If D(Z) is such a model then it has cardinality 2U. Recall 
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an ordered set L is a (near) .71-set if given two countable (nonempty) sets A and B 
such that a < b for all a £ A, b £ B there is t £ L such that a < t < b for all a £ A, 
b £ B. Ailing shows [A,Theorem 5.10] JD(z) is a near 171 set with no countable 
cofinal subset whose quotient field Q(Z) is an 171 set. 

Despite this, an integral domain may have a countable cofinal subset and still fail 
to be ultraconnected. 

Examp le 10. Let D(Z) be as above, and let R = D(Z)[x] denote the ring of poly­
nomials with coefficients in D(Z) lexicographicaUy ordered with leading coefficient 
dominating. That is, if p(x) = £JL0ara;r is in R and an / 0, let p(x) > 0 if an > 0 
and let p(x) < 0 if an < 0. Then {xn : n < a;} is a countable cofinal subset of R, 
while R fails to be ultraconnected by Theorem 9 since it contains D(Z). 

The following result foUows immediately from Theorem 5,7, and 9. 

Theorem 11. If R is a connected quasireal ring, then <t>[Z"] is ultraconnected if 
and only if it has a countable cofinal subset. 

It follows directly from the model-theoretic Corollary 6.12 in [CK] that if the 
continuum hypothesis (CH) holds, then all u>-maximal nonstandard models of Z 
are isomorphic. The remainder of this section is devoted to showing that (CH) is 
vital to reaching this conclusion. 

By Theorem 5, if D(Z) denotes an o;-maximal nonstandard model of Z and 
<f> £ Hom(Zw,D(Z)) is surjective, then <j> has an extension $* £ Hom(Qu,Q(Z)) 
where Q(Z) denotes the quotient field of D(Z). Next, we show how to extend 
<t>* to a homomorphism of W onto an appropriately chosen integral domain con­
taining Q(Z). Recall from the above that if D(Z) is an .v-maximal nonstandard 
model of Z, then there is a free ultrafilter U on u> such that D(Z) and Z"/P(U) 
are isomorphic, where P(U) = { / € Zu : Z(f) £ U}. By Theorem 5, <f> has an 
extension </>* € Hom(Q",Q(Z)) and it is clear that Q(Z) and Q"/PQ(U) are iso­
morphic, where PQ(U) = { / € Q" : Z(f) £ U}. </>*, in turn, has an extension 
# € Hom(W, W/P*(U)), where Pu = { / € £*" : z(/) € U}. It is shown in 
Chapter 13 of [GJ] that W/Pyi(U) is a real closed field of power 2W that is an r?i-
set, and that any two real closed fields that are ,71-sets of power N, are isomorphic. 
So if (CH) holds, then any two such hyperreal fields are isomorphic, and clearly an 
isomorphism of Zw/P(U) onto Z"/P(V)j where V is a free ultrafilter on u lifts to 
an isomorphism of 9tlw/P*ti(U) onto -Hw/P^V), and an isomorphism between these 
latter two fields restricts to an isomorphism of ZW/P(U) onto ZW/P(V). In [D], 
A. Dow shows that if (CH) is false, then there are ultrafilters U and V o n w such 
that W/P*(U) and W/P*(V) fail to be isomorphic, in which case ZU/P(U) and 
ZU/P(V) fail to be isomorphic. Indeed, the latter may be inferred from [D] directly. 
(According to Dow, they are not even similar as ordered sets). Hence we have: 

Theorem 12. Every pair of UJ-maximal nonstandard models of Z is isomorphic if 
and only if (CH) holds. 

In the next and final section of this note, we consider ultraconnected rings that 
are not formaUy real. 
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3. Some remarks about general ultraconnected rings. 
We have only a little to add to the results in [BR] on connected rings that fail to 

be formally real. We begin with the following version of Theorem 5 under weaker 
hypotheses. 

Theorem 13. If R is connected and $ € Hom(Zu
i R) then there is a unique 

minimal prime ideal contained in ker <j>. 

PROOF : If e2 = e € Zw, then ^(e) = 0 if an only if ^(1 - e) = 1, so it is clear that 
u = {Z(e) : ^(e) = 0} is an ultrafilter on a;, and by Theorem 5, P(U) = {/ G Zw : 
Z(f) € ti} is a minimal prime ideal of Z" contained in ker <f>. Since distinct minimal 
prime ideals of Zw are contained in distinct maximal ideals of Zu [A,Proposition 
8.1] then uniqueness follows. • 

We do not known if the converse of Theorem 13 holds. In particular we do not 
know whether Zw/I is connected for every / containing a prime ideal. 

The next result can be deduced easily from results in [BR] but is not stated 
explicitly therein. 

Theorem 14. 
a) If m > I is an integer, then there is a unital surjective homomorphism $ of 

Z" to Z/mZ such that EZW C Ker$* 
b) No ring of finite characteristic is ultraconnected. 

PROOF : Let U be a free ultrafilter on w. For 0 < i < m - 1, let Vi(f) = {n < 
u; : /(n) s i mod m}. Clearly, {Vo(/),..., Vm_i(/)} is a partition of u>. Since U 
is an ultrafilter, Vi(f) € U for exactly one t. Define ^ : Zw —> Zm by letting (j>(f) & 
i mod m if Vi(f) € U. Clearly, ^ is a unital homomorphism of Z" onto Z/mZ 
whose kernel contains HZ" since U is free. Thus (a) holds. 

(b) It follows immediately from (a) that for any prime p, Z/pZ fails to be ultra-
connected. Since every ring of finite characteristic contains an isomorphic copy of 
Z/pZ for some prime p, the conclusion follows by Lemma 8(a). • 

An immediate consequence of Theorem 14(a) is that the kernel of a homomor­
phism of Zw onto a connected ring need not be a prime ideal (e.g., there is such a 
homomorphism of Zu onto Z/AZ). 

In [BR], the authors show, using an inverse limit argument, that for any prime 
p, the ring Zp of p-adic integres fails to be ultraconnected and use this to show that 
the complex field C is not ultraconnected. For, Zp is contained in its quotient field 
Qp, the field of p-adic numbers, and C contains every field of characteristic 0 and 
cardinality < 2". Actually, to see that C is not ultraconnected, it suffices to produce 
an integral domain D of cardinality 2" and characteristic 0, and <f> € Hom(Z"\D) 
such that HZ" C ker #. Such a D may be obtained by noting that SZW is an ideal 
of Zw containing no constant function; and hence is contained in a prime ideal P 
containing no constant function. (See [GJ, Chap. 0]). Thus Zu/P = D is the 
required integral domain. 

Clearly, an integral domain fails to be ultraconnected if and only if it is a homo-
morphic image of an w-maximal nonstandard model of Z. There is a rich variety 
of such rings as may be seen be examining [A] or [P]. 
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It would be interesting to obtain an internal characterization of ultraconnected 
rings, even in the formally real case. 

In [LLS], R.Levy, P.Loustanau, and J.Shapiro made a thorough study of the 
prime ideals of zQ, where a is an infinite cardinal. It should be of value in future 
studies of ultraconnected rings. 
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