Commentationes Mathematicae Universitatis
Carolinae

Alexander P. Sostak; D. Dzhajanbajev

On completeness and precompactness spectra of fuzzy sets in
fuzzy uniform spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 31 (1990), No. 1,
149--157

Persistent URL: http://dml.cz/dmlcz/106830

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1990
Institute of Mathematics of the Academy of Sciences of the Czech Republic

provides access to digitized documents strictly for personal use. Each copy
of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic
delivery and stamped with digital signature within the
\V project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz



http://dml.cz/dmlcz/106830
http://project.dml.cz

Comment.Math.Univ.Carolinae 31,1(1990)149-157

On completeness and precompactness spectra of fuzzy
sets in fuzzy uniform spaces

ALEXANDER SOSTAK, D.DZHAJANBAJEV

Dedicated to the memory of Zdenék Frolik

Abstract. The aim of this paper is to extend the spectral approach for the study of uniform
properties of fuzzy sets in (Hutton’s) fuzzy uniform spaces. The notions of completeness
spectrum and precompactness spectrum are introduced and studied. In particular, the
relations between these spectra and the compactness spectrum of a fuzzy set in a fuzzy
topological space introduced earlier by the first author are discussed.
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Classification: 54A40

The spectral approach developed by the first author has proved to be an effective
tool for the investigation of different topological properties of fuzzy topological
spaces(see [14] - [19] e.a.). The aim of this and some subsequent papers is to
extend the spectral approach for the study of uniform properties of fuzzy sets in
fuzzy uniform spaces. In this paper, we define the completeness spectrum and
the precompactness spectrum of a fuzzy set in a fuzzy uniform space and study
basic properties of such spectra. The theory of completeness and precompactness
developed here is in some aspects analogous to the classical theory of completeness
and precompactness in (ordinary) uniform spaces (see e.g.[2], [4]). However, as
the reader will notice, there are also essential special features distinguishing this
spectral theory from its classical prototype.

Terminology and notation which is standard for the Fuzzy Topology is accepted in
the paper. We emphasize that the expression “a fuzzy topological space” is always
used in Chang’s sense [3). If M is a fuzzy subset of a set X, i.e. M € IX (I:=[0,1}),
then M¢ := 1— M denotes its complement. A fuzzy set M € IX is called normed, if
sup M(z) = 1. For a family of fuzzy sets U C IX let VU := \/{U : U € U} denote
z€

its union, AU := A{U : U € U} denote its intersection and let U° := {U°: U e U}.
Following [12] we say that fuzzy sets M and N are quasicoincident and write MgN,
if there exists a point z € X such that M(z) + N(z) > 1. An open fuzzy set U
is called a g-neighborhood of a fuzzy point z!, if z'qU [12]. For M,N € IX let
MCN = ix;lf M¢(z) V N(z) denote the fuzzy inclusion of the fuzzy set M into the
fuzzy set N (see e.g. [14] - [16]. The closed fuzzy unit interval [8] is denoted F(I).

In Section 0 we expose briefly the principial features of the theory of fuzzy uniform
spaces developed by Hutton [7]. Some facts about fuzzy filters (8], [10] used in the
paper are also discussed in Section 0.
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150 A.Sostak, D.Dzhajanbajev

0. Preliminaries.

Fuzzy uniform spaces. Fuzzy uniform spaces were first defined by Hutton [7].
For the convenience of the reader we reproduce here some definitions and facts from
[7] which are essential for the subject of our paper.
Let X be a set and let D denote the family of all mappings U : IX — IX satisfying
the next two conditions:
(D1) U(M) > M for each M € IX
(D2) U(V M) =V U(M;) for every family {M;:i e J} c IX.
€T i€

A fuzzy uniformity on a set X is a nonempty subfamily &/ C D satisfying the next
four axioms:

(FU1) ifU€elU,V2U,and V € D, then V € i

(FU2) if U,V elU,then UAV €U;

(FU3) for each V € U there exists U €U s.t. UoU K V;
(FU4) if U €U, then U~! € U (a mapping U1 : IX — IX is defined by U~} (M) =

A{N : U(N€) € M¢ for each M € IX).

A pair (X,U), where X is a set and U is a fuzzy uniformity on it, is called a fuzzy
uniform space.

A subfamily B C U is called a base of the fuzzy uniformity U, if for each U € Y
there exists V' € B such that V < U; a subfamily P C U is called a subbase of the
fuzzy uniformity U, if B:= {V; A--- AV, : V; €U, n € N} is its base.

Let (X,Ux) and (Y,Uy) be fuzzy uniform spaces. A mapping f : X — Y is called
uniformly continuous, if V € Uy implies f~ oV o f € Ux. In other words this
means that for each V € Vy there exists U € Ux such that U(M) < f~Y(V(f(M)))
for all M € IX.

Fuzzy uniform spaces and uniformly continuous mappings between them form a
category; we denote it by HFU and call by the category of Hutton fuzzy uniform
spaces (to distinguish them from essentially different Lowen fuzzy uniform spaces
and from the approach to fuzzy uniformities developed in [4]).

Let (X,U) be a fuzzy uniform space. For each M € IX let IntM := V{N : there
exists U € U s.t. U(N) € M}. Then ny := {M € IX : M = IntM} is a fuzzy
topology on X; it is caled the fuzzy topology induced by the fuzzy uniformity U.

More details about (Hutton) fuzzy uniform spaces can be found in [7],[9],[1],[13].

Fuzzy filters. A family F C IX \ {0} is called a fuzzy filter on a set X, if (1)
F,F, e Fimpies FAF e F,and 2)if L €e Fand F, 2 F}, F; € Ix, then
F2 €EF [8]1 [101'

Let (X, 7) be a fuzzy topological space. A family & C IX will be called a closed
fuszy filter, if ® = F N r° for some fuzzy filter F on X.

Somewhat modifying Lowen’s terminology [10], a (closed) fuzzy filter will be
called an a-filter, where a € I, if sup F(z) > a for each F € F. If F is an a-filter

2

and a' € (0, a), then F is obviously an o'-filter, too.

It is not difficult to show that for each fuzzy a-filter F there exists an a-filter

which is the maximal one among all fuzzy a-filters containing F. If ® is a maximal
fuzzy a-filter and AV B € ®, then either A€ ® or B € &:
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Proposition. Let F be a mazimal fuzzy a-filler on X and My, M, € IX. If MigF
and MagF for all F € F, then also (My A M3)qF for all F € F.

PROOF : Assume that (M; A M;)4F for some F € F. Then, obviously, F =
FA (M AM,) =F A MV M;5) =(FAM{)V (F A M§) and by the maximality
condition of F it follows that either F; = F A M{ or F; = F A M5 belongs to F.
However, this contradicts the assumption that M;qF" for each F' € F andi=1,2. m

1. Completeness spectrum.
Let (X,U) be a fuzzy uniform space.

Definition 1.1. A fuzzy set M € IX is called U-small, where U € U, if there exists
a point z € X such that M < U(z). A nonempty family of fuzzy sets F C IX \ {0}
is called a (closed) fuzzy Cauchy filter or, briefly, a (closed) K -filter, if F is a fuzzy
filter (resp. a closed fuzzy filter) and for each U € U there exists a U-small element
F e F. A family w C I*X \ {1} is called an (open) fuzzy Cauchy ideal or, briefly, an
(open) K -ideal, if w® is a K-filter (resp. a closed K-filter).

Proposition 1.2. If M is U-small, then M is (U o U)-small.

PROOF : Take a point z € X such that M < U(z). Then M € U(M) € (UoU)(z).
]

Corollary 1.3. If F is a K-filter in X, then F := {F F € F} is a closed K-filter
in X.

Definition 1.4. By the completeness spectrum of a fuzzy set M € IX we call the
set Cpl(M) consisting of all 8 € I such that for every open K-ideal w satisfying
the inequality MC Vw > B, it follows that sup{MC V wp : wp C w, |wo| < Ro} > 8.
The completeness degree of a fuzzy set M is the number cpl(M) := inf(I'\ Cpl(M))
(here and later inf @ := 1).

The proofs of the next four propositions are straightforward and therefore omit-
ted.

Proposition 1.5. 0 € Cpl(M) and cpl(M) € Cpl(M) for each fuzzy set M.
“Proposition 1.8. If (8,) is an increasing sequence converging to B and (Ba) C
Cpl(M), then 8 € Cpl(M).
Proposition 1.7. If M,N € I, then Cpl(M V N) > Cpl(M)N C’pl(N)
Proposition 1.8. 8 € Cpl(M) iff for each closed K -filter satisfying the inequality
M5 AF 3 B it follows that sup{M°E A Fo : |Fo| < Ro, Fo C F} 2 B.
Proposition 1.9. If M, N € I* and besides N € 7f;, then Cpl(M) C Cpl(M AN)
and hence cpl(M) < cpl(M A N). In particular, if N € M and N € 75, then
Cpl(M) C Cpl(N) and hence cpl(M) < cpl(N).
PROOF : Let B € Cpl(M) and (M A N)C Vw 3 B for some open K-ideal w. It is
easy to notice that MANC Vw = MEN°Vw » § and that ' := {N°VU : U € w}
is also an open K-ideal. Hence sup{M € Vuwj : wy C w, [wp| < R} 3 B and therefore
sup{ME& V wy : wo Cw, [wo| < No} 3 5. .
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Theorem 1.10. For each i € J let (Xi,U;) be a fuzzy uniform space, M; be a
fuzzy subset of X; and M = NM; be the product of these fuzzy sets (considered
as the fuzzy subset of the product fuzzy uniform space (X,U) = N(X;,U;)). If
(B,a]'C Cpl(M;) for each i € J, then (8,a] C CpI(M ), too. Hence, in particular,
cpl(M) > inf cpl(M;).

PROOF : It suffices to show that if 8 < a and (8,a] C NCpl(M;), then a €

Cpi(M). Assume that there exist € > 0 and a closed K-filter F in X such that
sup{M°S A Fo : Fo C F, |Fol < Ro} < a — ¢ or, equivalently, such that sup(M A

Fy A--- A F,)(z) 2 a° + ¢ for each finite subfamily {Fy,...,F,} C F. Then F

is an (a® + ¢)-filter an hence F is contained in a maximal (a® + ¢)-filter & such

that M € &. For each i € J consider now the family ®; = {p;F : F € &}, where

pi : X — X, is the corresponding projection. It is easy to notice that ®; is a

closed K-filter on X; and sup(M; A (A®?))(z;) > a° + ¢ for each finite 3¢ C &;
z;

or, equivalently, sup{MF> A 3? : 87 C &;, |8?] < Ro} € « — . Without loss of
generality we can assume that & — ¢ > # and hence a — £/2 € Cpl(M;); therefore
MF3 A ®; € a — e/2. However, this means that there exists a point z; € X; such
that (M; A (A®;))(zi) =: t; 2 a® + £/4. Now, to finish the proof, it is sufficient to
show that z' € M A(A®), where z' is the fuzzy point with the support = (z;)ies
and the value ¢ := inf¢; : this would imply that M A (A®)(z) 2t > a°+ /4> a°

and hence M°S A F < a, i.e. a € Cpl(M).
Since obviously z¢ € M, we have to show only that z* € AF.

Let O = /"\ p;1(0;) be a standard g-neighborhood of z*, where O; € ny,, i =
i=1

1,...,n. It is clear that O; is a g-neighborhood of the fuzzy point z{ and zf € A®;.
Therefore O;qF; for each F; € ®; and hence (p;?(0;))gF for each F € &. By
maximality of & and by Proposition in Section 0, it follows that OgF for each
F € & and hence z* € A® < AF.

Our next aim is to show that under certain conditions a result in a known sense
inverse to the previous theorem holds. ]

Theorem 1.11. For each i € J let (Xi,u;) be a fuzzy uniform space, M; be its
normed fuzzy subset, and let M = NM; be the product of these fuzzy sets. Then
Cpl(M) C NCpl(M;).

1]

PROOF : Fixi € J and let M, := NM| : i’ # i}, X, := N{X] : i’ # i}; then
obviously X = X; x X,, M = M; x M.. Take B € Cpl(M) and consider a closed
K-filter F; in X; satisfying the inequality Mf5 A F; > B. Since, according to
(1.5) and (1.6) one can assume that 8 € (0,1) and since M, being a product
of normed fuzzy sets is normed itself, there exists a point z, € X, such that
Mi(z.) < B. Let F, = {A: Ais a closed fuzzy set in X, such that z. < A};
it is easy to notice that ¥, is a closed K-filter in X, and MSSA F, < B. The
family F, x F; := {F, x F; : F, € F,, F; € F;} is obviously a base of a closed
K-filter F on X.
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It easily follows now that
MSAF = (Mix ML) IA(Fi x F) = (MESAF)IV(MESAF) 2 MESAF; 2 B

and hence sup{M*D A F° : F° C F, |F°| < Ro} > B. Taking into account
that MSS A F? < M5 A F, < B for each finite F? C F,, we conclude that
sup{MFS A F? : F? C Fi, |F?] < No} > B and hence B € Cpl(M;). ]
From Theorems(1.10) and (1.11) the next corollary follows.

Corollary 1.12. Under the assumptions of (1.11) cpl(M) = inf cpl(M;).

Remark 1.13. It is easy to construct an example showing that the statements of
(1.11) and (1.12) do not generally hold for non-normed fuzzy sets M;.

Examples 1.14. Completeness spectra of fuzzy sets in ordinary uniform spaces.

In this subsection (X, ) is an ordinary uniform space and M is its fuzzy subset.
Notice first that from (1.3) it follows that

(1.14.1) The space (X,U) is complete iff Cpl(X,U) = [0, 1].

Patterned after the proof of Theorem 6.1 in [15] one can easily establish the
following fact:

(1.14.2) If the sets M ~1[v, 1] are complete for all y > 8¢ (B € I), then cpl(M) > B
and besides M is uppersemicontinuous, then the sets M [y, 1] are complete for all
¥ > pe.

The statements (1.14.3) - (1.14.6) are easy corollaries of (1.14.2).

(1.14.3) If the sets M ~1[y, 1] are complete for all 4 > 0, then cpl(M) = 1.

(1.14.4) If the space (X,U) is complete and M is uppersemicontinuous, then
cpl(M) =1.

(1.14.5) If M is uppersemicontinuous, then Cpl(M) = [0, cpl(M)].

(1.14.6) If M is uppersemicontinuous and cpl(M) = 1, then the subspace M ~1(0, 1]
is a union of countably many complete subspaces.

We finish this section with some concrete examples. One can easily justify them
basing on the previous statements.

(1.14.7) I X is not complete and M = a, then Cpl(M) = [0, 4], cpl(M) = a°.

(1.14.8) Let X be non-complete, X = X;UX,, XiNX; =0and0< a; <az < 1.
Let the fuzzy set M € IX be defined by the equality M = a;X; + a;X; (i.e.
M(z) = a;, iff z € X, i = 1,2). Then Cpl(M) = [0, a5}, cpl(M) = af, if X, is not
complete and Cpl(M) = [0, a5}, cpl(M) = a§ otherwise.

(1.14.9) Let X be complete, X = X; U X,, X1 N X; = 0 and both X; and X,
be non-complete. If M is defined as in (1.14.8), then Cpl(M) = [0,a5] U [af, 1] and
cpl(M) = a§. :

2. Precompactness spectrum.
Let (X,U) be a fuzzy uniform space and M be its fuzzy subset.

Definition 2.1. By the precompactness spectrum of a fuzzy set M we call the set
Pc(M) consisting of all § € I such that sup{MEU(X,) : Xo C X, | Xo| <Rp} 2 B.
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The number pc(M) = sup Pc(M) is called the precompactness degree of the fuzzy
set M.
Directly from this definition, one can establish the following easy facts.

Proposition 2.2. Pc(M) = [0, pc(M)] for each fuzszy set M. (The case pc(M) =
is not ezcluded!)

Proposition 2.3. pc(M) = li]xéi;sup{MCU(Xo) : Xo C X,|Xo| < Ro} for each
fuzzy set M.

Proposition 2.4. If N € M, (N € IX), then Pc(N) D Pc(M).

Proposition 2.5. Pc(M V N) = Pce(M) N Pe(N) for any M, N € IX.

Proposition 2.8. If (X,U), (Y,V) are fuzzy uniform spaces, M € IX, and f
X — Y is a uniformly continuous mapping, then Pc(M) C Pc(f(M)).

PrOOF : Take 8 € Pc(M) and let € > 0, V € V. Since f is uniformly continuous,
there exists U € U such that f(U) C V. Choose a finite subset X, C X for
which MEU(X,) 2 B — €. 1t follows now easily that 8 — ¢ < f(M)CF(U)(Yo) <
F(M)EV(Yp), where Yo = f(Xo), and hence 8 € Pe(f(M)).

Theorem 2.7. For each i € J let (X;,U;) be a uniform space and M; be its fuzzy
subset. Let M = MNM; be the product of these fuzzy sets (considered as the fuzzy
subset of the product fuzzy uniform space (X,U) = N(X;,Ui)). Then Pc(M) D
ﬂPc(M,) and hence pc(M) > mf pe(M;). If, besides, all M; are normed, then

Pc(M) ﬂPc(M.) and hence pc(M) mfpc(M.

PROOF : Assume that B € Pc(M;) for every ¢ € J and take some U € U
and ¢ > 0. From the definition of the product fuzzy uniformity, it follows that
there exists a finite subset Jy C J and U; € U; for each i € Jy such that

A p7(Us) € U, where p; : X — X; are the corresponding projections. Now
€T,
for each i € Jo fix a finite set A; C X such that M;CUx(A;) 3 f — &, and hence,

- obviously, p;(M;)Ep; (U; (A )) 2 B—¢, too. Let A= ( H A;) x {z,}, where

z, is an arbitrary (but fixed) point of X, := N{X; : i € Jo} Since obviously
oy (U;)(A.) = (p;}(U:))(A) for each i € Jo, it follows now that MEU(A) >
M A (7 (Ui))(A) 3 /\ (p."(M.)ép.“‘(U.(A.)) > B—¢ and hence 8 € Pe(M).

Tlns oompleteo the proof of the first part of the theorem. To prove the second
part, notice that p;(M) = M; for each i € J (in case all M; are normed) and use
Proposition (2.5). L]

Proposition 2.8. If (X, ) is a completely regular fuzzy topological space ([7], [8)),
then a furzy uniformity U on X ezists such that = 7 and pe(X,U) = 1.

This statement is a corollary of Remark (2.11) below and Propositions (4.8) and
(5.2) of Artico and Moresco [1]. However, for the convenience of the reader, we "
shall give here a direct and effective proof, too.
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PRrOOF : Following {7] for each ¢ > 0, consider the mappings B,, B;! : I*(D)
IF() defined by Bo(U) = AM{gs=c : U € 1-),} and B Y (U) = AM{Ap4e : U € 1-9,},
where A,, ¢, : F(I) — I(s € I) are the elements of the standard subbase of the
fuzzy unit interval. It is known that {B,,B;! : € € (0,1]} is the subbase of the
standard fuzzy uniformity on F(I) and {f~)(B.), f~Y(B;?) : f € C(X,F(I)),
& > 0} (where C(X,F(I)) is the set of all continuous functions from the fuzzy
topological space X into F(I)) is a subbase of a fuzzy uniformity &/ on X inducing
7 (see e.g.[T], Theorem 1.7). Therefore it is sufficient to show that pe(X,U) = 1.

From (3.1) below it follows that pc(F(I)) > ¢(F(I)) and hence e.g. by. Theorem
3.20 of [15] pe(F(I)) = 1. Therefore, for any U € U and € > 0 there exist fi, f €
C(X,F(I)) and 1,62 > 0 such that f{'(Be,) A f7'(B;}) € U. Choose finite
subsets A; and Az of F(I) for which B,,(4;) 2 (1 - e).F(I), B“(Az) 2 (1-e)F(I)
and let C;, C;, be finite subsets of X such that f;(C;) = 4; nf.(X), i=1,2,andC =
C1UC;. Then obviously fi(Be, )A f7(B;')(C) = fi (B (C)A f7 l(B ')(C) =
(B (RO A F7H(BIHH(0) 2 7711 - e)F (D) A f7(Q - (D)) ?
(1 — €)X and hence U(A4) } (1-¢e)X.

Corollary 2.9. If (X,7) is a completely regular fuzzy topological space and M €
IX, then a fuzzy uniformity U on X ezists such that 7y = 7 and pe(M),U) = 1.

Examples 2.10. Precompaciness specira of fuzzy sets in ordinary uniform spaces.
Let (X,U) be an ordinary uniform space and M be its fuzzy subset. It is easy to
check the next facts.
(2.10.1) The space (X,U) is precompact iff Pc(X) = [0, 1].
(2-10.2) B € Pe(M) iff for all v > B¢ the sets M (7, 1] are precompact.
(2.10.3) Pc(M) = [0,1] iff for all v > 0 the sets M ~!(,1] are precompact.

Remark 2.11. Artico and Moresco call a fuzzy uniform space (X, i) precompact,
if for each U € U the set {U(M) : M € IX} is finite. It is easy to notice that if
X is precompact, then for each U € U there exists a finite set Xy C X such that
U(Xo) = X and hence pc(X) = 1. However, the converse does not hold: there exists
a non-precompact [1] fuzzy uniform space, the precompactness degree of which is
1. This can be illustrated by the next example:

Example 2.11.1. (cf.Examplel0 in [1]). Let X be a set and let U : IX — IX map
every M € IX into the constant function cp = sup M(z). Let U denote the fuzzy

umformxty having {U} as a base. Then pc(X, L() =1, but (X, U) is not precompact
in the sense of [1].

3. On compactness spectra of fuzzy sets in fuzsy uniform spaces.

In [14], [18], the notion of compactness spectrum of a fuzzy set in a fuzzy topo-
logical space was introduced and studied. The aim of this section is to establish
some relations between the compactness spectrum of a fuzzy set in a fuzzy uniform
space and its completeness and precompactness spectra.

Theorem 3.1. For every fuzzy set M in a fuzzy uniform space (X, U) C(M) C
Cpl(M) N Pc(M) and C(M) N (},1] = Cpl(M) N Pe(M) N (4,1].
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PROOF : The first statément is obvious. To prove the second statement, take
B € Cpi(M)N Pe(M), 8 > 1, and assume that § ¢ C(M). Then a family
w C 7y and a number € > 0 exist such that MC Vw > B but MC V wy <
B — € for each finite subfamily wy of w; from the second inequality it follows that
sup(M A (Aw§))(z) = B¢ + ¢ for each finite wy C w, and hence the family {M} Uw®
is a base of a closed (8¢ + ¢)-filter . Let ® be a maximal (3° + ¢)-filter containing
F. We shall show that & is a K-filter.

Really, let U € U; then there exists a finite subset X, of X such that MEU(X,) >
B — %. It easily follows now that U(Xo)(z) > 8 — § whenever M°(z) < f— § fora
point £ € X. However, this implies easily that sup(MVU(Xo))(z) > B—§ > B°+e.
(Without loss of generality we assume that S—¢ > 1). Since ® is a maximal (8°+¢)-
filter, we conclude that U(Xy) € & and hence U(a) € & for some point a € Xy, and
therefore & is a K-filter. Then by (1.3) @ is also a K-filter and hence V := &" is an
open K-ideal. On the other hand, ¥ D w and hence MEVY > MC Vw > B. Since
B € Pc(M), there exists a finite subfamily Vo C V such that MCVVp > B—e. It is
easy to conclude now that sup MA(A®o)(z) < B°+¢, where & = V§. However, this

contradicts the assumption that & is a (8¢ + ¢)-filter. The obtained contradiction
completes the proof. ]

Theorem 3.1'. Let M be a fuzzy set in a fuzzy uniform space (X,U) and pc(M) =
1. Then cpl(M) = c(M).

PROOF : is quite analogous to the proof of (3.1). The only difference is that
now it is impossible to assume that § > %, but on the other hand, when choosing
X for a given U € U, we can ensure a stronger condition, namely, the inequality
MEU(X,) > 1 -6, where § = min{8° + §, 8 — €}. ]

Theorem 3.2. Let (X,7) be a fuzzy completely regular topological space and M €
IX. Then (M) = inf{cpl(M,U) : ry = 7}.

PROOF : From (3.1) it follows that ¢(M) < cpl(M,U) for each U satisfying Ty = 7.
Conversely, from (2.8) and (3.1’) it follows that there exists a uniformity V such
that 7y = 7 and (M) = cpl(M, V) and hence ¢(M) > inf{cplM,U): Ty =71}. =

Remark 3.3. We think that the reader has noticed the classical prototypes of the
results in this Section. Namely Theorem (3.1), as well as Theorem (3.1’), contains
in itself a well-known Weil’s Theorem stating that a uniform space is compact iff
it is complete and precompact, and Theorem (3.2) contains in itself a well-known
statement that a completely regular topological space is compact iff its topology is
induced by some complete uniformity.
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