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On completeness and precompactness spectra of fuzzy 
sets in fuzzy uniform spaces 

ALEXANDER SOSTAK, D.DZHAJANBAJEV 

Dedicated to the memory of Zdenek Frolik 

Abstract. The aim of this paper is to extend the spectral approach for the study of uniform 
properties of fuzzy sets in (Hutton's) fuzzy uniform spaces. The notions of completeness 
spectrum and precompactness spectrum are introduced and studied. In particular, the 
relations between these spectra and the compactness spectrum of a fuzzy set in a fuzzy 
topological space introduced earlier by the first author are discussed. 
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Classification: 54A40 

The spectral approach developed by the first author has proved to be an effective 
tool for the investigation of different topological properties of fuzzy topological 
spaces (see [14] - [19] e.a.). The aim of this and some subsequent papers is to 
extend the spectral approach for the study of uniform properties of fuzzy sets in 
fuzzy uniform spaces. In this paper, we define the completeness spectrum and 
the precompactness spectrum of a fuzzy set in a fuzzy uniform space and study 
basic properties of such spectra. The theory of completeness and precompactness 
developed here is in some aspects analogous to the classical theory of completeness 
and precompactness in (ordinary) uniform spaces (see e.g. [2], [4]). However, as 
the reader will notice, there are also essential special features distinguishing this 
spectral theory from its classical prototype. 

Terminology and notation which is standard for the B\izzy Topology is accepted in 
the paper. We emphasize that the expression "a fuzzy topological space" is always 
used in Chang's sense [3]. If M is a fuzzy subset of a set X, i.e. M € Ix (I •= [0,1]), 
then Mc := 1 — M denotes its complement. A fuzzy set M € Ix is called normed, if 
sup M(x) = 1. For a family of fuzzy sets U C Ix let \JU := V{# : U € U} denote 
*€X 

its union, l\U := A{U :U eU} denote its intersection and let Uc := {Uc : U €U}. 
Following [12] we say that fuzzy sets M and N are quasicoincident and write MqN> 
if there exists a point x € X such that M(x) + N(x) > 1. An open fuzzy set U 
is called a ^-neighborhood of a fuzzy point a:', if x*qU [12]. For M,N € Ix let 
McN := inf Mc(x) V N(x) denote the fuzzy inclusion of the fuzzy set M into the 
fuzzy set N (see e.g. [14] - [16]. The closed fuzzy unit interval [6] is denoted f(I). 

In Section 0 we expose briefly the principial features of the theory of fuzzy uniform 
spaces developed by Hutton [7]. Some facts about fuzzy filters [8], [10] used in the 
paper are also discussed in Section 0. 
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0. Preliminaries. 

Fuzzy uniform spaces. Fuzzy uniform spaces were first defined by Hutton [7]. 
For the convenience of the reader we reproduce here some definitions and facts from 
[7] which are essential for the subject of ouf paper. 

Let X be a set and let V denote the family of all mappings U : Ix -> Ix satisfying 
the next two conditions: 
(VI) U(M) ^ M for each M € Ix 

(V2) U( V Mi) = V U(Mi) for every family {Mi : i € J} C Ix. 
i€J i€J 

A fuzzy uniformity on a set X is a nonempty subfamily U C V satisfying the next 
four axioms: 

(FUl) if U € U, V > (7, and V € V, then V € U\ 
(FU2) if <7, V € U, then U A V € U\ 
(F(73) for each V € U there exists U € U s.t. U o U < V\ 
(FU4) i£UeUt then U'1 €U(& mapping U~l : Ix -> Ix is defined by U~l(M) = 

A{N : (7(NC) < Mc for each M € Ix). 
A pair (K,tV), where K is a set and <V is a fuzzy uniformity on it, is called a fuzzy 
uniform space. 

A subfamily B C U is called a base of the fuzzy uniformity <V, if for each U €U 
there exists V € B such that V < U; a subfamily V CU is called a subbase of the 
fuzzy uniformity <V, if B := {Vj A • • • A Vn :Vi€U,n€ N} is its base. 

Let (X,Ux) and (Y,UY) be fuzzy uniform spaces. A mapping / : X —> Y is called 
uniformly continuous, if V € uy implies f""1 oV o f £ Ux- In other words this 
means that for each V € Vy there exists (7 € tVx such that t7(M) < f~l(V(f(M))) 
for all M € Ix'. 

F\izzy uniform spaces and uniformly continuous mappings between them form a 
category; we denote it by HFU and call by the category of Hutton fuzzy uniform 
spaces (to distinguish them from essentially different Lowen fuzzy uniform spaces 
and from the approach to fuzzy uniformities developed in [4]). 

Let (X,U) be a fuzzy uniform space. For each M' € Ix let IntM := V{N : there 
exists U € U s.t. t7(N) < M}. Then nt :== {M € Ix : M = IntM} is a fuzzy 
topology on X\ it is caled the fuzzy topology induced by the fuzzy uniformity U. 

More details about (Hutton) fuzzy uniform spaces can be found in [7],[9],[1],[13]. 

Fuzzy filters. A family T C Ix \ {0} is called a fuzzy filter on a set K, if (1) 
FUF2 € T implies Fx A F2 € T, and (2) if Fx € T and F2 > Fit F2 € Ix> then 
F2 6^(8],[10]. 

Let (X, r ) be a fuzzy topological space. A family # C l x will be called a closed 
fuzzy filter, if $ = T H rc for some fuzzy filter T on X. 

Somewhat modifying Lowen's terminology [10], a (closed) fuzzy filter will be 
called an a-filter, where a € I, if supF(x) > a for each F € /*. If .F is an a-filter 

and a' € (0, <*), then ^* is obviously an <*'-fllter, too. 
It is not difficult to show that lor each fuzzy a-filter T there exists an a-filter $ 

which is the maximal one among all fuzzy a-filters containing T. If $ is a maximal 
fuzzy a-filter and A V B € #, then either A € # or B € #. 
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Proposition. Let f be a maximal fuzzy a-fUter on X and M\rM2 € Ix. IfM%qF 
and M2qF for all F € T, then also (Mi A M2)qF for allFeT. 

PROOF : Assume that (Mx A M2)iF for some F e /". Then, obviously, F = 
F A (Mi A M2f « F A (Mf V Mf) = (F A Mf) V (F A M|) and by the maximality 
condition of T it follows that either Fi = F A Mf or F2 = F A Mf belong* to ^. 
However, this contradicts the assumption that MiqF* for each F' £ T and i=1,2. • 

1. Completeness spectrum. 
Let (X,U) be a fuzzy uniform space. 

Definition 1.1. A fuzzy set M e Ix is called U-small, where U £U, if there exists 
a point x e X such that M < £l(x). A nonempty family of fuzzy sets T C Ix \ {0} 
is called a (closed) fuzzy Cauchy filter or, briefly, a (closed) K-filter, if T is a fuzzy 
filter (resp. a closed fuzzy filter) and for each U £U there exists a (/-small element 
F e T. A family u> C Ix \ {1} is called an (open) fuzzy Cauchy ideal or, briefly, an 
(open) K-ideal, if vc is a K-filter (resp. a closed K-filter). 

Proposition 1.2. If M is U-small, then M is (U o U)-small. 

PROOF : Take a point x e X such that M < U(x). Then ~M < tl(M) < (Uol7)(a:). 
• 

Corollary 1.3. If T is a K-filter in X, then 7 := {F : F e /*} w a cfo.se<* K-/ifter 
in K. 

Definition 1.4. By the completeness spectrum of a fuzzy set M e JTX we call the 
set Cpl(M) consisting of all 0 € / such that for every open K-ideal u> satisfying 
the inequality MCVw *£ /?, it follows that sup{Mc Vwo : <*>o C u>, |w0| < N0} > ,#. 
The completeness degree of a fuzzy set M is the number cpl(M) :-= inf (I \ Cpl(M)) 
(here and later inf 0 := 1). 

The proofs of the next four propositions are straightforward and therefore omit­
ted. 

Proposition 1.5. 0 e Cpl(M) and cpl(M) e Cpl(M) for each fuzzy set M. 

Proposition 1.0. If (0n) is an increasing sequence converging to 0 and (0n) C 
Cpl(M), then 0 € Cpl(M). 

Proposition 1.7. If M,N e Ix, then Cpl(M V N) D Cpl(M) fl Cpl(N). 

Proposition 1.8. 0 € Cpl(M) iff for each closed K-filter satisfying the inequality 
M c 3 hT>0it follows that sup{McC AFQ : | / i | < 80, TQ C ?} > 0. 

Proposition 1.9. IfM,N 6 Ix and besides N € r£, then Cjd(M) C Cpl(MAN) 
and hence cpl(M) < cpl(M A N). In particular, if N < M and N € r£, i&en 
Cpf(M) C Cpf(N) and hence cpl(M) < cpl(N). 

PROOF : Let 0 € Cpl(M) and (M A iV)£Vw > £ for some open K-ideal w. It is 
easy to notice that Ml\Nt Vw = MtNeVu> > 0 and that or* .=- {NcVtl : ll € u;} 
is also an open K-ideal. Hence sup{M£ V<4 : c*̂  C w, |<4I < N} > 0 and therefore 
sup{Md VUfa :w0Cw, M < No} > 0. • 
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Theorem 1,10. For each i 6 J let (Xi,U%) he a fuzzy uniform space, Mi be a 
fuzzy subset of Xt- and M = nMi be the product of these fuzzy sets (considered 
as the fuzzy subset of the product fuzzy uniform space (X,U) = n(Xi,#i)). / / 
(fi,ot] C Cpl(Mi) for each i 6 J , then (fi,a] C Cpl(M), too. Hence, in particular, 
cpl(M) * ixdcpl(Mi). 

PRCX)F : It suffiices to show that if fi < a and (fi,a] C f\Cpl(Mi), then a 6 
t 

Cpl(M). Assume that there exist e > 0 and a closed K-filter T in X such that 
sup{Mc5 A Fo : To C F, \TQ\ < N0} < a - e or, equivalently, such that sup(M A 
Ft A • • • A Fn)(x) > ac + e for each finite subfamily {Fu... ,F„} C /". Then .F 
is an (ae -f e)-filter an hence T is contained in a maximal (ac + e)-filter $ such 
that M € $. For each i € J consider now the family $i = {ptF : F € $} , where 
Pi : X —* Ki is the corresponding projection. It is easy to notice that #t- is a 
closed K-filter on Xt and sup(Mt A (A$J))(*i) > ac 4- e for each finite $J C #i 

or, equivalently, sup{Mt
c3 A #J : $J C #i, |$?| < N0} < <* - e. Without loss of 

generality we can assume that a — e > fi and hence a — e/2 € Cpl(Mi); therefore 
MfD A #,- < or — e/2. However, this means that there exists a point art € X, such 
that (Mi A (A^i))(a?i) ==: *,- *£ ac + c/4. Now, to finish the proof, it is sufficient to 
show that xf € MA(A$), where x* is the fuzzy point with the support x = (xi)i%j 
and the value t := inf tt: this would imply that M A (A$)(a;) ^ t > crc 4- e/4 > ac 

and hence M c3 A .F < ft, i.e. ft € Cpf(M). 
Since obviously a;* € M, we have to show only that xf € A.F. 

n 
Let O a- /\ pj" (Ot) be a standard -̂neighborhood of x*, where Oi € 7ty, t = 

issl 

1,. . . , n. It is clear that Oi is a ^-neighborhood of the fuzzy point x\ and x\ € A$t. 
Therefore dqFi for each Fi € #, and hence (p?l(Oi))qF for each F € $. By 
maximality of # and by Proposition in Section 0, it follows that OqF for each 
F € # and hence xf € A# < A,F. 

Our next aim is to show that under certain conditions a result in a known sense 
_ inverse to the previous theorem holds. • 

Theorem 1.11. For each i 6 J let (X^Ui) be a fuzzy uniform space, Mi be its 
normed fuzzy subset, and let M = nMi be the product of these fuzzy sets. Then 
Cpl(M) C f)Cpl(Mi). 

i 

PROOF : Fix t € J and let M„ := HM{ : t' =/ t}, X. := n{XJ : t' ^ •}; then 
obviously X =- Xi x X*, M =- Mi x M-.. Take fi € Cpl(M) and consider a closed 
K-filter ^i in Xi satisfying the inequality Mfj) A Ti > /0. Since, according to 
(1.5) and (1.6) one can assume that fi € (0,1) and since M* being a product 
of normed fuzzy sets is normed itself, there exists a point xm £ X* such that 
MJ?(**) < fi' Let /"• =- {.4 : A is a closed fuzzy set in X* such that x* < A}; 
it is easy to notice that A is a closed K-filter in X* and M c3 MF* < fi. The 
family .F* x Ti :-= {F« x Fi : F» € /*», Fi € .Fi} is obviously a base of a closed 
K-filter J* on X. 



On completeness and precompactness spectra of fuzzy sets in fuzzy uniform spaces 153 

It easily foUows now that 

MCDA.F = (Mi xM.)cDh(FiXF«) = (MfDAFi)y(McDA^) > Jiff5A^i > fi 

and hence sup{M c 5 A F° : J* C T, \F°\ < N0} > fi. Taking into account 
that MCD A J J < Mc5 A T+ < fi for each finite J* C T*, we conclude that 
sup{MfD A J? : J ? C Fi, \F(\ < N0} > fi and hence /5 G Cp/(M t). • 

From Theorems(l.lO) and (1.11) the next coroUary follows. 

Corollary 1.12. Under the assumptions of (1.11) cpl(M) = 'mfcpl(Mi). 

Remark 1.13. It is easy to construct an example showing that the statements of 
(1.11) and (1.12) do not generaUy hold for non-normed fuzzy sets Mi. 

Examp les 1.14. Completeness spectra of fuzzy sets in ordinary uniform spaces. 
In this subsection (X,U) is an ordinary uniform space and M is its fuzzy subset. 

Notice first that from (1.3) it follows that 
(1.14.1) The space (X,U) is complete iff Cpl(X,U) = [0,1]. 
Patterned after the proof of Theorem 6.1 in [15] one can easily establish the 

following fact: 
(114.2) If the sets M"1 [7,1] are complete for all 7 > fic (fi 6 I), then cpl(M) > fi 

and besides M is uppersemicontinuous, then the sets M - 1 [7 ,1] are complete for all 
7 > / ? c . 

The statements (1.14.3) - (1.14.6) are easy coroUaries of (1.14.2). 
(1.14.3) If the sets M~~l[y, 1] are complete for all 7 > 0, then cpl(M) = 1. 
(1.14.4) If the space (X,U) is complete and M is uppersemicontinuous, then 

cpl(M) = 1. 
(1.14.5) If M is uppersemicontinuous, then Cpl(M) = [0,cp/(M)]. 
(1.14.6) If M is uppersemicontinuous and cpl(M) = 1, then the subspace M"~x(0,1] 

is a union of countably many complete subspaces. 
We finish this section with some concrete examples. One can easily justify them 

basing on the previous statements. 
(1.14.7) If X is not complete and M = a, then Cpl(M) = [0,ac], cpl(M) = ac. 
(1.14.8) Let X be non-complete, X = X\UX2, X\OX2 = 0 a n d 0 < a\ < a2 < 1. 

Let the fuzzy set M € Ix be defined by the equality M = aiK i + a2X2 (i.e. 
M(x) = a,-, iff x € Xi, i = 1,2). Then Cpl(M) = [0,af], cpl(M) = a\, if X\ is not 
complete and Cpl(M) = [0, a2], cpl(M) = a2 otherwise. 

(1.14.9) Let X be complete, X = X\ U X2, X\ f) X2 = 0 and both X\ and X2 

be non-complete. If M is defined as in (1.14.8), then Cpl(M) = [0,05] U [af, 1] and 
cpl(M) = ac

2. 

2. Precompactness spectrum. 
Let (X,U) be a fuzzy uniform space and M be its fuzzy subset. 

Definition 2 . 1 . By the precompactness spectrum of a fuzzy set M we call the set 
Pc(M) consisting of aU fi € I such that sup{Mc*7(K0) : Ko C X, |K 0 | < N0} > fi. 
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The number pc(M) = sup Pc(M) is called the precompactness degree of the fuzzy 
set M. 

Directly from this definition, one can establish the foUowing easy facts. 

Proposition 2.2. Pc(M) = [0,pc(M)] for each fuzzy set M. (The case pc(M) - 0 
is not excluded!) 

Proposition 2.3. jpc(M) = inf sup{Mc£l(Ko) : Ko C K,|Kol < M for each 

fuzzy set M. 

Proposition 2.4. If N < M, (N 6 Ix), ihen Pc(N) D Pc(M). 

Proposition 2.5. Pc(M V N) = Pc(M) n Pc(N) for any M, N €lx. 

Proposition 2.8. If (X,U), (F,V) are fuzzy uniform spaces, M € Ix, and f : 
X -+Y is a uniformly continuous mapping, then Pc(M) C Pc(f(M)). 

PROOF : Take 0 € Pc(M) and let e > 0, V € V. Since / is uniformly continuous, 
there exists U € U such that f(U) C V. Choose a finite subset K0 C X for 
which MtU(Xo) > 0 - e. It Mows now easily that 0 - e < /(M)C/((7)(Yo) < 
/(M)CV(Ko), where K0 = f(X0), and hence /? € Pc(/(M)). • 

Theorem 2.7. .For each i £j let (Xj,W») 6e a uniform space and Mi he its fuzzy 
subset. Let M = nM; 6c the product of these fuzzy sets (considered as the fuzzy 
subset of the product fuzzy uniform space (X,U) = n(Ki,£/*)). Then Pc(M) D 
f\Pc(Mi) and hence pc(M) > infpc(Mi). If, besides, all Mi are normed, then 

Pc(M) = (]Pc(Mi) and hence pc(M) = inf pc(Mi). 
i * 

PROOF : Assume that 0 € Pc(Mi) for every t 6 J and take some U € U 
and € > 0. Prom the definition of the product fuzzy uniformity, it follows that 
there exists a finite subset Jo C J and Ui 6 Ui for each i € Jo such that 
A PTl^PT) < #» where p,- : X —• Xi are the coiresponding projections. Now 

t€Jo 

for each t € Jo fix a finite set A, C K» such that M,-CJ7,-(A.) > 0 - e, and hence, 
obviously, prH^-K-P,7l(#.(^t)) > 0 ~ e, too. Let A = ( I] AT) x {a?.,}, where 

t€J0 

x0 is an arbitrary (but fixed) point of X* := D{Xi : i € Jo}« Since obviously 
PTl(Vi)(Ai) = (prH^OX^) f or e a c h • ^ Jo, H Mows now that MtU(A) > 
Mt A (3>Tl(Vi))(A) > A (pTl{Mi)tpTl(Ui(Ai)) > 0-t and hence 0 € Pc(Jlf). 

t€Jb i€So 
This completes the proof of the first part of the theorem. To prove the second 
part, notice that Pi(M) = Mi for each i € J (in case aU M, are normed) and use 
Proposition (2.5). • 
Proposition 2.8., If (X,r) is a completely regular fuzzy topological space ([7], [9]), 
then a fuzzy uniformity U on X exists such that ry = T and pc(XfU) = 1. 

This statement is a corollary of Remark (2.11) below and Propositions (4.8) and 
(5.2) of Artico and Moresco [1]. However, for the convenience of the reader, we' 
shall give here a direct and effective proof, too. 
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PROOF : Following [7] for each e > 0, consider the mappings B€, B?1 : IrW _* 
I*W defined by Be(U) = A{e.~< : U < 1-A,} andB;"1^) = A{A#+e : U < l-g,}, 
where Xa, gs : ^(1) —> I($ G I) are the elements of the standard subbase of the 
fuzzy unit interval. It is known that {Be,B~x : e € (0,1]} is the subbase of the 
standard fuzzy uniformity on ?(I) and {f""1^), f~l(B~l) : / 6 C(X,T(I)), 
e > 0} (where C(X, F(I)) is the set of all continuous functions from the fuzzy 
topological space X into J"(I)) is a subbase of a fuzzy uniformity U on X inducing 
r (see e.g. [7], Theorem 1.7). Therefore it is sufficient to show that pc(X,U) = 1. 

From (3.1) below it follows that pc(F(I)) *£ c(T(I)) and hence e.g. by. Theorem 
3.20 of [15] pc(T(I)) = 1. Therefore, for any U € U and e > 0 there exist ft,f2 € 
C(X, F(I)) and eue2 > 0 such that f\l(Be%) A f2

l(B£) ^ U. Choose finite 
subsets At and A2 otF(I) for which B€l(Ai) > (l-e)F(I), B^(A2) > (l-e)F(I) 
and let C\, C2 be finite subsets of X such that /,(C,) = A»n/,(K), t = 1,2, and C = 
CxUC2. Then obviously Kx(Btx)Kf?(B£)(C) = / f ' ^ X C W f ^ B - ' X C ) -
fr\B9l(h(C))) A f2\B^(f2(C))) > frl((l - e)Jr-(I)) A /^(( l - e)^(J)) > 
(1 - e)K and hence U(A) > (1 - e)K. • 

Corollary 2.9. If (X, T) is a completely regular fuzzy topological space and M € 
Ix, then a fuzzy uniformity U on X exists such that TU~T and pc(M),U) = 1. 

Examples 2.10. Precompactness spectra of fuzzy sets in ordinary uniform spaces. 
Let (X,U) be an ordinary uniform space and M be its fuzzy subset. It is easy to 

check the next facts. 
(2.10.1) The space (X,U) is precompact iff Pc(X) = [0,1]. 
(2.10.2) P € Pc(M) iff for all 7 > fic the sets M~1(7,1] are precompact. 
(2.10.3) Pc(M) = [0,1] iff for all 7 > 0 the sets M^(y, 1] are precompact. 

Remark 2.11. Artico and Moresco call a fuzzy uniform space (X,U) precompact, 
if for each U € U the set {U(M) : M € Ix) is finite. It is easy to notice that if 
X is precompact, then for each U £U there exists a finite set XQ C X such that 
U(Xo) =- X and hence pc(X) = 1. However, the converse does not hold: there exists 
a non-precompact [1] fuzzy uniform space, the precompactness degree of which is 
1. This can be illustrated by the next example: 

Example 2.11.1. (cf.ExamplelO in [1]). Let X be a set and let U : Ix -> Ix map 
every M € Ix into the constant function CM = sup M(x). Let U denote the fuzzy 

uniformity having {U} as a base. Then pc(X,U) = 1, but (X,U) is not precompact 
in the sense of [1], 

3. On compactness spectra of fuzzy sets in fuzzy uniform spaces. 
In [14], [15], the notion of compactness spectrum of a fuzzy set in a fuzzy topo­

logical space was introduced and studied. The aim of this section is to establish 
some relations between the compactness spectrum of a fuzzy set in a fuzzy uniform 
space and its completeness and precompactness spectra. 

Theorem 3.1. For every fuzzy set M in a fuzzy uniform space (X,U) C(M) C 
Cpl(M) n Pc(M) and C(M) n (f, 1] = Cpl(M) n Pc(M) n (§, 1]. 
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PROOF : The first statement is obvious. To prove the second statement, take 
0 € Cpl(M) fl Pc(M), fi > \ , and assume that fi i C(M). Then a family 
w C TU a»d a number e > 0 exist such that Mc V u > ft but M c Vwo < 
/? — £ for each finite subfamily u>o of a/; from the second inequality it follows that 
sup(M A (Au0))(x) ^ fic + e for each finite u0 C u>, and hence the family {M} U u;c 

is a base of a closed (ftc 4- e)-filter f. Let $ be a maximal (fic + e)-filter containing 
J=". We shall show that * is a K-filter. 

Really, let U £U; then there exists a finite subset X0 of X such that McU(X0) > 
0 - | . It easily follows now that U(X0)(x) ^ 0 - \ whenever Mc(x) < 0 - § for a 
point x € K. However, this implies easily that sup(M\/U(X0))(x) > / ? - § > /3c+e. 
(Without loss of generality we assume that 0—e > 5). Since $ is a maximal (0c+e)-
filter, we conclude that U(X0) € $ and hence U(a) € $ for some point a € Ko> and 
therefore $ is a K-filter. Then by (1.3) $ is also a K-filter and hence V := $ is an 
open K-ideal. On the other hand, V D w and hence Mc V V > M C Vw ^ /?. Since 
£ € Pc(M), there exists a finite subfamily V0 C V such thatJtfC V V0 > 0 - e. It is 
easy to conclude now that supMA(A#o)(z) < 0c+e, where # 0 = VQ. However, this 

X 

contradicts the assumption that $ is a (0C -f e)-filter. The obtained contradiction 
completes the proof. • 

Theorem 3.1'. Let M be a fuzzy set in a fuzzy uniform space (X,U) and pc(M) = 
1. Then cpl(M) = c(M). 

PROOF : is quite analogous to the proof of (3.1). The only difference is that 
now it is impossible to assume that 0 > | , but on the other hand, when choosing 
Ko for a given U 6 U, we can ensure a stronger condition, namely, the inequality 
MtU(X0) >l-6, where 6 = mm{/?c + §, 0 - e}. m 

Theorem 3.2. Let (X, r) be a fuzzy completely regular topological space and M € 
Ix. Then c(M) = M{cpl(M,U): m = r } . 

PROOF : From (3.1) it follows that c(M) < cpl(M,U) for each U satisfying TU = T. 
Conversely, from (2.8) and (3.1') it follows that there exists a uniformity V such 

- that Ty = T and c(M) = cpl(M, V) and hence c(M) ^ inf {cpl(M, U) :TU = T ) . • 

Remark 3.3 . We think that the reader has noticed the classical prototypes of the 
results in this Section. Namely Theorem (3.1), as well as Theorem (3.1'), contains 
in itself a well-known Weil's Theorem stating that a uniform space is compact iff 
it is complete and precompact, and Theorem (3.2) contains in itself a well-known 
statement that a completely regular topological space is compact iff its topology is 
induced by some complete uniformity. 
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