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Existence and limiting behaviour for damped nonlinear 
evolution equations with nonlocal terms 

DANIEL SEVCOVIC 

Abstract. In this paper we investigate both the existence and the long t ime behaviour of 
solutions to damped nonlinear evolution equations with nonlocal terms 

utt + j3Aut + f(\\Al'2u\\2)Au + A2u + g(u) = h 

where A is a sectorial operator . If / and g satisfy certain regularity assumptions then a 
local existence of solutions is guaranteed. We will give a global existence result for the 
case where A = —A. Furthermore we will establish tha t there exists a maximal compact 
a t t ractor . 

Keywords: nonlinear evolution equations with nonlocal terms, sectorial operator, analytic 
semigroup, dissipative semidynamical system, maximal attractor 

Classification: Pr imary 35G25, Secondary 35B40 

1. In t roduc t ion . 
In the present paper we are interested in nonlinear damped evolution equations 

with nonlocal terms. We will investigate both the existence and the long time 
behaviour of solutions to 

(1) utt + pAut + f(\\Alf2u\\2)Au + A2u + g(u) = h 

subjected to the initial conditions u(0) = «o, t-t(0) = vo where A is a sectorial 
operator in a Banach space X (with the norm || ||), h € X, 0 is a positive constant, 
g is a nonlinear operator from D(A) into X satisfying certain regularity and growth 
assumptions and / : R+ —> R is an increasing locally Lipschitz continuous function. 
The nonlocal character of (1) is described by the term /( | |A1 /2u| |2)Au. 

As an example for (1) we can consider an initial-boundary value problem 

д2u 
дßt 

• /3 A -^ - / í I \j2udx J • Au + A2u + g(u) = h 

du 
w(0, x) = uo(x), -^r(0yx) = vo(x), for a.e. x 6 0 

u(*,;r) = 0, x Gdft, t>0 

(2) Au(*,x) = 0, x €9 f i , t > 0 

Here O is a smooth bounded domain in Rn, n = 1,2,3; and g is the Nemitzky's 
operator from Ho(ft) VI H2(Q) into L2(0). For the case where /(0) > 0, g = 0, 
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h = 0, the exponential decay of solutions to (2) has been studied by P. Biller 
[3]. A common example where this type of equations arises is in the mathematical 
study of structurally damped nonlinear vibrations of a string or a beam. For related 
problems, similar to ours, we refer to Ball [2], Fitzgibbon [5], Ghidaglia and Temam 
[6], Hale and Stavralcakis [7], Massat [9], Webb [11]. 

2. Preliminaries. 
Let X be a Banach space with the norm || ||. A linear operator A in X is 

called a sectorial operator if it is a closed densely defined operator such that for 
some constants M > 1, $ £ (0,7r/2) and S £ R the sector Sst$ = {A € C; 0 < 
| arg(A - S)\ < TT; A ̂  S} is in the resolvent set p(A) and ||(A - A)"11| < M/|A - S\ 
for all A € Sst$. 

The assumptions Rea(A) > S > 0 (it means Re A > S for all A £ v(A)) and A 
is sectorial imply that fractional powers Aa, a £ R, can be defined. Let Xa be 
a Banach space consisting of the domain D(Aa) with the graph norm || \\Q, i.e. 
| |u||a = HA""!! for all u £ Xa. Furthermore Xa is continuously imbedded into X& 
whenever a > fi > 0 and | |u| |i < | |A^" a | | • | |u||a for each u £ Xa. 

(3) 

It is known that if A is sectorial operator then —A generates an analytic semigroup 
exp(—Alt). This family of continuous linear operators defined on X satisfies to 

exp(—A(t + s)) = exp(-At) o exp(—As) for all t, s > 0 

exp(~At)x —• x as t —• 0 ,for each x £ X 

the map t —• exp(—At)x is real analytic on (0, oo), 

(4) for each x £ X 

Moreover, exp(-At)x £ Xa for all x £ K, t > 0 and a £ R. For each a £ (0,1] 
there is Ca > 0 such that | |A°exp(-A t ) | | < Cat~

a exp(St) for all t > 0. If A"1 

is a compact linear operator on X then A~~a is compact for each a > 0. For the 
theory of analytic semigroups and fractional powers of sectorial operators see, for 
example, [8, Chapter 1]. 

In order to understand the results in section 4 and 5 we need following definitions 
each of which can be found in [1], [7], [8] and [9]. Let X be a Banach space. Let 
{S(t)\ t > 0} be a a semidynamical system in X in the sense that 

S(t) is a continuous mapping from X into X for each t > 0 

S( . )x is continuous as a function from [0, oo) to X, 

for each fixed x £ X 

5(0) = Id, S(t + s) = S(t) o S(s) for all t, s > 0 
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A set J C X is called invariant if S(t)J = J for alH > 0. An invariant set U C X 
is called a maximal attractor for the semidynamical system S(t) iff it is a closed 
bounded set in X and lim dist(S(t)B\U) = 0 for any bounded set B C X, where 

t—+oo 

dist(A,B) = sup inf ||x — y||. 
xeAy€B 

A set B dissipates a set J if there exists T = T(J) > 0 such that t > T implies 
S(t) J C H. 

A semidynamical system S(t) is called point (compact, bounded) dissipative if 
there exists a bounded set if? which dissipates all points (compact sets, bounded 
sets). 

The semiorbit of a set B is defined by 7 + (B) = | j S(t)B. 
t>6 

The omega-limit set is defined by 

Q(B) = p | cl( (J S(s)H) (the closure is taken in X) 
t>0 3>t 

Denote by Ne(B) = {yG AT;dist(y,£) < e) 

3. Local existence. 
The problem (1) can be considered as an abstract first order ordinary differential 

equation in a Banach space X. This is to do by letting v = ut. Then we can rewrite 
( l ) a s 

(5) ^ * ( * ) + I,*(t) + *l(*(t)) = 0; $(0) = $ 0 

where 

*«>=[!$]; Ł - ( i , ^ d ) 
and 

(6) T (l"j) = l/(ll«llf/,)Au + 9 ( « ) - h\ 
The initial value problem (5) is considered in a Banach space X = X1 x X with 

r | 2 
the norm = ||«||f -f- ||v||2. The domain D(L) of the linear operator L is 

defined by D(L) = D(A2) x D(A). 
In this section we obtain a local existence of solutions to (5). Moreover, we will 

examine uniqueness, continuation and continuous dependence. We will prove these 
results by following the style of Henry's lecture notes [8]. 

Throughout this section we assume the following hypotheses 
(HI) 

(i) i is a sectorial operator in a Banach space X with a sector Sot$ and 
Re<r(A)>0. 

(ii) /?>2-s in0 
(hi) / : [0,oo) —• R is locally Lipschitz continuous, g: X1 —• X is lipschitzian 

on bounded sets of K1, h € X 
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Theorem 3.1 . The assumptions are those made above, in particular for A and 
P. Then L is a sectorial operator in X and —L generates an analytic semigroup 
exp(-Lt) on X. 

PROOF : We will prove that L is the sectorial operator in X. Clearly, L is the 
closed and densely defined operator in X. Denote by fi\ and /32 the roots of a 
quadratic equation 

( 8 ) r2 _ pr + i _. o, i.e. ft ,2 = (/3 ± (/?2 - 4)1 l2)/2 

Formally we can compute the resolvent 

m <*-«"-(_»;,, »_"^)-(»-Af* ? ) - W » - M + * I - -

= ( V A "")•<**-•»»"'• (»*-'')"• 

Assume that A/3i, A/32 € p(A). Then the formal computation in (9) can be 
justified using the fact that (p — A)~l maps each X01 into Ka+1 for all p G p(A). 
Since all of the operators commute in (9), it is a routine to show that (9) indeed is 
the resolvent. Furthermore, we see that 

(10) a(L)C0l(r(A)\Jl32a(A) 

Now we can easily find the sector S0,r for L. Let r = arg(/3i) -f 0. According 
to (HI), part (ii), we have 0 < r < 7r/2 and the sector So,r is contained in the 
resolvent set p(L). Moreover Pi • 5o,r C So,0 for i = 1,2. 

Since A is sectorial then there exists M > 1 such that \\(p — A)~~1\\ < M/\p\ for 
each p G So,_- Let u G K1, v G X and A 6 S0,r- Clearly, A/3t G So,0 for i = 1,2. 
We will estimate the norm of the resolvent (A — L)"*1 by computing term by term 
in (9). We start with the upper left term in (9). 

||(A - ft4)(Aft - A)"1(Aft - A)-lu\\x < 

< ||/J(Aft - A)-1 - A/?2(Aft - A)"1(Aft - A)-x\\ • ||u||, < 

, f /3M |A^ 2 | -M 2 I „ „ M,. . „ 

MjW + lb^}-W l = |A|W l 

Consider the upper right term. Then 

|| - ( A f t - A ) " 1 (Aft - A ) " 1 1 ; | | , < ||.4(Aft - A ) " 1 (Aft - A ) " 1 1 | • \\v\\ = 

< ||Aft(Aft - A)~l(\p2 - A)-1 - (Aft - A)-x\\ • H I , < 

, f |Af t | -M 2 M \ . . . . M 2 | l ., 



Existence and limiting behaviour for damped nonlinear evolution equations ... 287 

The next term is lower left one, 

| | A 2 ( A A - A ) - 1 ( A / ? 2 - A ) - 1 u | l < 

Finally, 

\\A{Xß1 -.4)-1(AA -A)"11|-1Mb < -ĵ llull, 

||Л(АА - АГЧЛА - -4)-«11 < -^тщМ == f NI 

Therefore there exists a constant M' > 1, which does not depend on A, such that 
||(A — JS)"*1 | j x < M'/|A| for each A G 5 0 , r - Hence L is the sectorial operator in X 
and — L generates the analytic semigroup exp(—Li) on X. • 

Remark 3 .1 . Since Reo-(A) > 0 then by looking at the spectrum a(L) we see 
that Re cr(L) > 0. More precisely, by straightforward computations, we obtain that 
Recr(L) > S • Re(/?2) • COST. 

Remark 3.2. Let f, g and h be given. Thanks to the continuity of the imbed
ding X1 C K1/2, the assumptions of (HI), part (iii), imply that T: X —> X is 
lipschitzian on bounded sets of X. 

The main result of this section is the following theorem 

Theorem 3.2. Under assumptions (HI), for each 4>0 € X there exists 
T = T ($ 0 ) > 0 and a unique function $ = $ ( t , # 0 ) such that 

(i) ^GCtfO,*!)) : X)nC1((t0,ti): Xa) for all 0 < a < 1 and 0 < t0 < tx < T 
(ii) $(t) € D(Lj for each t € (0,T) 

(iii) £$(t) + L$(t) + f($(t)) = 0 on (0, T); $(0) = $ 0 

(iv) Jf T ($ 0 ) t* maximal (in the sense that there exists no solution of (5) on 
(0,Ti) where Tx > T($ 0 ) ) then either T ($ 0 ) = -foo or | |$(t ,$0)IU is 

unbounded on [0,T) 
(v) For each e > 0 there is 8 > 0 .such that | | $ 0 — \I>0||Z < 6 implies ||$(t,<I>0) — 

$(£, ^ 0 ) | | i < e uniformly on compact subintervals of[0,min{T($0),T(\I>0)}). 

PROOF : By Theorem 3.1 we know that — L generates the analytic semigroup 
exp(—Lt) on X. Moreover Rea(L) > 0. According to Remark 3.2 we have that 
T: X -—• X is lipschitzian on bounded sets of X. Hence our statement is a conse
quence of the general theory of semilinear parabolic equations which can be found 
in [8]. More precisely, it follows from [8, Theorem 3.3.3, 3.3.4, 3.4.1 and 3.5.2]. • 

Remark 3.3. Define projections TTJ and K2 from X into X1 and X by TTI 

and 7Г2 Є X, Put = t>. Let $ ( . ) be a solution of (5) with $(0) = $ 0 = 

u(t,u0, vQ) = 7ri$(t,$o) for each t € [0,T($0))- Then by Theorem 3.2 we see that 
ut(t) = -•,*(«) and utt(t)+pAut(t)+f(\\Al'2u{t)f)Au(t) + A2u(t)+g(u{t)) = h on 
(0 ,T($ 0 ) and «(0) = ir\$(0) = u0; w«(0) := lim+u.(fc) = 7r2$(0) = v0. Moreover 

u G C([0,*i): X^nCWo^i): X^n&dtoX): X) for each 0 < t0 < t, < T(* 0 ) 
and u(i) € Z>(.42) for < € (0,T($0)) . 
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4. Global existence. 
From now we restrict X, A, 0, f, g, and h by 

(H2) 

(i) X = 1*2(0) where H is a smooth bounded domain in Rn, n = 1,2,3; /? > 0 
and h € L2($l). The scalar product in X is denoted by ( . , . ) . 

(ii) Au = - A u for each u 6 CQ(U) and A is the self adjoint closure in X of its 
restriction to C Q ( 0 ) 

(iii) g: R —• R, / : [0, -f oo) —• R are locally Lipschitz continuous functions such 
that / increases on [0, +oo), 

/
f(s)ds > —oo and lim inf 

M-+oo -s 
o 

£ ^ > 0 

It is well known (cf. [8, Chapter 1]) that Rea(A) > 0, D(A) = H0
J(O) D H2(Q), 

A""1 is the compact operator on X and A is the sectorial operator in X with the 
sector So,0 for each 0 € (0 ,TT/2). 

Due to the Sobolev's imbedding X1 C L<x>(£l) [8, Theorem 1.6.1] we see that 
g: X1 —• X is well defined and it is the lipschitzian mapping on bounded sets of 
X1. Here we have denoted by the same symbol the Nemitzky's operator g defined 
by g(u)(x) := g(u(x)) for u £ X1 and for a.e. x € Q. Hence A, 0, f, g and h fulfill 
to the hypotheses (HI). 

( i i ) 

Define a functional G: X1 —• R by 

( u(x) \ 

/ g(s)ds J dx - (h,u) for each u € X1 

Thanks tctthe continuity of the imbedding X1 C Loo(il) we obtain that G is 
well defined and it is the continuous function from X1 into R. Moreover, if u € 
C H v W i ) : X1) then G(u(t)) is differentiable on (h,tx) and 

(13) ! G ( " ( * ) ) = fo(u(*»» M< W) - (>*> ti,(<)) 

Since lim inf ^ ^ > 0, it can easily be verified that for each e > 0 there is 
M-+oo * -

Ke > 0 (Ke depends on e, O, h, g and HAL""1!)) such that 

(14) G(w) > -e |M|J ~ #e for each w € X1 

Again from the imbedding X1 C i-oo(ft) we obtain that G(B) is a bounded set 
in R, provided B is a bounded set in X1. 

(15) 
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Now we denote by F the primitive of /, i.e. 
r 

(16) F(r) = Jf(s)đз 

From the assumption J f(s)ds > —oo the existence of Co with the property 
o 

F(r) > Co for each r > 0 immediately follows. 

(17) 

Finally, if u € C1((r0,.'i): X
1) then JF(||M(*)||*/2) is differentiable on (tQ,U) and 

JtF(\Ht)\\\,2) = 2 • /(IKt)ll?/-)' (Au(t),ut(t)) 

holds. 

(18) 

Theorem 4,1. For each $o € X the unique solution $( . ,$o) given by Theorem 
3.2 exists and is bounded on [0,oo). 

PROOF : With regard to Theorem 3.2, part (iv), we will show that the maximal 
solution $ ( . . $o) of (5), defined on [0,T($o))> stays bounded in X. 

From Remark 3.3 we know that u(t) = ffi$(t) satisfies to (1) on (0,T($0))-
Moreover u € Cl({U,t{)i X1) for each 0 < t0 < *i < .T($o) and u(t) € D(A2) for 
<6(0,T(*o)). 

We take the scalar product in X of (1) with ut(t). Then for each t € (0, T(#o)) 
we obtain 

(««(*), -t(')) + P(Au,(t), «,(<)) + /(ll^/VOIf) • (A.(t), «,(*))+ 

(A2u(t),u.(.)) +0(-(*)).«i(.)) - (h,ut(t)) = 0 

Then we can deduce from (13) and (18) that 

(19) lit {ll*(t)«- + F (llx»#WI?/.) + - • GOi*(*))} + /»B*2*(0ll!/a = o 
Since /3 > 0 we see that 

ll*WI|2x + F (||7r,$(t)||?/2) + 2• GOi*(«)) < 

< I I * O | | ^ + - : , ( | | T . * O | | 1 / . ) + 2 - G ( ^ * O ) 

Put e = 1/4. According to (14) and (17) we obtain 

(20) i||*Wllx < ||*o||2 + F ( |ki*o||? /2) + 2 • oOi*o) - co + K1/4 

Therefore $ ( . , $o) remains bounded on [0, T(*o))- By Theorem 3.2 we have that 
T($o) = +co. Hence * ( . , $0) exists on [0, +oo). • 
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5. Limiting behaviour. 
In this section we will consider solutions of (5) as a semidynamical system 

{S(t); t > 0} in the Hilbert space X. 
Define 

(21) S(t)$0 := $(t, $ 0 ) for all $ 0 € X and t > 0 

According to Theorem 3.2 and 4.1 {S(t);t > 0} is the semidynamical system in 
X. 

(22) 

Remark 5.1. It readily follows from (15), (20) and assumptions on f that 7+(H) 
is bounded in X for any bounded set B C X. 

Theorem 5.1. Assume the hypotheses (H2). Then there exists a maximal compact 
attractor U for the semidynamical system {S(t);t > 0}. 

Before proving this theorem we need four auxiliary lemmas each of which is under 
hypotheses (H2). 

Lemma 5.1. L~~a is a compact linear operator on X for each a > 0. 

PROOF : Let {$n}n^=i D e a hounded sequence in X — X1 x X. Since A"1 

is compact in K, there exists a subsequence (again denoted by {^nJn^i) such 
that {7Ti#n}£Li and {A'-^^n}^ converge in X. Then {A-l7r1^n}n

<Li and 
{A"~27T2$n}n*Li converge in X1. From (9) we see that 

~ V -Id- ° / 
Therefore {L 1$n}

<
n

<L1 converges in X. Thus L l is the compact linear operator 
on X. Hence L~a is compact on X for each a > 0. • 

Lemma 5.2. For each $ 0 € X the semiorbit 7+ ({$0}) is precompact in X. For 
each fixed t > 0, S(t): X —• X is the compact operator on X. 

PROOF : Since T\ X —• X is lipschitzian on bounded sets of X we have that 
T(B) is bounded in X for any bounded set B C X. Furthermore L has the compact 
resolvent L"1. Hence our first statement is a consequence of [8, Theorem 3.3.6]. 

Let t > 0 be fixed. To show that S(t) is the compact operator it suffices to show 
that L-/2S(t)B is bounded in X for any bounded set B CX. Let B be a bounded 
set in X, i.e. ||#o||z < c\ for each #0 € B. By Remark 5.1* 7 + (B) is bounded in 
X. Therefore F(i+(B)) is bounded in X, i.e. ||;F(S(.s).B)||x < c2 for each s > 0. It 
is well known (cf. [8, Lemma 3.3.2]) that S(t)$o satisfies to an integral equation 

t 

5(r)#o = e x p ( - L t ) $ 0 + fexp(~L(t - s))f(S(s)$0)ds 
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Using the fact that L1 /2 is closed (see [8, p. 25]) we obtain 

t 

L1/2(S(t))$0 = L1/2exp(-Lt)$0 + I L1/2exp(-L(t - s))f(S(s)$0)ds 

o 

Therefore 
\\Ll'2S(t)B\\z < C 1 / 2 • {Clr

1'2 + 2C2*1!2} 

Thus L1/2S(t)B is bounded in X. Hence S(t) is the compact mapping in X for 
each fixed t > 0. • 

The following statement is an easy consequence of the previous lemma and the 
general result of [8, Theorem 4.3.3]. 

Lemma 5.3. For each <&0 £ X the omega-limit set, Q({$o})> w nonempty compact, 
connected and 

lim dist(S(0$o,a({$o}))==0 
(—*oo 

Denote by E a set of the stationary states of (5), i.e. 

(23) E = {$ e D(L); L$ + .F($) = 0} 

Clearly, G E iff v = 0 and u G D(A2) satisfies to a stationary equation 

(24) f(\\A1/2u\\2)Au -f A2u -f g(u) = h 

Lemma 5.4. For each $ 0 e X, 0({$o}) £ E. 

PROOF : Define a Liapunov functional V: X —> R by 

V{*) = \ \\\H\ + F (IITT^H2/,) + 2 • G(x,*)} 

According to (19) we know that 

(25) jV(S(t)$) + p\\7r2S(t)m/2 = 0 for each t > 0 and $ € AT 

Thus a real valued function t —• V(S(£)$) is nonincreasing on [0, foo) . More
over, by (14) and (17), V(S(t)$) is bounded below for t > 0. Now, the rest of the 
proof is essentially the same as of [11, Theorem 4.1], 

Indeed, if $ € 0 ({#o}) then # = lim S(tn)$o for some sequence tn —• -foo. 
n—•oo 

Since V(S(t)$0) is continuous (see (13)) then we have 

V(*) = lim V(S{tn)9„) = inf V(S(A»)*O) = lim V(S(t +tn)$0) = 
n—•oo .»>0 n—>oo 

= V(S(t)$) for each t > 0 



2 9 2 D.Sevcovic 

Then, from (25), we obtain that K2S(t)$ = 0 for each t > 0. By Remark 3.3 we 
know that -f^Stf)® = 0 for t > 0. Thus LS(t)$ + F(S(t)$) = 0 for each t > 0. 
Since L is closed and T is continuous we obtain (by letting t —• 0+ ) that # € D(L) 
and L$ + ,F($) = 0, i.e. <f> € E. Hence 0({$o}) Q E. m 

PROOF of Theorem 5.1: First we will show that E is the bounded set in X. Let 

€ E. Then we multiply (24) with u to obtain И 
IMI? + /(ll«ll?/2)-11-11?/- +(»(«•),««) = ( M ) 

Since / increases on [0, +oo) and F is lower bounded by c0 (see (17)) we have c0 < 

^(ll u l l i/ 2 ) -S /(IMI1/2) * IMIi/2- According to the assumption lim inf *-/-• > 0 it 

is as routine to show that there is K' > 0 such that (g(u),u) > --§| |u | | 2 - K'. (Kf 

depends only on #, 0 and Jj-A x | | ) . 
We now combine the previous result to obtain 

i | M i ; + c0 - K' < ( M ) < II-4-1!!2 • | |h| | 2 + i l lA" 1 ! ! " 2 . | |u| |? / 2 < 

<\\A-1\\2'\\h\\2 + ~\\u\\l 

(here we have used the inequality a • b < \{(ea)2 + (b/e)2}). Thus ||u||f < 4 • {A"1 -
c 0 + ll-A"-1!!2!^!!2}. Hence E is bounded in X. 

Using similar ideas as of [9, Theorem 5] the rest of the proof comes very quickly. 
Let £1 = M\(E). Clearly B\ is bounded on X. With regard to Lemma 5.3 we 
see that for each # 0 € X there exists T($ 0 ) > 0 such that 5( t )# 0 € Bt whenever 
t > T(#o). Hence B\ dissipates all points. Let £2 -= 7 + ( N i ( £ i ) ) . By Remark 
5.1 we have that £ 2 is bounded in X. Let $ 0 € X. Then S(t)$0 € B\ whenever 
* > T($0). R*om the continuity of S(T($0)) we obtain that there exists a neighbour
hood JV*(*0) with 5(T(#0))Jv r*(#0) C AftiBt). Thus 5(<)A/i(«o) C 7

+ ( M ( B i ) ) = 
B2 for each t > T(# 0)- Therefore £2 dissipates all compact sets. Since 5(1 )B is a 
compact set in X for any bounded set B C X we have that {S(t); t > 0} is bounded 
dissipative. More precisely, for any bounded set B C X there is T(B) > 0 such that 
S(t)B C £ 2 , whenever t > T(B). 

Now, by [1, Theorem 1.2 and Remark 1.0] we have that there exists a maximal 
compact attractor U for the semidynamical system S(t). More precisely, U = 0(£2) . 
which completes the proof of Theorem 5.1. • 
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