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Gelfand—Phillips property in the completion of the space 
of Pettis integrable functions1 

G. EMMANUELE 

Abstract. We consider the normed space V(p, X) of Pettis integrable functions with values 
in a Banach space X and we prove that if X has the Gelfand—Phillips property, then even 
the completion of V(n, X) has the same property. 

Keywords: Pettis integrable functions, precompactness, Gelfand—Phillips property 

Classification: 46E40, 46B20 

Introduction. 
Let (S,H,IJ) be a finite measure space and X a Banach space. We consider 

the normed space V(n,X) of all (/i)-Pettis integrable functions, with values in X, 
equipped with the norm 

| | / | | - = B u p | j f | * V ( - ) | t i p : x * 6 J r M | * ' | | < l } . 

We say that X has the Gelfand—Phillips property (see [1]) if any bounded subset 
M such that 

(1) limsup |-c*(x)| = 0 for any w*-null sequence (x*) C X* 
n M 

is relatively compact. A set verifying (1) will be called "limited". 
Purpose of this note is to prove that if X has the Gelfand—Phillips property, 

then the completion V(fi, E) of V(fi, E) has the same property. 
In order to give our result we need the following remark done in [1]. 

Proposition 1. If f : S —> X is Pettis integrable and X has the Gelfand—Phillips 
property, then the set {fAf(s)dfi : A € S} is relatively compact 

PROOF : Using the ji-continuity of the indefinite integral of / , together with the 
finiteness of fi, it is very easy to show that {fA f(s) dft: A € E} is limited in X. • 

Result. 
Our proof of the main result of the paper relies on the following theorem about the 

(strong) precompactness in the space Vc(f*,X), the subspace of V(n,X) consisting 
of those / having an indefinite integral with compact range 

1 Work performed under the auspices of G.N.A.F.A. of CN.R. and partially supported by M.U.R.S.T. 
of Italy 
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Theorem 1. Let H be a bounded subset ofVc(ii,X). If the following assumptions 
(i) the set {x*f : x* € X*, \\x*\\ < 1 , / € H] is relatively compact in LJ(/i) 

(ii) the set {fsg(s)f(s)dfi : g 6 L°°((i), ||^|| < 1 , / € H) is relatively compact 
in X 

are verified, then H is precompact in Vc(n, X). 

PROOF : Choose (/„) C H and observe that under (i) and (ii), H is weakly 
precompact ([3]). Then we can assume, by passing to a subsequence if necessary, 
that fn is weak Cauchy. Now, suppose that fn has no Cauchy subsequences. There 
are rj > 0, (fnh ), (fmh ) such that 

1<\\fnh-fmh\\ for all h € N 

For suitable sequences (xh) C X*, | |xj| | < 1, (gh) C L°°(fi), \\gh\\ < 1, we have 

f) < Js9h(s)(fnh(s) - fmh(s))x*h d/i for all h G N 

Now, suppose that (xh ) and (gni) are suitable subnets weak* converging, respec
tively, to x* € X*,g € L°°(fi). Rewriting the last inequality for (xh ) and (fl^), 
we have 

*l< I xl^h^sXfn^s) - fmhy(s))dfi = [x*hyghy(s)(fnhy(s)--fmhj(s))dv--
Js Js 

- f ***»- (s)(fnkl (s) - fmkl (s)) dn + j s x'ghl (s)(fnki (s) - fmky (s)) dp-

- j s x*g(s)(fnki (s) - fmki (s)) dli + j s x*g(s)(fnki (s) - fmki (s)) dp = 

=(*L. - **) / £7A» ( / ,» 7 (s) - / B l , (S))d(i+ 
J s 

+ J **(fnhl (S) ~ /-,», (»))(9h,(s) - g(s)) d,i+ 

+ fx*g(s)(fnki(s)-fmky(s))dfi. 
Js 

Now observe that the following limit relations are verified 
w* 

(j) lim7(xJ7 - x*) fs ghy (s)(fnhy (s) - fmhi (s)) dp = 0, because x*h^ - x* —• t? 
and (ii) holds true 

w* 
(jj) Kmyfsx*(fnhi(s) - fmh/1(s))(ghy(s) - g(s))dfi = 0, because g^ - g —> t? 

and (i) holds true 
(jjj) l im 7 / s i*^)( / n ) k i (5) - fmhy(s))dfi = 0, because (/„) is a weak Cauchy 

sequence. 
The reached contradiction gives our thesis. • 
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R e m a r k 1. It is possible to show that even the converse of Theorem 1 is true. 

R e m a r k 2. In a sense, the above result is the best possible ; indeed, if JET is a subset 
of V(fi,X) (it doesn't matter how the range of the indefinite integral is) for which 
the above Theorem is true, then H must be a subset of Vc(fi1X).This follows very 
easily from (ii) be choosing g = \A, A € S. 

Now, we are ready to give our main result 

Theorem 2. Assume that X has the Gelfand—Phillips property. Then V(fi,X) 
has the same property. 

PROOF : First of all, note that V(fi,X) = Vc(fi,X), by virtue of Proposition 1. 
And so we have just to prove that Vc(/i, X) enjoys the Gelfand—Phillips property. 
Let H be a limited subset of Vc(n,X) and (zn) be a sequence in H. By virtue of 
the density of Vc(fJ,,X) we can choose a sequence ( / n ) C Vc(n,X) that is limited 
and such that limn | |zn — / n | | = 0. It will be enough to show that ( / n ) is relatively 
compact. This will be done by proving that ( / n ) verifies (i),and (ii) of Theorem 1; 
then the completeness of Vc(fJt,X) will do the remaining job. First of all, assume 
that the set A = {x*fn : x* € X*, \\x*\\ < 1, n € N} is not limited in Lx(fi). There 

w* 
are (gh) C L°°(fi), \\gh\\ <l,gh—+ t?, (x*hfn h) C A for which inf* \ghx*hfnh | > 0. 

; > w* 

Now, observe that ghx*h 6 [Vc(fJ>, X)]* for any h 6 N and furthermore ghx*h — • tf. 
This last assertion can be shown as it follows. 

Take / € Vc(fi,X) and calculate (ghx*h)(f) = gh(x*hf),h € N. Since / € 
Vc(n,X), a result due to Edgar ([2]) tells us that (x*hf) is relatively compact in 
L2(/i) and so 

K™9h(x*hf)=:0 

because gh — • t?. Since Vc(t*,X) is dense in Vc(fi,X) we can conclude that 

ghX*k —> $? -^ w e wanted. Being ( /n) limited in Vc(p,X) (and so in Vc(fi,X)) we 
get a contradiction. Hence {x*fn : x* £ X*, \\x*\\ < 1, n 6 N} is limited in Ll(n), 
a Banach space with the Gelfand—Phillips property, (i) of Theorem 1 is then true. 
Now we pass to (ii). Again, assume the set {jsg(s)fn(s)dfi : g € L°°(n), \\g\\ < 
1, n € N} is not limited in X. There are a weak* null sequence (xh) C ^Ml***.. < h 
and (ghfnh) such that inf* \x*h(ghfnh)\ > 0. But once more (ghxh) is a weak* null 
sequence in [Vc(fx,X)]*. Indeed, if / € Vc(fi,X) we have 

I / xlgh(s)f(s)dfx\ < [ \x*hgh(s)f(s)\dv < [ \x*hf(s)\d^ for all h € N. 
\Js \ Js Js 

Now, observe that x*hf --> 0 almost uniformly. Putting S+ = {s : x*hf(s) > 0} and 
Sh = {s : x*hf(s) < 0} , h € N we get, for any h e N, 

(2) I \x\f{s)\dp= ( xlf(s)dfl- í xlf{.)dpS 
Js Js+ Js; 

<\í xíf(s)dtÁ + \f , ; / ( , ) * . 
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Now, given e > 0 there is Ae € E, y-(Ac) < e, such that x\f —> 0 uniformly on Ac-
On the other hand, the indefinite integral of / is /i-continuous and so given 7 > 0 
there is 6 > 0 such that \\fA f(s) dfj,\\ < 7 whenever fi(A) < 6. Take e = 6. By (2) 
we have 

/ | * ; /o ) | dp<\[ x*hf(s) <h\ + \[ x-hf(s) dfi + 
JS \Js+nA, I \Js+\A, 

+ \[ xhf(s)df\ + \[ x*hf(s)dti < 
\Js~nA, I \JS;\A, 

<\[ -i/wJ + l/ x*hf(s)dn + 
\Js+nAs I \JS~nA6 

+ \\[ f(a)dl + \\[ f(s)df\\< 
\\Js+\A, II \\Js~nA, II 

<\[ xlf(s)d/\ + \[ xlf(s)dJ+27<2 [ \x*hf(s)\dv + 27. 
IJs+nA* I \Js~nA6 I J A6 

Since x*kf —• 0 uniformly on A5, we are done, i.e. we have reached the sought-for 

contradiction (use the density of Vc(ti,X) in Vc(p,X), too). Being X a Banach 
space with the Gelfand—Phillips property, even (ii) in Theorem 1 is verified. The 
proof is complete. • 
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