Commentationes Mathematicae Universitatis Carolinae

Lajos Soukup
 A non-special ω_{2}-tree with special ω_{1}-subtrees

Commentationes Mathematicae Universitatis Carolinae, Vol. 31 (1990), No. 3, 607--612

Persistent URL: http://dml.cz/dmlcz/106894

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic
delivery and stamped with digital signature within the
project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

A non-special ω_{2}-tree with special ω_{1}-subtrees ${ }^{1}$

Lajos Soukup

Abstract

Answering a question of F . Tall it is shown that if ZF is consistent then so is ZFC $+\mathbf{G C H}+$ "there exists a non-special ω_{2}-Aronszajn tree having only special ω_{1}-subtrees".

Keywords: Tree, Aronszajn, special, consistency proof, forcing, non-reflecting
Classification: 03E35

1. Basic notions and terminology.

In this paper we follow the standard terminology of the set theory, cf [2]. A tree $\mathcal{T}=\left\langle T, \prec_{\tau}\right\rangle$ is called κ-tree iff both the cardinality and the height of \mathcal{T} are κ. We say that a κ-tree \mathcal{T} is κ-Aronszajn iff \mathcal{T} does not have κ-branches and the levels of \mathcal{T} have cardinalities $<\kappa$. Given $x, y \in T$ we write " $x \forall_{I} y$ " for " x and y are incomparable in T ". Take

$$
\mathrm{V}(\mathcal{T})=\left\{\langle x, y, z\rangle \in T^{3}: x \prec_{\mathcal{T}} y, x \prec_{\mathcal{T}} z \text { and } y X_{\mathcal{T}} z\right\} .
$$

A κ-tree $\mathcal{T}=\langle T, \prec \tau\rangle$ is special iff there is a function f on T with $|\operatorname{ran}(f)|<\kappa$ such that there is no $\langle x, y, z\rangle \in \mathrm{V}(\mathcal{T})$ with $f(x)=f(y)=f(z)$. The height of an x element in \mathcal{T} will be denoted by $h_{\mathcal{T}}(x)$ or by $h(x)$. Take $b(x)=b_{\tau}(x)=\{y \in T$: $\left.y \prec_{\tau} x\right\}$.

The set of all finite sequences of elements of a given set I will be denoted by I^{*}. For $x, y \in I^{*}$ let x 盾 be the concatenation of them. For $n \in \omega$ and $c \in I$ take $c^{n}=\langle c\rangle^{\hat{c}} c^{n-1}$. By an abuse of notation we write $\hat{a} \hat{x}$ instead of $\langle a\rangle^{\hat{x}} x$ whenever $a \in I$ and $x \in I^{*}$.

Denote by $<_{O_{n}}$ the usual ordering of ordinals. Given $X, Y \subset O n$ we write " $X \ll_{o n}$ Y^{n} to mean that $\max _{<_{0 n}} X<\min _{<_{0 n}} Y$.

2. The result.

In [3] F. Tall investigated some downwards reflection principles. Beside other results he proved that $\operatorname{Con}(\mathrm{ZFC}+\exists$ huge cardinal) $\rightarrow \mathrm{Con}(\mathrm{ZFC}+\mathrm{CH}+$ "every non-special ω_{2}-tree contains a non-special ω_{1}-subtree") and raised the following problem: Is ZFC + GCH consistent with the existence of a non-special ω_{2}-tree having only special ω_{1}-subtrees? In this paper we give an affirmative answer proving the following theorem.

[^0]Theorem 2.1. Assume CH. Then there is a σ-complete poset \mathcal{P} with $|\mathcal{P}|=\omega_{2}$ such that
$V^{\mathcal{P}} \vDash$ "There is a non-special ω_{2}-Aronszajn tree having only special $\omega_{1}-$ subtrees".
Remark. S. Todorčevič proved that if ω_{2} is not weakly compact in L, then there exists a tree as in Theorem 2.1. His result and Theorem 2.1 were proved approximately at the same time.
Proof : First we define our poset $\mathcal{P}=\langle P, \leq\rangle$. The underlying set of \mathcal{P} consists of triples $\left\langle T, \prec,\left\langle f_{x}: x \in 2^{*}\right\rangle\right\rangle$ satisfying (A)-(E) below:
(A) $T \in\left[\omega_{2}\right]^{\leq \omega}, \prec C<_{O_{n}} \cap(T \times T),\langle T, \prec\rangle$ is a tree.
(B) f_{x} is a function, $f_{x}: T \times T \rightarrow[\omega]^{\omega}$, for each $x \in 2^{*}$.
(C) $f_{x}(\alpha, \delta) \cap f_{y}(\alpha, \delta)=\emptyset$ for each $x \neq y \in 2^{*}$ and $\langle\alpha, \delta\rangle \in T \times T$.
(D) If $\langle\alpha, \beta, \gamma\rangle \in V(\langle T, \prec\rangle), \alpha<_{O_{n}} \delta \in T, k, m, n \in \omega$, then

$$
f_{0^{k}}(\alpha, \delta) \cap f_{0^{m}}(\beta, \delta) \cap f_{0^{n}}(\gamma, \delta)=\emptyset .
$$

(E) If $\alpha, \beta \in T, \alpha \prec \beta, \alpha<_{\mathrm{O}_{\mathrm{n}}} \delta \in T, n \in \omega, x \in 2^{*} \backslash 1^{*}$, then

$$
f_{0^{n}}(\alpha, \delta) \cap f_{x}(\beta, \delta)=\emptyset
$$

We write $p=\left\langle T_{p}, \prec_{p},\left\langle f_{x}^{p}: x \in 2^{*}\right\rangle\right\rangle$ for $p \in \mathcal{P}$.
The ordering on P is defined as expected:

$$
\begin{array}{lll}
p \leq q \quad \text { iff } & T_{q} \subseteq T_{p}, & \\
& \prec_{q}=\prec_{p} \cap T_{q} \times T_{q} & \text { and } \\
& f_{x}^{q} \subset f_{x}^{p} & \text { for each } x \in 2^{*} .
\end{array}
$$

It is easily seen that \mathcal{P} is a σ-complete poset with cardinality ω_{2}.
The following lemma is straightforward.
Lemma 2.2. For each $\alpha \in \omega_{2}$ the set $D_{\alpha}=\left\{p \in \mathcal{P}: \alpha \in T_{p}\right\}$ is dense in \mathcal{P}.
Definition 2.3. Assume that \dot{f} is a \mathcal{P}-name. A condition $p \in \mathcal{P}$ is called strong for \dot{f} iff $p \longmapsto " \dot{f}: \hat{\omega}_{2} \rightarrow \hat{\omega}_{1}$ is a function" and $\forall \alpha \in T_{p} \exists \xi<\omega_{1} p \Vdash-" \dot{f}(\hat{\alpha})=\hat{\xi} "$.

Lemma 2.4. Assume that $p \in \mathcal{P}, \dot{f}$ is a \mathcal{P}-name and $p \curvearrowleft$ " $\dot{f}: \hat{\omega}_{2} \rightarrow \hat{\omega}_{1}$ is a function". Then the conditions which are strong for \dot{f} are dense in \mathcal{P} below p.

The statement of this lemma is clear by the σ-completeness of \mathcal{P}.
Deflnition 2.5. Given $p, q \in \mathcal{P}$ we write $p \propto q$ iff $T_{p} \cap T_{q}<O_{\mathrm{on}} T_{p} \backslash T_{q}<\mathrm{O}_{\mathrm{n}} T_{q} \backslash T_{p}$, type ${ }_{<o_{n}} T_{p}=$ type $_{<_{o_{n}}} T_{q}$ and denoting by π the unique $<_{O_{n}}$-preserving bijection between T_{p} and T_{q} we have
(a) $\alpha \prec_{p} \beta$ iff $\pi(\alpha) \prec_{q} \pi(\beta)$ for each $\alpha, \beta \in T_{p}$,
(b) $f_{x}^{p}(\alpha, \beta)=f_{x}^{q}(\pi(\alpha), \pi(\beta))$ for each $\alpha, \beta \in T_{p}$ and $x \in 2^{*}$,
that is, π is an isomorphism between p and q.

If $p \propto q$ and $\alpha \in T_{p} \cup T_{q}$ put

$$
\tilde{\alpha}= \begin{cases}\pi^{-1}(\alpha) & \text { if } \alpha \in T_{q} \\ \alpha & \text { otherwise }\end{cases}
$$

Lemma 2.6. If $p \propto q$ then there is an $r \in \mathcal{P}$ such that $T_{r}=T_{p} \cup T_{q}, \prec_{r}=\prec_{p} \cup \prec_{q}$ and $r \leq p, r \leq q$.

Proof : Take $T=T_{p} \cup T_{q}, \prec=\prec_{p} \cup \prec_{q}$ and $f_{x}^{-}=f_{x}^{p} \cup f_{x}^{q}$ for $x \in 2^{*}$. Choose pairwise different natural numbers $n(x, \alpha, \delta, k) \in f_{1^{\prime} x}^{p}(\tilde{\alpha}, \tilde{\delta})$ where $\langle x, \alpha, \delta, k\rangle$ ranges over $2^{*} \times T \times T \times \omega$. It can be easily done because the set $2^{*} \times T \times T \times \omega$ is countable.

A pair $\langle\alpha, \delta\rangle \in T \times T$ is called old iff it is an element of $\operatorname{dom}\left(f_{x}^{-}\right)$, and new otherwise. Now for each $x \in 2^{*}$ define the function $f_{x}: T \times T \rightarrow[\omega]^{\omega^{2}}$ by setting

$$
f_{x}(\alpha, \delta)= \begin{cases}f_{x}^{-}(\alpha, \delta) & \text { if }\langle\alpha, \delta\rangle \text { is old, } \\ \{n(x, \alpha, \delta, k): k \in \omega\} & \text { if }\langle\alpha, \delta\rangle \text { is new. }\end{cases}
$$

Taking $r=\left\langle T, \prec,\left\langle f_{x}: x \in 2^{*}\right\rangle\right\rangle$ it is sufficient to show that $r \in \mathcal{P}$. Obviously (A)(C) hold for r. To check (D) fix $\langle\alpha, \beta, \gamma\rangle \in V(\langle T, \prec\rangle), \alpha<_{\text {On }^{\prime}} \delta \in T, k, m, n \in \omega$. If not exactly one of the pairs $\langle\alpha, \delta\rangle,\langle\beta, \delta\rangle$ and $\langle\gamma, \delta\rangle$ is new then (D) holds by the construction of r. Since it is impossible that $\langle\alpha, \delta\rangle$ is new and both $\langle\beta, \delta\rangle$ and $\langle\gamma, \delta\rangle$ are old, we can assume, without loss of generality, that $\langle\gamma, \delta\rangle$ is the new pair. So

$$
f_{0^{k}}(\alpha, \delta) \cap f_{0^{m}}(\beta, \delta) \cap f_{0^{n}}(\gamma, \delta) \subset f_{0^{k}}^{p}(\tilde{\alpha}, \tilde{\delta}) \cap F_{1^{\prime} 0^{n}}^{p}(\tilde{\gamma}, \tilde{\delta})=\emptyset,
$$

because p satisfies (E). So r satisfies (D).
Finally we check (E). Fix $\alpha, \beta \in T, \alpha \prec \beta, \alpha<_{O_{n}} \delta \in T, n \in \omega$ and $x \in 2^{*} \backslash 1^{*}$. We can assume that exactly one of the pairs $\langle\alpha, \delta\rangle$ and $\langle\beta, \delta\rangle$ is new or (E) holds. Thus $\langle\beta, \delta\rangle$ must be the new pair. Then

$$
f_{0^{n}}(\alpha, \delta) \cap f_{x}(\beta, \delta) \subset f_{0^{n}}^{p}(\tilde{\alpha}, \tilde{\delta}) \cap f_{1^{x}}^{p}(\tilde{\beta}, \tilde{\delta})=\emptyset
$$

for $1^{\wedge} x \in 2^{*} \backslash 1^{*}$ and p satisfies (E). So $r \in P$ is proved.
Lemma 2.7. Assume that $p \propto q \propto r$ with $T_{p} \cap T_{q}=T_{p} \cap T_{r}=T_{q} \cap T_{r}$. Let π and ρ be the unique order preserving bijections between T_{p} and T_{q}, and between T_{p} and T_{r}, respectively. Assume that $\nu \in T_{p} \backslash T_{q}$ with $b_{r_{p}}(\nu) \cap\left(T_{p} \backslash T_{q}\right)=\emptyset$. Let $\mu=\pi(\nu)$ and $\theta=\rho(\nu)$. Then there is a condition $t \in \mathcal{P}$ such that $t \leq p, q, r$ and $\langle\nu, \mu, \theta\rangle \in \mathrm{V}\left(\left\langle T_{t}, \prec_{t}\right\rangle\right)$.
Proof : Let $A=T_{p} \cap T_{q}$. Write $T=T_{p} \cup T_{q} \cup T_{r}$ and let \prec be the partial ordering on T generated by the set $\prec_{p} \cup \prec_{q} \cup \prec_{r} \cup\{(\nu, \mu\rangle,\langle\nu, \theta\rangle\}$. It is easy to see that $\tau=\langle T, \prec \tau\rangle$ is a tree and $\langle\nu, \mu, \theta\rangle \in \mathrm{V}(\langle T, \prec\rangle)$. Given $\alpha \in T$ take

$$
\tilde{\alpha}= \begin{cases}\pi^{-1}(\alpha) & \text { if } \alpha \in T_{q} \\ \rho^{-1}(\alpha) & \text { if } \alpha \in T_{r} \\ \alpha & \text { otherwise }\end{cases}
$$

Pick distinct natural numbers $n(x, \alpha, \delta, k)$ where $\langle x, \alpha, \delta, k\rangle$ ranges over $2^{*} \times T \times$ $T \times \omega$ in such a way that $n(x, \alpha, \delta, k) \in f_{0_{\hat{x}}^{p}}^{p}(\tilde{\alpha}, \tilde{\delta})$ provided $\alpha=\nu$ and $n(x, \alpha, \delta, k) \in$ $f_{1_{\hat{x}}}^{p}(\tilde{\alpha}, \tilde{\delta})$ otherwise. It can be easily done because the set $2^{*} \times T \times T \times \omega$ is countable. Take now $f_{x}^{-}=f_{x}^{p} \cup f_{x}^{q} \cup f_{x}^{r}$ for $x \in 2^{*}$. A pair $\langle\alpha, \delta\rangle \in T \times T$ is said old iff it is an element of $\operatorname{dom}\left(f_{B}^{-}\right)$, and new otherwise. For each $x \in 2^{*}$ define the function $f_{x}: T \times T \rightarrow[\omega]^{\omega}$ by setting

$$
f_{x}(\alpha, \delta)= \begin{cases}f_{x}^{-}(\alpha, \delta) & \text { if }\langle\alpha, \delta\rangle \text { is old } \\ \{n(x, \alpha, \nu, k): k \in \omega\} & \text { if }\langle\alpha, \delta\rangle \text { is new. }\end{cases}
$$

Taking $t=\left\langle T, \prec,\left\langle f_{x}: x \in 2^{*}\right\rangle\right\rangle$ it is enough to show that $t \in \mathcal{P}$. Obviously (A)-(C) hold for t. Next we check (D). Suppose that $\langle\alpha, \beta, \gamma\rangle \in V(\langle T, \prec\rangle), \alpha<_{\mathrm{on}_{\mathrm{n}}} \delta \in T$, $k, m, n \in \omega$. We can assume that exactly one of the pairs $\langle\alpha, \delta\rangle,\langle\beta, \delta\rangle$ and $\langle\gamma, \delta\rangle$ is new or (D) holds by the construction of t. We must distinguish two cases.
Case 1. $\langle\alpha, \delta\rangle$ is new .
Since $\langle\alpha, \delta\rangle$ is the only new pair and $\alpha \prec \beta$ it follows that $\alpha=\nu$ and either $\beta, \gamma, \delta \in T_{q} \backslash A$ or $\beta, \gamma, \delta \in T_{r} \backslash A$. So $\beta X_{\tau} \gamma$ implies that $\tilde{\beta} \|_{r_{p}} \tilde{\gamma}$ and $\langle\nu, \tilde{\beta}, \tilde{\gamma}\rangle \in$ $\mathrm{V}\left(\left\langle T_{p}, \prec_{p}\right\rangle\right)$. Thus

$$
f_{0^{k}}(\alpha, \delta) \cap f_{0^{m}}(\beta, \delta) \cap f_{0^{n}}(\gamma, \delta) \subset f_{0^{k+1}}^{p}(\nu, \tilde{\delta}) \cap f_{0^{m}}^{p}(\tilde{\beta}, \tilde{\delta}) \cap f_{0^{n}}^{p}(\tilde{\gamma}, \tilde{\delta})=\emptyset
$$

Case 2. $\langle\alpha, \delta\rangle$ is old.
Without loss of generality we can assume that $\langle\beta, \delta\rangle$ is the new pair. If $\beta=\nu$ then $\delta \in\left(T_{q} \backslash A\right) \cup\left(T_{r} \backslash A\right), \alpha \in A$ and $\tilde{\gamma} 甘_{T_{p}} \nu$ for $\gamma 甘_{\tau} \nu$. Thus $\langle\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}\rangle=\langle\alpha, \nu, \tilde{\gamma}\rangle \in$ $\mathrm{V}\left(T_{p}, \prec_{p}\right)$ and so

$$
f_{0^{k}}(\alpha, \delta) \cap f_{0^{m}}(\beta, \delta) \cap f_{0^{n}}(\gamma, \delta) \subset f_{0^{k}}^{p}(\tilde{\alpha}, \tilde{\delta}) \cap f_{0^{m+1}}^{p}(\tilde{\beta}, \tilde{\delta}) \cap f_{0^{n}}^{p}(\tilde{\gamma}, \tilde{\delta})=\emptyset
$$

If $\beta \neq \nu$ then

$$
f_{0^{k}}(\alpha, \delta) \cap f_{0^{m}}(\beta, \delta) \cap f_{0^{n}}(\gamma, \delta) \subset f_{0^{k}}^{p}(\tilde{\alpha}, \tilde{\delta}) \cap f_{1^{2} 0^{m}}^{p}(\tilde{\beta}, \tilde{\delta})=\emptyset
$$

because (E) holds for p. So t satisfies (D).
Finally we check (E). Suppose that $\alpha, \beta \in T, \alpha \prec \beta, \alpha<_{O_{n}} \delta \in T, n \in \omega$ and $x \in 2^{*} \backslash 1^{*}$. We can assume that exactly one of the pairs $\langle\alpha, \delta\rangle$ and $\langle\beta, \delta\rangle$ is new. If $\langle\alpha, \delta\rangle$ is the new pair then we have $\alpha=\nu$ because $\langle\beta, \delta\rangle$ is old and $\alpha \prec \beta$. So

$$
f_{0^{n}}(\alpha, \delta) \cap f_{x}(\beta, \delta) \subset f_{0^{n+1}}^{p}(\tilde{\alpha}, \tilde{\delta}) \cap f_{x}^{p}(\tilde{\beta}, \tilde{\delta})=\emptyset
$$

If $\langle\alpha, \delta\rangle$ is old, then

$$
f_{0^{n}}(\alpha, \delta) \cap f_{x}(\beta, \delta) \subset f_{0^{n}}^{p}(\tilde{\alpha}, \tilde{\delta}) \cap f_{1_{\tilde{x}}}^{p}(\tilde{\beta}, \tilde{\delta})=\emptyset
$$

because (E) holds for p. Thus (E) is also satisfied by t . This shows that $t \in \mathcal{P}$, which completes the proof of the Lemma 2.7.

Proof of Theorem 2.1. Since CH holds, every subset of P with cardinality ω_{2} contains two elements, p and q, with $p \propto q$. So, by Lemma 2.7, p and q are compatible, that is, \mathcal{P} satisfies the ω_{2}-chain-condition.

Let \mathcal{G} be any \mathcal{P}-generic filter over V. Take $T^{*}=U\left\{T_{p}: p \in \mathcal{G}\right\}, \prec^{*}=U\left\{\prec_{p}:\right.$ $p \in \mathcal{G}\}, \mathcal{T}^{*}=\left\langle T^{*}, \prec^{*}\right\rangle$ and $F^{*}=\cup\left\{f_{\mathrm{B}}^{p}: p \in \mathcal{G}\right\}$. By Lemma 2.2 it follows that $T^{*}=\omega_{2}$. For each $\delta \in \omega_{2}$ choose a function $F_{\delta}: \delta \rightarrow \omega$ with $F_{\delta}(\alpha) \in F^{*}(\alpha, \delta)$. Now F_{δ} shows that the tree $\left\langle\delta, \prec^{*} \mid \delta\right\rangle$ is special. Indeed, given $\alpha, \beta, \gamma \in \delta$ choose $p \in \mathcal{G}$ with $\alpha, \beta, \gamma \in T_{p}$ and apply (D) for p taking $k=m=n=0$.

Next we show that \mathcal{T}^{*} is not special. Let us remark that this implies height $\left(\mathcal{T}^{*}\right) \geq$ ω_{2}. Since height $\left(\mathcal{T}^{*}\right) \leq \omega_{2}$ by $\prec^{*} \subset<_{O_{n}}$, this proves height $\left(\mathcal{T}^{*}\right)=\omega_{2}$ as well.

Assume on the contrary that

$$
p \Vdash \text { " } \dot{f}: \hat{\omega}_{2} \rightarrow \hat{\omega}_{1} \text { specializes } \mathcal{T}^{*} "
$$

For each $\alpha<\omega_{2}$ choose a condition $p_{\alpha} \leq p$ which is strong for \dot{f} with $\alpha \in T_{p_{\alpha}}$. Since CH holds, we can find a set $Y \in\left[\omega_{2}\right]^{\omega_{2}}$ such that (1) $\left\{T_{p_{\xi}}: \xi \in Y\right\}$ forms a Δ-system with kernel A, and (2) $p_{\xi} \propto p_{\eta}$ whenever $\xi, \eta \in Y$ with $\xi<_{\text {On }} \eta$. Since $\xi \in T_{p_{\xi}}$, it follows that $T_{p_{\xi}} \backslash A \neq \emptyset$ for each $\xi \in Y$.

Take $c_{\xi}=\min _{<\mathrm{o}_{\mathrm{n}}}\left(T_{p_{\xi}} \backslash A\right)$ for $\xi \in Y$. Choose $\zeta<\xi<\eta$ from Y and $\sigma \in \omega_{1}$ such that $p_{\theta} \|-$ " $\dot{f}\left(\hat{c}_{\theta}\right)=\hat{\sigma}$ " for each $\theta \in\{\zeta, \xi, \eta\}$. By Lemma 2.7 there is a $t \in \mathcal{P}$ with $t \leq p_{\zeta}, p_{\xi}, p_{\eta}$ and $\left\langle c_{\zeta}, c_{\xi}, c_{\eta}\right\rangle \in \mathrm{V}\left(\left\langle T_{t}, \prec_{t}\right\rangle\right)$. So

$$
t \Perp-" \dot{f}\left(\hat{c}_{\zeta}\right)=\dot{f}\left(\hat{c}_{\xi}\right)=\dot{f}\left(\hat{c}_{\eta}\right)=\hat{\sigma},\left\langle\hat{c}_{\zeta}, \hat{c}_{\xi}, \hat{c}_{\eta}\right\rangle \in \mathrm{V}\left(\mathcal{T}^{*}\right) \text { and } \dot{f} \text { specializes } \mathcal{T}^{* "} .
$$

Contradiction, \mathcal{T}^{*} is not special.
To prove that \mathcal{T}^{*} is Aronszajn assume on the contrary that $p \Vdash$ " \dot{b} is an ω_{2}-branch in $\mathcal{T}^{* \prime \prime}$. Denote by \mathcal{T}_{α}^{*} the $\alpha^{\text {th }}$-level of \mathcal{T}^{*}. For each $\alpha<\omega_{2}$ choose a condition $p_{\alpha} \leq p$ and a $\gamma_{\alpha} \in \omega_{2}$ with $\gamma_{\alpha} \in T_{p_{\alpha}}$ and $p_{\alpha} \Vdash$ " $\dot{b} \cap \mathcal{T}_{\alpha}^{*}=\left\{\hat{\gamma}_{\alpha}\right\} "$. By standard Δ system arguments we can find $\alpha<_{\mathrm{O}_{\mathrm{n}}} \beta<_{\mathrm{O}_{\mathrm{n}}} \omega_{2}$ such that $p_{\alpha} \propto p_{\beta}$ and $\pi\left(\gamma_{\alpha}\right)=\gamma_{\beta}$, where π is the unique $<_{O_{n}}$-preserving bijection between $T_{p_{\alpha}}$ and $T_{p_{\rho}}$. By Lemma 2.6 p_{α} and p_{β} have a common extension r in \mathcal{P} with $\prec_{r}=\prec_{p_{\alpha}} \cup \prec_{p_{\beta}}$. Then $r \Vdash$ " $\dot{i} \cap \mathcal{T}_{\alpha}^{*}=$ $\hat{\gamma}_{\alpha}$ and $\dot{b} \cap \mathcal{T}_{\beta}^{*}=\hat{\gamma}_{\beta} "$, and so $\gamma_{\alpha} \neq \gamma_{\beta}$. Therefore $\gamma_{\alpha} \in T_{p_{\alpha}} \backslash T_{p_{\beta}}$ and $\gamma_{\beta} \in T_{p_{\beta}} \backslash T_{p_{\alpha}}$. Thus $r \sharp-$ " $\hat{\gamma}_{\alpha} X_{T} \cdot \hat{\gamma}_{\beta}$ ", which is a contradiction because the elements of any branch are pairwise comparable.

Finally we prove that the levels of T^{*} have cardinalities ω_{1}. By way of contradiction assume that $\alpha<\omega_{2}$ and $p \Vdash-"\left|\mathcal{T}_{\alpha}^{*}\right|=\omega_{2}$ ". Fix a \mathcal{P}-name \dot{h} such that $p \Vdash-$ " $\dot{h}(\nu)$ is the height of ν in \mathcal{T}^{*} for $\nu \in \omega_{2}$. Choose a set $Y \in\left[\omega_{2}\right]^{\omega_{2}}$ and a condition $p_{\xi} \leq p$ for each $\xi \in Y$ such that $p_{\xi} \Vdash-" \xi \in \mathcal{T}_{\alpha}^{* "}$ and p_{ξ} is strong for \dot{h}. By standard arguments we can assume that the set $\left\{T_{p_{g}}: \xi \in Y\right\}$ forms a Δ-system with kernel A and that $p_{\xi} \propto p_{\eta}$ for each $\xi<\eta \in Y$. Take $c_{\xi}=\min _{\alpha_{p \xi}}\left(\left(b_{T_{p \xi}}(\xi) \cup\{\xi\}\right) \backslash A\right)$ for $\xi \in Y$ and define the function $g: Y \rightarrow \alpha$ by $p_{\xi} \|$ " $\dot{h}\left(\hat{c}_{\xi}\right)=\widehat{g(\xi)}$ ". Pick $\zeta<\xi<\eta \in Y$ with $g(\zeta)=g(\xi)=g(\eta)$. By Lemma 2.7 we have a condition t such that $t \leq p_{\zeta}, p_{\xi}, p_{\eta}$ and $c_{\zeta} \prec_{t} c_{\xi}$. But it means that $t \Vdash$ "height $\left(\hat{c}_{\zeta}\right)=\operatorname{height}\left(\hat{c}_{\xi}\right)$ and $\hat{c}_{\zeta} \prec^{*} \hat{c}_{\xi}$ ", which is a contradiction. Therefore the levels of τ^{*} have sizes $<\omega_{2}$, which completes the proof of Theorem 2.1.

References

[1] J. E. Baumgartner, Generic graph construction, J. Symbolic Logic 49 (1984), 234-240.
[2] T. Jech, Set Theory, Academic Press, New York, 1978.
[3] F. Tall, Topological applications of generic huge embeddings, preprint.
[4] S. Todorčevič, private communication.

Mathematical Institute of the Hungarian Academy of Sciences, Budapest V. ker, Reáltanoda utca, 13-15, H-1053, Hungary

[^0]: ${ }^{1}$ The preparation of this paper was supported by Hungarian National Foundation for Scientific Research grant no. 1805

