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Orthogonal vector measures on projection lattices 
in a Hilbert space 

JAN HAMHALTER 

A bstraci. We characterize orthogonal vector measures on the lattice of all projections in 
a von Neumann algebra (without type I2-direct summand) by means of operator-valued 
mappings (Theorem 3). As a corollary we obtain a lucid description of orthogonal vector 
measures in the finitely-dimensional case (Corollary 2). Our results contribute to the non-
commutative probability theory. They also extend hitherto known results on correlation 
functions of orthogonal measures [4,6] and give a new insight into Gleason theorems [S], 
[7], [8]-
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1. Introduction and preliminaries. 
Throughout the paper, let A be a von Neumann algebra without type I2-direct 

summand which acts on a Hilbert space H. By the symbol L(A) we denote the lat
tice of all orthogonal projections in A. We shall be interested in orthogonal vector 
measures on L(A). In the quantum mechanical foundations measures of this type 
may be viewed as generalized stochastics processes [1],[9]. They also play an im
portant role in the description of the evolution of quantun systems [l],[5],[9]. 

We first fix some notation as we shall use it in the sequel. Throughout the paper, 
let K be an arbitrary Hilbert space. By B(K) we shall mean the C*—algebra of 
all bounded operators acting on H. Let O2(K) denote the two-sided ideal of all 
Hilbert-Schmidt operators acting on K. As known, the space C2(K) endowed with 
an inner product (.,.) defined by the equality (A, B) = Tr AB* (A, B 6 O2(K)) 
(here Tr denotes the faithful normal semifinite trace on B(K)) forms a Hilbert space. 
The space C2(K) is isomorphic to l2(ExE), where E is an orthonormal basis of K 
(for details, see [6]). 

Definition 1. A mapping m : L(A) —> K is said to be an orthogonal vector mea
sure if for any family (Pa)Qei °f mutually orthogonal projections from A the fol
lowing two conditions are satisfied: 

(i) the set (m(Pa))aei -s orthogonal in K, 
(ii) we have 

m ( £ P a ) = £ m ( P a ) , 
<*€/ <*ei 

where the series on the right-hand side is supposed to converge in the norm topology 
on K. 

Let us exhibit a typical example of such measures (compare also with Corollary 1 
and Corollary 2). 
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Example 1. Let v € H. Then the mapping m: L(A) -> H defined by putting 

m(P) = pv (PeL(A)) 

is an orthogonal vector measure. 
A linear mapping F : A —• K is said to be an orthogonal vector field on A if 

F is normal (i.e. if F is continuous with respect to the ultraweak topology on A 
and weak topology on K) and if (F(P), F(Q)) = 0 for any orthogonal elements 
P, Q e L(A). Let us define a correlation function CF of F by putting CF(P, Q) = 
(F(P),F(<2))(P,Q e L(A)) (see [5]). The basic result on correlation functions is 
the following theorem by S. Goldstein [4] (see also [5] for In-factors). 

Theorem 1 ([4]). Let F be an orthogonal vector field on A. Then there are 
nonnegative trace class operators A,Be B(H) such that 

(F(P), F(Q)) = Tr(APQ + BQP) 

for any projections P, Q € A. 

2. A characterization of orthogonal vector measures. 

Let F be an orthogonal vector field on A. Then F \ L(A) is an orthogonal vector 
measure on L(A). We prove now the converse theorem which may be interpreted 
as a Gleason type theorem for orthogonal measures. 

Theorem 2. Let m : L(A) —• K be an orthogonal vector measure. Then there is 
an orthogonal vector field F : A-~+ K such that F | L(A) = m. 

PROOF : Let us first define F on the set S(K) of all self-adjoint operators from A. 
Suppose that A € S(K). Let L(A) be a projection lattice of the smallest abelian 
von Neumann subalgebra of A containing A. Then L(A) is a Boolean algebra and 
we can extend m from L(A) to a linear mapping FA on sp L(A). Moreover, if 
& = ICILI KQu where A; € C and (ji , ...Qn € L(A) are mutually orthogonal, then 
we can write 

II FA(S) ||2= &xMQj)>tlxrtQj)) = E I A> l2U mWi) II2 

( i ) i = 1 „ i = 1 

< max{\ Xj \2\\ mfcQj) f\l<j< n) <\\ S f\\ m(I) f . 
i=i 

Thus, FA is continuous on spjL(A) and we can put F(A) = limn^.0OF(4(5n) 
for an arbitrary sequence (Sn) C spL(A) converging to A (the spectral theorem). 
Moreover, by the condition (1) we see that 

|| F(A) ||<|| A || || m(I) | | . 
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If B € A, then we can put F(B) = F(ReB)+iF(ImB). By virtue of the preceeding 
estimation we see that 

|| F(B) ||< 2 || £ || || m(I) || . 
To prove our theorem now, it is sufficient to show that F is linear. For this, let 
u E K be an arbitrary vector. Let us define mu : L(A) —• C by putting 

ro.(P) = (ro(P),ti) (PeL(A)). 
Then sup{|mu(P) | | P e L(A)} < \\m(I)\\ ||u||. It follows that mtt is a bounded 
measure on L(A). According to a result of M.S. Matveichuk [7],[8], there is a normal 
functional fu on A extending mu. Moreover, we can easily verify that for any 
A e S(K) wehave/ t t (A ) = (F(A),u). Thus, (F(Ax+A2),u) = (P(Ai)-f F(A2),u) 
and F is a linear mapping extending m. • 

Let m : L(A) —* K be an orthogonal vector measure. Let us denote by 1Z(m) the 
space sp{m(P) | P £ L(A)}. Further, call two orthogonal measures mi : L(A) —* H * 
and m2 : L(A) —> K unitarily equivalent if there is a unitary mapping U of 1Z(m%) 
onto 1Z(m2) such that m2 ~U om\. 

If dimH = oo, then H and the direct sum C2(H)©C2(H) are isomorphic Hilbert 
spaces. In this case we have the following lemma which enables us to construct H-
valued orthogonal vector measures with a given correlation function (a contrapart 
of Theorem 1). 

Lemma 1. Let A,B £ B(H) be nonnegative trace class operators. Then a mapping 
mA,B '- L(A) —• C2(H) 0 C2(H) defined by the formula 

mAiB(P) = Al'2P + PBlf2 P € L(A) 

is an orthogonal vector measure with the correlation function 

(mA,B(P),mAiB(Q)) = Tr(APQ + BQP) P,Q e L(A). 
PROOF : Let us first observe that the definition of mA,B -s correct. For any 
orthonormal basis (ea)a£j of H we have 

J2 II Al,2*« U2= E<Ae«>e«> = TrA < °°' 
<*€I « € / 

Thus, A1/2 , B1!2 € C2(H) and we see that 7l(mA>B) C C2(JET)eC2(F). Obviously, 
the mapping mA,B -s finitely additive and we have to show that it is completely 
additive. For this, let P = S a € 1 ^ a ' where (Po)<*€i *s a family of mutually or
thogonal projections from A. Let (Qp)pzj be a net of finite partial sums of series 
J^aei Pa- Then Qp / P. Making use of the properties of the trace, we have 

II mA,B(P) - mA,B(Qfi) IIHI A^P-Qp) \\2 + \\ (P-Q^B1'2 \\2 

= TiA^P-Q^A1'2 +Tr(P-Qp)B1'2B1'2(P-Qfi) =Tr(A+B)(P-Qfi) - , 0 . 

It remains to prove the equation (2) in Lemma 1. Take P,Q 6 L(A). Then 

(mA,B(P),mAtB(Q)) = (A1,2P, A^Q) + (PB1'2^1'2) 

= Tr A1'2 PQ A1'2 +TrPB1'2B1'2Q = Tt(APQ + BQP). 

The proof is complete. , • 
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Theorem 3. Let m : L(*4) —* H be an orthogonal vector measure. Then m is 
unitarily equivalent with a measure mA,B defined by the formula 

mAfB(P) = -41 / 2P 9 P P 1 / 2 P € L(A\ 

where A, B G B(H) are nonnegative trace class operators. 

PROOF : By Theorem 1 there are nonnegative trace class operators A, B G B(H) 
such that 

(m(P),m(Q)) = (mA,B(P),mA,B(Q)) P,Q € L(A). 

Define now a mapping U on the set D = {niA,B(P) \ P G L(A)} such that 

UmAiB(P) = m(P) for any P G L(-4). 

We have to show that this definition is unambigous and that the mapping U can 
be linearly extended over the space 1Z(mAyB)- For this, let YA=I aimA,B(Pi) = 
™>A,B(Q), where P, ,Q G L(A) and a,- are complex numbers (i=l,...,n). Then 

|| У > m ( P , ) - m(Q) Ц2 

t = l 

n n 

= ll E m ( P ' ) II2 + II m(Q) II2 - 2 Я e { 2 > . m ( P ť ) , m ( Q ) ) 
t = l t = l 

П 

= | І 2 > ť m л , в ( P ť ) - m Л i B ( Q ) | | - = 0 . 

Thus U may be extended to a unitary mapping from H(mA,B) into H and the 
proof is complete. • 

As a consequence of the analytic form of orthogonal measures given in the fore
going theorem we derive a geometrical expression of such measures. 

Corollary 1. Let m : L(A) —> H be an orthogonal vector measure. Then there 

is such a sequence (vk)kel C H and a (real) linear isometry U : H —* H, where 

K = sp{ £ * e / ®Pv* I P € L(A) ) (in £ * € / ®H) such that 

m(p) = U(J2 ®p*>k) for any P G L(A). 
kei 

PROOF : Theorem 3 implies that m is unitarily equivalent with some measure 
mA,B- Put mA,B = rnA + m a , where mA(P) = A*/2P and mB(P) = PB1/2 (P G 
L(A)). Let (uk)k€h (resp. (uk)k€h) D e a n orthonormal set of eigenvectors corre
sponding to nonzero eigenvalues (^k)k£it of A (resp. corresponding to nonzero 
eigenvalues (Xk)keh of B) (we put Ii,I2 C N and Ii f]I2 = 0). Put Hi = 
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-CfceL ®^*> where Hk = splPu* | P € It(-4)} (i=l,2) . Let us define an Ht— valued 
orthogonal measure m t ( i=l,2) on L(A) by putting 

™i(p) = 53 ®Ai /2p, i* ( p € IM)) 
*e/» 

(m t(P) = 0 if I, = 0). Then 

(m1(P),m1(Q)) = 53<Ai/2Pu*,A£/2<M) = 
k€h 

= 5 3 Afc(QPtiit,Wib) = TrAQP = (mA(Q),mA(P)) for any P,Q € I(-4). 
*e/i 

Following the technique of the proof of Theorem 3 we can find an antiunitary * 
mapping Vi : 7Z(mi) —» TZ(mA) such that 

mA(P) = Vim^P) for any P € L(A). 

Analogically, we can show that 

(m2(P), m2(Q)) = (mB(P), mB(Q)) for any P, Q € 1 ( 4 ) , 

and so there is a unitary mapping V2 : 7Z(m2) —• %(mA) satisfying 

mB(P) = V2m2(P) for any P € L(-4). 

Let V be a unitary mapping such that m = VomAiB- It remains to put I = Ii UI2, 
1 /2 

v* = îk u * (^ € -0' ^ = : V(Vi © Vz) and the proof is complete. • 
Thus, up to an isometry, every H—valued orthogonal measure can be represented 

as an orthogonal sum of measures stated in Example 1. 
In the conclusion of this note let us shortly investigate the case of the type 

In-factors (3 < n < oo). Contrary to the infinite-dimensional case (n = oo), we 
obtain an essential restriction on operators 4 , B concerning a correlation function. 
Indeed, if A is an In-factor, then (using notation as in the proof of Corollary 1) 
one can verify that sp{Pvk | P € L(A)} = H if Vk ^ 0 and so dim7£(mi -f m2) > 
dim H if card Ii U I2 > 2 . This fact allows us to present a transparent description of 
orthogonal measures . (Let us recall that a symmetry on JET is an arbitrary unitary 
or antiunitary mapping on H). 

Corollary 2. Let H be a finite-dimensional Hilbert space with 3 < dim H and 
let L(H) be the lattice of all orthogonal projections acting on H. Suppose that 
m : L(H) —» H is an orthogonal vector measure. Then there is a vector v € H and 
a symmetry U : H —• H such that 

m(P)=UPv for any P € L(H). 
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