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Distinguishing example for the Tillmann product 
of distributions 

JlRf JELfNEK 

Abstract. The Tillmann product of Schwartz distributions is more general than the Kamiri-
ski product. 

Keywords: Distribution, Tillmann product, Kaminski product 

Classification: 46F05 

Several ways to define the product of distributions by mollification have been 
investigated. Let 5, T, W be distributions on Rn . We say that W = S • T iff 

(1) (WM=to*((Sx<p9)(Tx1>9),u,) 
eUJ 

for all u) € V(Rn) and for all nets {v?e}e>o, {fp€}e>o which vary in certain classes of 
nets of smooth functions and converge to the Dirac measure. Recently this definition 
with the condition 

(2) <p9 = t/>e 

has become important because of its relations to the Colombeau algebras. With 
this conditions we call this product to be Kaminski product iff 

(3) tp9(x) = ;^vK§). 

<p 6 Vy f(p = 1. Wawak [2] has proved that equivalently one can subject the nets 
to the conditions (2), 

(4) Д . = l, 

(5) supp (pe —> {0} as є l 0 

and 

(6) j\x\a\(^)a^(x)\dx<Ma 

for all a € NJ, e > 0 . Equivalently, the relations (1), (2) can be replaced by 
(see [2]) 

(7) (W,u) = lffi(\[(S * <fie)T + S(T * ^ . ) ] , « ) . 
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The Kaminski definition is also equivalent to the Colombeau one [4] : W is associ-
. ated with the product S 0 T in the Colombeau algebra. 

Further, in dimension n = 1, one can define the Ti l lmann product by (1) with 
(2) and (3) valid for one mollifier ip only, 

i 
<p(x) = Q(X) := 

ҡ(x2 + 1 ) " 

As Q has not a compact support, the convolution in (1) is not defined for arbitrary 
RfS € V. M. Oberguggenberger has shown that in the case R,S € 22'L-, the 
existence of the Kaminski product implies its equality with the Tillmann product. 

The aim of this paper is to give an example of distributions S ,Te I* , ' (R 1 ) (5 = 8) 
having the Tillmann product but not the Kaminski product. So the Tillmann prod­
uct is strictly more general. It gives the answer to one of the questions asked by 
M. Oberguggenberger during the International Conference on Generalized Func­
tions... Dubrovnik 1987. I have presented this example on the International Con­
ference on Generalized Functions... Oberwolfach 1989 and I thank M. Oberguggen­
berger and R. Wawak for having carefully read the example and proposed some 
simplifications of the calculation. 

Definition 1. Put T = £ £ L i Tn € £>'(R), where 

(8) T„<,) = ef» ( „ - * ( , , , - . - ) - S i n ( ^ ; ^ n
8 n ) ) ) • 

Here S(\x\ — a) for a > 0 denote S(x — a) 4- S(x -f a). Choose a function rj £ V, r) = 1 
on [—1,1], 17 = 0 outside [—2,2], rj > 0 and denote 

1 - 2 

$(x) = / 2 1 ^ ' * ( * ) ^ TT(X2 + 1 ) ' v ' 7r(x6 + l ) * 

We have / Q = / a = 1. 
2 . In the sequel ipe is meant always by (3) (n = 1). 

Note . We will prove that the Kammski product S-T does not exist but the Tillmann 
product S - T = 0. The last assertion means that 

(9) lim£e(-T*0e)==O 
ejO 

in V. We can replace the distribution T by the distribution with compact support 
rjT without changing the assertion above. Indeed, as 

(10) 
sm(n(ln | i | + 8")) 

In |x| 4- 8n 

T is a bounded function outside [—1,1]. 

< --- for |z| > 1, 
8n 
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Proposition 3. T is a distribution of order 0 (and a bounded function outside 

PROOF : Let us write 

Tn = -TnX{x;x>0} + ^nX{i;i<0} ='• T+ + T~. 

For tp € V([~A,A]) we have 

sin(n(ms + 8n)) (11) ( I Î , v ) = e*-(«--Ve^)-jf=--^ 

and it is sufficient to estimate the intégral. 

+ 8" 
(p(x) dx 

< e"4"n • max \<p(x)\ + A_4 g n • max \tp(x)\, 

which gives the result. 

Propos i t ion 4. 1im£|0(T, ge) = 0. 

PROOF : for T + . We have 

(12) { \ 1 1 

ҡx f + f 

From (11) we obtain after the substitution x = eae 

(13) <_?,<?,)--

gв 
n f 1 ľ~sin(n(.з + m g + 8")) 1 \ 

^ e ^ L ^ . ^ . y - o o 5 + ш є + 8 n ÎГ(Є* + Є-*) ) ' 

Writing 

(14) m(s + Ine + 8 n ) = I m e i n ( * + l n e + 8 " ) 

we calculate the integral by the residue theorem integrating over the rectangle with 
vertexes ±k7r, ±k?r + k7ri l(k —> oo) but avoiding the simple pole at 5 = — lne — 8 n . 

— k7Г + kҡІ kҡ + kҡi 

' t 1 , 

O 
-k> к s 0 kҡ 
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The others simple poles are at t ( f + jn) (j € Z), where the function > ,+ e- , ) 

has residues equal to ' l / ? . We obtain 
2irt 

лoo in(в+ine+8n) 

/

oo ein(a+lne+8") j 

.oo 5 + lne + 8 n 7r(e* + e- 3 ) ~" 
( - i y c-n(«f+Ú>+l--e+8B) + ]г 2ҡi ' -.(g-lne-8" + elne+8") /- , 27Tt" t f + ijw + l n _ + 8 n ' 

which implies due to (13) and (14) 

0 0 e ~ n ł • e~njv 

K^^)l < e - " - g | t , f + l n e + 8 n | < 
j - 0 , f e2 

e " n ( ł - ł ) 
| t f + l n _ + 8 n | l - e - w 

and similarly for T n . 
Hence, 

OO _n(_._JL) -

lim|(T+,0e)| < 21im Y , ' , ' , • — = — _ 
e l o i \ , w / i _ e i 0 _ _ , j i + i n e + S" l - e - " 

n=l ' -J ' 
oo _ n ( i _ J _ } -

<*-_--. ,. e n * - «' 1 
^-J eio t f + l n e + 8 n 1 - e - * 
n = l ' -> ' 

by the Lebesgue majorating theorem: the serie is majorated by the summable serie 

- » < _ • - * ) 1 E: 
1 - e -

Remark 5. £ e •* ga = £e+a (for £, a > 0). 

Lemma. limeuj((-F * ge)ge, g) = 0. 

PROOF : This limit is equal to 

1 € e 
Hm(T(*), ( ^ 2 + 1 } ' ^ 2 + ^ 2 ) ) * * ( s 2 + c 2 ) > = 

Now the lemma follows from the remark and from the proposition above and from 
the fact that the functions £i+e form a bounded set in S and in L\ (see Proposi­
tion 3). • 
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Theorem 6. The Tillmann product 6 • T = 0. 

PROOF : By (9), we have to prove \imeio(Qe(T X Qe),<p) = 0 (<p e V). As T 
is an even distribution, we can replace <p(x) by \(y>(x) + y>(—x)), so we suppose 
without loss of generality that <p is even. Let us write <p = <p(0) + %j) for to have 
4(0) = t/>'(0) = 0. Hence 

(15) xl>(x) < A - ~ 
"1 + a:2 

for some A > 0. Due to Proposition 4 and Remark 5 we have 

( 8 - T , l ) = l i m ( ^ e ( T ^ ^ ) , l ) = 0, 

(16) (6 • T, y) = (8 • T, t/>) = Hm(T, ( ^ , ) x *>*} • 

We are going to show that the last testing functions go to zero uniformly and in L\, 
which will give the result due to Proposition 3. By (15) 

M*)e.(*)l < Aj^ • <x2
e
+ £2) = A ^ • £ • ^f~p[ < v ' 

so |t/>£e X ,oe| < -|r, too. Further, due to Remark 5 and (15), \ipQe X Qe\ < AQ2S. 
• 

Propos i t ion 7. For the function a(x) = ,g
g

6>fl) t/ie assertion lime |o(T,ae) = 0 w 
not true. 

PROOF : We have 

1 1 
(17) <тe(x) = 

« (f)3 + ( f ) 3 ' 

From (11) we obtain after the substitution x = £e* 

Ж2L 

= Є « 
/ 1 f°° sinn(3 + lne + 8 n ) ds \ 
^ ( ^ 3 4 . ( ^ ) 3 J ^ j + lne + 8* *7r(e 3 a +e~3-)y • 

The function n(e**+e-*s) has simple poles at 

., 7Г ,7Г v , , _ v 
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with residues equal to \~n< . Using the same method as in the proof of Proposition 4, 
we obtain 

._+ . __- A „ , e .n( . f+ . , f+ ln t +8") (_!)> 
(TJT.O-J) = - e « Im > 2m— — — ; — • V , . 
x " ' ' £ j i\ + ijf +lne + 8n 6TT« 

Choose e m = e - 8 (m = 1,2,... ) and denote 

(_ l ) i e-n>f . e.n(8"-8-) 
__«,• — 3 i f + * j f + 8 n - 8 m 

So we have 

(18) ( T V . ) = - _ _ _ _ _ _ „ . - , • 
n = l j = 0 

with following estimations: 

m —1 oo IT 

Z_, 2_, lAn>l - L L 3 ' l~~" - 3 " 8™ ' T 
m —1 00 m —1 00 -, _ , * л 

1 e J з 2 m 
_г__~ > 

n = l j = 0 n = l jr=0 " 2 V v w - > Є З 

Л -ł____ 
m ' °~3г? ' 

£ I * - . I < £ 
1 e ~ m J І 2 Є"ma 

< - . 
.-,3 î " ' - - - ' 

00 00 0 0 0 0 

£ X>»>i< Қ Ę _ . « _ _ . _ _ . _ - . 1 e j ' - 2 1 8 
3 * 

n=m-f-l jt'=0 n=m-f 1 jf=0 2 

From (18) and from the above estimations one sees that 

2 

- m - 1 

lim (r+,<T,m) = lim(-ImAm,0) 
m—•oo 

Remark 8. The sets of functions 

, {*w?<?(f); o < e _ i | 

{*-V*(f); o < e _ i | 
restricted on the interval (2, 8), are bounded in £f((2,8)). It means 

I (J.) (^e0)\-Ma (*e(2,8),aGN„,0<£<l) 

and similarly for a. 
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Proposition. If a distribution F € £'(R) has a value equal to v at 0, then 

1im(F, ge) = lim(F,a«) = v. 
e|0 e].0 

PROOF : Without loss of generality we can suppose that 

(19) s u p p F C { x ; W < 1 } . 

By the assumption, we have 

(20) lim(F , <p€) = v • / <p for y? G £>. 
«10 J 

Let us decompose (as for rj see Definition 1) 
oo 

(21) e(x) = v(k0,x) + ^2 e(k, x), 
k=ko 

where 

(22) ip(k0,x) = e(x)-^(2-k''x), 

(23) e(k, x) = e(x) (7/(2-fc-1x) - v(2-*a:)) . 

So 

(24) {F, e.) = (F.y.fo,.)] + £ ) {F(x), K(k, -)) • 
k% 6 e 

By the above remark, the set of functions 

{x>-*(2k-1)2e(k,2k-1x); lfc = l , 2 , . . . } 

is bounded in X>([-8,-2] U [2,8]). The set of distributions 

{Z>([-8, -2 ] U [ 2 , 8 ] ) 9 ^ (F, <pc); e> 0} 

is bounded in £>'([—8, — 2] U [2,8]), because e >-• (F,<^e) is a continuous function 
which goes to 0 as e I 0 and which is equal to zero for e > | (due to (19)). This 
implies that for some c > 0 (independent on £, k) 

\(F(x),\(2k-*fe(k,2k-^))\<c, 

or, putting e instead of 2"~*+1£, 

\(F(x)^e(k,-e))\<2-k+ic. 

From this, by (24) we obtain 

\(F,Qe)~(F,<pe(k0,.))\<-^. 
1 2 

Passing to the limit as £o i 0 and k0 -+ co, we obtain from (20) and (22) the result 
for the function Q. As for <r, the proof is similar. • 
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Theorem 9. IfT = T£S'isan even distribution for which the Kaminski product 
with 6 exists, then T has at 0 a value u (and it's known that 6 • T = u6). 

PROOF : Using (7) for the definition of the Kaminski product for UJ = 1 in a neigh­
bourhood of zero, we obtain the existence of the limit (and its independence on 
ipeV, J > = 1) 

lim J[(T, <pe) + T * tp€(Q)] = lim |[(T, <pe) + (T, 0,)] = lim(T, <pe). 
e10 Z e.J.0 Z e|0 

Consequences 10. From Propositions 4, 7, 8 we obtain that T has not a value 
at 0. By Theorem 9, the Kaminski product 6 • T does not exist, while the Tillmann 
product 6 • T = 0 by Theorem 6. 
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