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Boundary value problems with nonlinear 
boundary conditions in Banach spaces 

GIUSEPPE MARINO, PAOLAMARIA PIETRAMALA 

Abstract. Let X be a Banach space, J = [a,b] a bounded real interval, A(i,x) a bounded 
operator defined and continuous on the product J x X, f(t, x) a continuous function on 
J x X, L a bounded linear operator with values in X and H a continuous operator, not 
necessarily continuous. In this paper, we study the existence of solutions of 

x' = A(t,x)x + f(t,x) 
which satisfy the condition 

Lx = H(x). 

Keywords: Evolution operator, boundary value problems, differential equations, nonlinear 
operator, fixed point theorems 
Classification: 34K10 

1. Introduction. 
Consider a nonlinear differential problem with nonlinear boundary conditions of 

the type 
x' = F(t,x) 

Tx = t/, y € X Banach space 

The most important works in this field, when F(t, x) is of the form A(t)x -\~f(t, x) 
(i.e. it is the perturbation of a linear bounded operator) and T is a bounded linear 
operator, are due to Scrucca [1], Conti [2], Opial [3], Bernfeld and Lakshmikan-
tham [4], to which we refer for a nearly exhaustive reference. 

The case of a nonlinear problem, that is, when F(t, x) takes the form A(t, x)x -f 
/ ( i , #), has been studied by Conti [2], Kartsatos [5], Furi et al. [6] and Anichini [7]. 
In these papers T is a continuous but not necessarily linear operator. The methods 
used in these papers are based on fixed point arguments or topological degree theory. 

Very recently, a further contribution to the subject has been given by Anichini-
Conti [8]. By using a fixed point theorem for condensing maps due to Martelli [9], 
they prove the existence of solutions for (1.1), with X = Rn under the new assump
tion 

(1.2) \A(t,x)x\ + \f(t,x)\<g(t,\x\) 

for a suitable function g. 
In this paper, we give a substantial simplification of the arguments and estimates 

used in [8]; moreover, we improve their existence result, under assumptions of the 
kind in (1.2), but in a more general Banach space context. We rely on the classical 
fixed point theorem for compact maps due to Schaefer [10]. 

In the last section, we give some examples of how our main result (Theorem 3.1) 
can be successfully applied to some nonlinear boundary value problems. 

(i-i) { 
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2* Notat ions and preliminary results. 
We use the following notations: 

- J =z[a, b] is a compact interval on the real line R. 
- X is a Banach space with norm |v|, v £ X. 
- C(J,X) is the Banach space of continuous functions from J into X with the 

norm ||*||oo := max{|*(<)| : t € J, x € C(J,X)}. 
- B(X) is the Banach space of bounded linear operators from X into X with 

the norm ||T|| := sup{|Tw|: |v| = 1}. 

The following lemmas will be crucial in the proof of the main theorem: 

Lemma 2.1 ([10]). Let S : X —• X be a continuous, compact map. If the set 

M := {v € X : cv = S(v) for some c> 1} 

is bounded, then S has a fixed point. 

Lemma 2.2 ([11, p. 32]). Let g(t^z) be a continuous function defined on J x R 
such that the initial value problem for the equation 

z' = g(t,z) 

has the unique solution z(t) for t € J . Then, if \x'(t)\ < g(t, \x(t)\) for every t € J 
and if \x(a)\ < z(a), we have \x(t)\ < z(t) for t € J . 

Let us prove the following theorem: 

Theorem 2.1. Let A : J x X —• B(X) and f : J x X —> X be two continuous 
functions such that: 

(i) |v| < r implies that there exists R = R(r) > 0 such that 

P ( t , t ; ) | | + | / ( t , t ; ) | < ^ for r € J ; 

(ii) \A(t, v)v\ -f | / ( t , v)| < g(t, \v\), for t 6 J and v € X, where g is the function 
defined in Lemma 2.2; 

(iii) If u £ C(J,X) and xu solves the Cauchy linear problem 

(x'(t) = A(t,u(t))x(t)+f(tMi)) 
\ x(a) = x0 , 

t&en i&e set {xu(t) : u in a bounded set B of C(J,X)} is relatively compact 
for any t £ J. 

Then the initial value problem of nonlinear ordinary differential equation 

( x' ~A(t,x)x + f(t,x) 

\ x(a) = XQ 
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has at least one solution. 

PROOF : Let u e C(J,X) be given. The maps Au : J -+ B(X) and fu:J-*X 
defined respectively by Au(t) := A(t, u(t)) and fu(t) := f(t,u(t)) are continuous 
maps and so it is well known ([12, p . 196]) that the linear problem 

(x'(t) = Au(t)x(t) + fu(t) 
\ x(a) = x0 

has a unique solution xu that we can write as 

(2.1) xu(t) = xo + / Au(s)xu(s)ds+ I fu(s)ds. 
Ja J a 

Hence we can define the map S : C(J,X) —> C(J,X) by defining S(u) to be the 
unique function xu solution of (2.1). Our claim will be proved if we are able to show 
the existence of a fixed point for S. 

First, we show that 5 is a continuous map. For this purpose, let un —> u0 in 
C(J,X) and S(un) = xUn. Then 

\xun(t) - xUo(t)\ < / \AUn(s)xUn(s) - AUo(s)xUo(s) ± AUn(s)xUo(s)\ ds+ 
Ja 

+ / l / - . W - - / - . W I * < / \\AUn(s)\\ \xUn(s)-xU0(s)\ds+ 
Ja Ja 

+IN-.IU / \\AUn(s) - AU0(s)\\ ds + \\fUn - fU0\\x(b - a) 
Ja 

for which, by the Gronwali inequality, we have 

l*«„(t) - s»o(')l < (ll*..l|oo / \\Attn(s) - AU0(s)\\ ds+ 
Ja 

+ ||/u„ - /«„| |oo(6- «))exp( / H.4..WH da). 
Ja 

Now, un —y uo in C(J,X) implies that there exists an r > 0 such that ||tin||oo < 
r, and so, from hypothesis (i), it follows that there exists an R > 0 such that 
||Attn||oo :=max{| |Au n(s) | | : s € J} < R. Hence 

\\Xun - SttoHoO < (IkuolloO \\AUn ~ -4u0||oO + 
+ | | / u n - / «o l | oo ) (6 - a ) ex P ( .R(6-a ) ) . 

On the other hand, under the assumptions of continuity of A and / , it follows that 
\\Aun - Auolloo - • 0 and \\fUn - /u0||oo - • 0, so that \\xUn - a?u0||oo - • 0. Now we 
show that 5 is a compact map. From (2.1) it follows that 

|(5(u))(*)| < |x„ |+ / ' | |A a „ (3 ) | | |(5(u))(«)|(fa+ / \fu(s)\ds, 
Ja Ja 
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so, again by Gronwall inequality, 

| (S (« ) ) ( . ) |< ( | *o |+ / \fu(s)\ds)exP([i\\Au(s)\\ds). 
J a J a 

Hence llu)!-.© < r yields 

(2.2) l|5(«)||oo < (|*o I + R(b - a)) exp(R(b - a)) =: k, 

so that S maps bounded sets into bounded sets. Moreover 

(S(u))'(t) = Au(t)(S(u))(t) + fu(t) 

and therefore 

ii(^(«)yiioo < 11A.H00 n^(tt)iioo+ii/.iioo. 

It follows that ||u||oo < r and (2.2) imply that ||(5(u))'||oo < R(k + l) and this, 
together with (iii), is enough to conclude that S maps bounded sets into relatively 
compact sets, i.e. S is a compact map. Finally, let M be the set in Lemma 2.1. Let 
x € M. Then, for some c > 1, 

cx(t) = XQ -f / A(s,x(s))cx(s)ds -f / f(s,x(s))ds, 
Jo Ja 

so that 

(2.3) x'(t) = A(t,x(t))x(t) + c~lf(t,x(t)) and x(a) = c~lx0 . 

Let us consider the initial value problem 

(z' = g(t,z) 
\ z(a) = |x0 | . 

Clearly, from (2.3) and hypothesis (ii) we have 

\x'(t)\ < ^ . . - ( O M O I + c - ' I M x ^ ) ) ! <g(t,\x(t)\). 

Moreover, |ar(a)| = c""1|a:0| < \x0\ = z(a), so that from Lemma 2.2 we get \x(t)\ < 
z(t) for any a i i n M and this shows that M is bounded. From Lemma 2.1 the claim 
follows. • 

We note that the hypothesis (iii) of the previous theorem is certainly satisfied if 
X is finite-dimensional or if the set 

{Eu(t,s)Bi : t - s > 0,u in a bounded set B of C(J,X)} 

is relatively compact in X, where B\ := {u € C(J,X) : ||u||oo < 1} and Eu(t,s) is 
the evolution operator of A(t, u(t)) (see Remark 2 below). Also, we emphasize that 
(iii) is equivalent to (iii)': The set 

{Eu(t, a)xQ + / Eu(t, s)f(s, u(s)) ds : u in a bounded set B of C(J, X)} 
Ja 

is relatively compact for any t in J fixed. 
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3. Main result. 
Let us consider the following boundary value problem 

( N L L ) ( X ' = ^ , a ; ) : C + / ( t , x ) 

\ Lx = H(x) 

Assume that the following hypotheses hold: 

(hi) A : J x X —> B(X),(t,v) i-* A(t,v) is a continuous function for which 
Vr > 0 3rx = rx(r) > 0 such that |v| < r implies that ||A(t, v)|| < n V t € J. 

(I12) / : J x I ^ I , ( t , t ) ) H f(t, v) is a continuous function. 

(h3) \A(t,v)v\ + | / ( t , v)| < g(t, \v\),Vt € J and Vv € X, where g is the function 

defined in Lemma 2.2. 

(114) L : C(J,X) —> K is a linear and continuous operator. 

(115) H : C(J,X) —+ X is a continuous operator for which: 
(i) Vr > 0 3 r 2 = r 2(r) > 0 such that ||u||oo < r implies that |H (u) | < r2; 
(ii) 3d > 0 : |K u (H (w)-L / a

( ) E u ( . , .s ) / ( s ,u( .s ) )d3)(a) | < d Vu € C(J ,K ) , 
where Ku is the operator defined in (he) and Eu(t, s) is the evolution operator 
of A(t, u(t)) (see Remark 2 below). 

(he) For every given u in C(J,K) there exists a linear and continuous operator 
Ku : X —• KerD u , where Du := (d/dt) — A(i, «(*)), such that 
(i) K : C(J,X) —* H(X, KerDu) , i t »-> Ku is a continuous function; 
(ii) Vr > 0 3 m = m(r) > 0 such that ||w||oo <. r implies that ||K t t | | < m] 
(iii) ( / - LKu)(H(u) -Lf^ Eu(-,s)f(s,u(s))ds) = 0 V u 6 C(J,X). 

(h7) Hue C(J,X), let zu(t) := f*Eu(t, s)f(s, u(s))ds; then the set 

{(Ku(H(u) - Lzu))(t) + *«(*) : u in a bounded set B of C(J,X)} 

is relatively compact for any t € J. 

Remark 1. From (hi), (h2), (h3), it follows that 

Vr > 0 3 R = # ( r ) > 0 such that |v| < r implies that 

\\A(t,v)\\ + \f(t,v)\<R Vie J* 

Remark 2. From (hi), we are able to claim the existence, for any fixed u, of 
a unique operator function Eu : J x J —> B(X),(t,s) *-* Eu(t,s), defined and 
continuous on J x J such that 

Í.A-(3.1) Eu(t, s) = I+ Au(w)Eu(w, s) dw 

(evolution operator of Au), where Au(t) := A(t,u(t)) ([1]). From (3.1), one has 

(3.2) Eu(t, t) = I, Eu(t, s)Eu(s, r) = Eu(t, r) V(t, s, r) € J x J x J 

and moreover 

(3.3) (dEu(t, s)/dt) = Au(t)Eu(t, s) almost everywhere for teJ.se J. 

From this, it follows that the (Caratheodory) solutions of the linear homogeneous 
equation Dux = 0 are defined in J and define a space isomorphic to X via the map 
U :X -> KerDu , ; ,(a;) := Eu(-, s)x+ 
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Remark 3 . From (hi) and (I12), it also follows that if u € C(J,X) then 
(i) Au belongs to C(J,B(X)); 

(ii) fu belongs to C(J,X) (here fu(t) := f(t, u(t))); 
(iii) ||un — tio||oo —¥ 0 implies that 

(3.4) \\AUn - Auo\\oo ^ 0 and | |/ t tn - /tt0||oo -> 0* 

Remark 4. The hypothesis (I17) is already used in several works (see [1], [13], in 
which the operator A depends only on t € J). In any case, (I17) is certainly satisfied 
if X is finite-dimensional or H is a compact operator and the set 

{Eu(t, s)B\ it — s > 0 and u in a bounded set B in C(J,X)} 

is relatively compact ([14])$ 

Finally, we quote the following result which is useful in the proof of our main 
theorem. 

Lemma 3.1 ([11, p.36]). Suppose t%at gug2 € C(J,R), gz € Ll(J,W),gz > 0 

almost everywhere, g\(t) < g2(t) + / a gz(s)g\(s) ds, t € J. 

Then gt(t) < g2(t) + £g3(s)g2(s)exp(fl gz(v)dv)ds. 

Our main result is: 

Theorem 3.1. Suppose that (hi)-(h7) hold. Then the problem (NLL) admits 
at least one solution. 

P R O O F : 

Step 1. ||u||oo < r =» 3 r ' = r'(r) > 0 : ||£tt||oo := max{||JE?,(t,*)|| : (t,a) € 
J x J} < r'. 
Indeed, from (3.1) we obtain, if s < t (analogously if t > s): 

\\Eu(t,s)\\ < 1 + J \\Au(w)\\ \\Eu(w,s)\\dw 

which, by Gronwall's inequality, yields 

\\Eu(t, s)\\ < exp(j \\Au(w)\\ dw) < exp(R(b - a)) ~: r> 

(the last inequality follows from Remark 1). 

Step 2. Eu(t,s) is continuous with respect to u, i.e. ||un — ti||oo —• 0 implies 
| | .B. . - - .B. | | o 8 -»0 . 
Indeed, let ||wn -u||oo —> 0. Then there exists an r > 0 such that ||"nl|oo> IMIoo < r. 
Moreover, if s < t (analogously if t > s), we have from (3.1), 

\\EUn(t,s)-Eu(t,s)\\< f \\EUn(w,s)\\\\AUn(w)-Au(w)\\dw+ 
Ja 

+ j \\Au(w)\\ \\EUn(w,s)^Eu(w,s)\\dw. 
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This implies, by Lemma 3.1, 

\\EUn(t,s) - Eu(t,s)\\ < j \\EUn(w,s)\\ \\AUn(w) - Au(w)\\dw+ 

ft fW fZ 

+ \\Au(w)\\( \\EUn(y,s)\\\\AUn(y)-Au(y)\\dy)exp( \\Au(z)\\ dz) dw < 
Ja Js Jw 

< ||Au||oo||£uJ|0O||AUn - Au\Ub - a? exp(||Au||00(6 - a))+ 
+ | |EU n | |0 0 | | J4U n-Au | |0 0(6-a)< 
< \\AUn - A. IUr 'P - o)(l + R(b - a) exp(R(b - a))) , 

from which we obtain 

\\EUn - EJoo < ||Attn - Att||oor'(6 - a)(l + R(b - a)exp(#(6 - a))), > 

so that the claim follows from (3.4). 
To prove that (NLL) has solutions , we consider, for any u € C(J,K), the map 

S : C(JyX) -» C(J,K) denned by S(u) := KuH(u) - KttL*tt + zu. We now prove 
that S has fixed points and that these are solutions of (NLL). 

Step 3. For any u £ C(J,K), S(u) is a solution of the linearized problem 

,MT* / *'= A%(t)x + fn(t) 
^L)u\Lx~H(u). 

Indeed, since the range of Ktt is contained in KerDtt (see (he)), we have 
DuKuy = 0 V y € X, in such a way that DuS(u) = Duzu. Hence, from (3.2) 
and (3.3), it follows that 

(3.5) (S(u))'(t) = Au(t)((S(u))(t)) + fu(t) 

Moreover, from (iii) of (he) we have 

LS(u) = H(u) - Lzu + Lzu = H(u). 

An obvious consequence of Step 3 is that the fixed points of S are solutions 
of (NLL). The existence of fixed points of S will follow from Lemma 2.1. 

Step 4. 5 is a continuous map. 
Indeed, let un —• uo- There exists an r > 0 such that | | u n |U llMo||oo < r. 
Now, ||.Ettn - JStt0||oo ~* 0 (Step 2) and ||/ttn - / . j o o -> 0 (Remark 3), so that 
Eun(*>s)fun(s) -> EUo(t,s)fUo(s) uniformly in (t,s) and therefore ||*ttn - ztt0||oo 
—• 0. Moreover, 

\\KUnLzUn ~K t t 0 ^ 0 l loo < IIKuJI ||£|| \\zun-zU0\\oo^\\KUn-KU0\\ \\L\\ Hz^lU, 

so that (i) and (ii) of (h6) yield \\KUnLzUn - KUoLzUo\\oo -• 0. Analogously, one 
can see that ||.K"ttn#(un) - Ktt0#(ti0)||oo -+ 0. 
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Step 5. S maps bounded sets into relatively compact sets. 
Indeed, if ||u||oo < r, from (hs) and (h$) we have 

||5(u)|U<m(r2 + ||L||||-.H00)+ll-.IU 

and so Remark 1 and Step 1 yield 

| |5(u)|U < m(r2 + \\L\\r'R(b - a)) + r'R(b - a). 

Moreover, from (3.5) we have 

||(5(u))'|U < m»IU| |5 (u) |U + | | /« |U < R(m(r2 + \\L\\r'R(b-a))+r'R(b-a) + l) 

and this, together with (I17), is enough to conclude that 5 is a compact map. 
At this point, we consider the set M in Lemma 2.1. 

Step 6. u € M implies that \u(a)\ < d. 
Indeed, u € M implies that cu = KuH(u) — KuLzu -f zu, so that u(a) = 
c~l(Ku(H(u) — Lzu))(a). Thus the claim follows from (hs). 

Step 7. S has fixed points. 
Indeed, in order to apply Lemma 2.1, we consider the initial value problem 

(3.6) yKy 
I z(a) = d. 

Now, u € M implies cu\t) = Au(t)cu(t) + /«(*), so that from (h3) we have \u'(t)\ < 
g(t,\u(t)\). By Lemma 2.2, \u(t)\ < z(t), where z(t) is the unique solution of 
(3.6) in J. This is sufficient to conclude that the set M is bounded, so that, from 
Lemma 2.1, we can affirm the existence of fixed points for S. • 

4. Applications. 

Example 1. Let J = [0,1],X = R2 normed by | | (zi ,x2) | | := |a?i| 4- |x2 | and 
B(X) == M2X2 be the Banach algebra of the real 2 x 2 matrices B = (hj) normed 
by ||B|| := max |6,y(.Moreover, let g\ and g2 be two functions from J x R into R. 
We assume 

(a) 0i is a bounded continuous function on J x R, ||<7i||oo -= sup{ |pi(t,x)| : 
( t , x ) € J x R } . 

(b) g2 is a continuous function for which there exist a function h € C(J,R) and 
a constant p > 0 such that |^2(t,x)| < h(t) + fl\x\. 

We consider the matrix function A : J x R2 *-• M2X2 defined by A ( i , (**) J = 

( 0 ff(t!x1))
andletE«(''a)=(§'(M) fp[!;^)l>etheevolutionoperator 

of A which depends on (ui,u2) = u € C(J,R2). 
We want to look for the solutions of the second order nonlinear ordinary differ

ential equation 

(4.1) x - 01 (t, x)x' as g2(ty x) 
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with boundary conditions of the type 

(4 2) I So1(S!exp(S?9i(vMv))dv)dw)g2(s,x(s))ds = x(l) 

I So (Si e-Pt/.' 9i(v,*(v)) dv)g2(s, x(s)) ds) dt = £ x'(t)dt. 

The equation (4.1) can be written as y' = A(t, y)y + /(t, y), where y = (yi) belongs 

toR> •»»/('.(£))-(•(.*))• 
Finally, we introduce the operators L and If from C(J,R2) in R2 by 

\Ů-\ŘU*W,B>)-
= floUs eMC9i(v,ti1(v))dv)dw)g2(s1ul(s))ds\ % 

V Jo^/o eMJt
a9i(viM

v))dv)92(s,u1(s))ds)dt J 

Now, the ordinary differential problem (4.1)-(4.2) can be equivalently formulated 
as (NLL). To prove the existence of solutions it is sufficient to see that (hi)~(h7) 
are satisfied. 

Step 1. (hi), (h2), (h4), (I17) are satisfied. 
Obvious. 

Step 2. (h3) is satisfied. 
Let x = (xi,x2). Then ||A(M)*I| + | |/(t,x)| | = |* 2 | (1 + \g1(t,x1)\) + |<jr2(t,*i)| < 
||*||(1 + Ibilloo) + H&lloo + fi\\*\\- P«t a := 1 + IÎ Hoo + fi,i := | | * | U * ( M ) := 
az + 6. We obtain ||A(t,x)a;|| + ||/(t,a;)|| < g(t, ||x||), where of course g satisfies 
the hypotheses of Lemma 2.2 and the unique solution of the initial value problem 
z' = <j(t, z), z(0) = z0 is given by 

*(*) = (*o + (Ž/â))exp(at) - (b/a). 

Step 3. (h5) is satisfied. 
It is enough to note that 

E (t x / I Jt
a^P(C9i(v,n1(v))dv)dw\ 

u K i ) VO e x p ^ ^ t t ^ i ; ) ) ^ ) J' 

Step 4. (he) is satisfied. 
Let (tii,tt2) = w be an element of C(J,R2). We define the operator Ku : R2 «-* 
C(J,R*)by 

fa\ = /(*/ So P»(') ^) So* P-(') ds + a ~ b\ 
" W V (b/SoP^)ds)Pu(t) ) ' 

where pu(s) := exp(/0* gi(v, m(v)) dv). 
It is a routine calculation to verify that the range of Ku is KerZ7v and that 

LKU = I on R2, so that (iii) of (he) is obviously satisfied. Moreover, « i-> Ku is 
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a continuous function, as it is easy to verify by the definition of Ku. Finally, for 
each u € C(J,R2), we have ||KU|| < 2 + \\gi\\oo(l - exp(-||flfi||0o))exp(||Sfi||00), so 
that (ii) is satisfied, too* 
Example 2. Let J>g\,g2,A,f be as in the previous example. Fix t0 € J. Then 
the problem 

(4.3) 

C x" -gx(t,x)x' = g2(t,x) 

x(0) = sm(\l-x(t0) + x'(t0)\)
1/2 

{ x'(0) = cos ( £ x(ť) dt - 2 + £ x'(ť) dt) 

can be written as (NLL) with H and L defined by 

/UA / sinOl-oKM + z'tVHr72 U M J ^ A 
W \zoS(^ x(t)dt-2 +^x'^dt))' W W 0 ) 1 * 

Then (hi)-(hy) axe satisfied by taking 

" W V bPu(t) ) 

and so problem (4.3) has a solution. 
In general, if /i,/2 are two bounded continuous functions from C(J,R) x 

C(J, R) into R, then the ordinary differential problem 

(4.4) 
x" -gi(t,x)x' =g2(t,x) 
x(0) = h(x,x') 

{x'(0) = f2(x,x') 

can be written as (NLL). As above, one can verify that (hi)-(h.7) are satisfied, so 
that the problem (4.4) admits solutions* 

Remark 4. The previous examples also work with the weaker assumptions: 
\gi(t,x)\ < at(t) + bx\x\ for some ax G C(J,R), h € R+ and (1 + |iai||oo + 0)2 -
46iP| |oo>0. In tms case # is defined by g(*,*):=^ 
If, moreover, the following inequality 

(4.5) g2(t,u(t)) < G exp(||gi(-,u(.))||oot) 

holds for some G > 0 and for every u € C(^,R), then the Nicoletti problem 

f x" -gi(t,x)xl ~g2(t,x) 

X x(ti)~ru x(t2) = r2 

has solutions. (Here (4.5) assures that (h5) (ii) holds).* 
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