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ARCH. MATH. 2, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
XII: 87—98, 1976 

ON ASYMPTOTIC PROPERTIES OF CENTRAL 
DISPERSIONS OF THE k-TH KIND OF 

/' = q(t)^,k = l ,2 ,3 ,4 

STANĚK SVATOSLAV, Olomouc 
(Received November 12, 1975) 

1. We begin our discussion with introducing the definitions of central dispersions 
of all four kinds together with some properties of theirs —as given in the mono­
graph [1]—which will be of need in the sequel, too. We introduce next some pro­
perties of the solutions of the differential equation 

(q) y"=q(Oy, qeC7°, 

with / = (a, oo). Throughout this paper (q) will be considered oscillatory for t -> oo 
(which means every nontrivial solution of (q) with infinitely many zeros on every 
interval (t0, oo), t0 ^ a). In all that follows, we shall always eliminate trivial solutions 
of(q). 

Let n be a positive integer, xe I and y be a solution of (q), y(x) = 0. If cpn(x) 
(<p„n(x)) is the H-th zero point of y lying to the right (to the left) of the point x, then 
(pn(cp_n) is called the central dispersion of the 1st kind with the index n ( — n) of (q). 

Let n be a positive integer, q(t) < 0 for t e /; x e I. Let yl, y2 be solutions of (q), 
yt(x) =y'i(x) =0. If i//„(x) (Wv)) [x*(x)(x-n(x))> con(x)(a).n(x))] is the ti-th zero 
point of y2iyMy2] lying to the right (to the left) of the point x, then il/n(ij/-n) 
[Xn(X-n)y ct>„(ct>__„)] is called the central dispersion of the 2nd [3rd, 4th] kind with 
the index n ( — n) of (q). 

Since (q) is understood to be oscillatory for t -* oo, the functions cpn91^,., #„, con 

are defined on / for every positive integer n. The functions cp_n9 \j/~n, #_„, a>_„ are 
generally defined on an interval of the type (at, oo) c / with ax depending on the 
natural number n and on the kind of the central dispersion; especially 1° (°l) will 
denote the definition interval of x-^co-j). Ifn = 1, then instead of central dispersions 
of the k-th kind with the index 1 we shall briefly say basic dispersions of the k-th kind 
with k = 1, 2, 3, 4. In place of cp1,\j/l9 Xi > o>i we shall write cp9 ip, x-> a)-

In our considerations below we shall very often make use of the following formulas: 

(1) X°<»(0 = *K0, tel, 
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(2) co • x(0 = ę(0, t є /, 

(3) 
w q(h) w

 Й ^ ( 0 «('-) 

/ ( 0 - - - % , »'(0- ^ 1 

<?**(*) ' 4 ( * 2 ) ' 

where tt,t2,t3,t4 are appropriate numbers for which t < tt < x(t) < t3 < q>(t), 
t < t2 < co(t) < t4 < \jj(t) holds. 

The above formulas have been introduced in [1] by Bor&vka, p. 116 and 123. Let 
us note that from the Theorem on page 122 [1] it follows that all the central dispersions 
of the 1st (2nd, 3rd, 4th) kind have the 3rd (1st) continuous derivative whenever they 
are defined. 

It will be well to recall that in case of y being the solution of (q), y(t) #= 0 for t e ft 

v'(t) 
(c /) the function r(t) := -^y- ,telx\s the solution of Riccati equation 

r' + r2 = q(t) 
on Ix (see [2] p. 392). 

Lemma 1. Let x be a number from I and let u, v denote a solution of(p) and (q), 
respectively, such that u(x) = v(x) = 0. Then 

,.., v «(o «<o / 
Proof: First and foremost lim —~4- = oo, lim —~- = oo and therefore with 

,..»+ «(0 ,-*+ v(t) 
L'Hospital's rule we are led to 

lim (H>VL - W) = l i m »'(0K0-«(0^(0 = l i m (P(t)-q(t))u(t)v(t) = 

,-»»A "(0 K 0 / <-* + U(t)v(t) ,..»+ U'(t)v(t) + U(t)v'(t) 

= lim M-M - 0 . 
~*+ «'(0 , "'(0 

«(0 K0 
In a similar fashion we can show that lim (—±4 r r 1 = 0. So we have 

,-*.*-V"(0 «<0/ 
proved our Lemma. 

Lemma 2. Ler (p), (q) ite oscillatory equations for t -> oo, p(0 < a(0 < 0, t e / 
and fei* q>, $, J. c5 de«o?e the basic dispersions of the 1st, 2nd, 3rd, 4th kinds of (p), 
X-i(co-i) the central dispersion of the 3rd (4th) kinds with the index —1 of(p). Then 

<p(t) > v(t), iKO > $(t), x(0 > X(t), o*t) > a\t), ter, 
X^t(t)<x-i(t), teT, 

o>-i(t) <a>-1(t), te°I. 
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Proof: The validity of the inequalities stated in this Lemma may be proved 
directly from Picone's identity or, for example, it follows from [3], Theorem 2, 
page 109. 

2. We shall be concerned with equations 

(q) f=q(t)y> qeCf, 

(P) f =p(t)y> pec?, 

in assuming that 

(i) there exist numbers m, M, 0 < m :g M such that 

(4) - M S q ( 0 ^ - m , tel, 

(ii) there holds 

(5) lim (p{t) - q(t)) = 0. 
t-*oo 

Under these assumptions the equations (p), (q) are oscillatory for t ~* oo. Before 
presenting the main result of this chapter, we will introduce, in keeping with the first 
part of our work, the following notation: 

Let v be an integer, v # 0. Then <pv, \j/v, Xv> wv(<Pv> $v>Xv> °>v) denote the central 
dispersions of the 1st, 2nd, 3rd, 4th kinds with the index v of (q), ((p)). In place of 
<Pi, ^ i , Xi> <t>i(<Pi>$i>Xi><»i) w e wr i t e <p9 ^, x> <*>(<P> $> X> <*>)• F o r eve ry n u m b e r 
£, | e | < m, then q>e

v, \pE
v, xl> °>v will stand for the central dispersions of the 1st, 

2nd, 3rd, 4th kinds with the index v of (q + e): yk = (q(t) 4- e) y. Finally /8(7) will 
be used for the definition interval of #!_ i(<o11) and /°(°/) for the definition interval of 
X- i(<0- i) . 

The main result of this work can be expressed by the following. 

Theorem 1. Let the functions p9 q satisfy the assumptions (i) and (ii). Then 

lim 0 ( 0 - <p(t)) = 0, lim (xj/(t) - iKO) = 0, 
r-+oo f-*oo 

Hm (x(0 - J(/)) = 0, lim (co(0 - 5(0) = 0. 
t-*co t-*ao 

Remark 1. The result of Theorem 1 has been proved for the central dispersions of 
the 1st kind in [4] under an additional assumption that all the solutions of (q) are 
bounded on /. 

Before proving Theorem 1 we will state and prove a number of supporting results. 
It should be noted once more here that the number e always meets the inequality 
| e | < m (for the (q 4- e) to be oscillatory for t -> • oo) and the functions p, q meet the 
assumptions (i) and (ii) which we shall explicitly put in the assumptions of the next 
theorems only. 
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Lemma 3. The following inequalities hold: 

n 

_JL^ < x/r) _ r < . ^ ^ __________ < w ( r ) _ r < ^JL^ teI 
2 V M ~ A ; " 2 ^ m 2VM ~ W ~ 2 x / m 

2N/M ~ * 1 W ~ 2y/m 

U-=r <, t - co. .(f) < -^= , t e °I. 
2%/M 2x/m 

Proof: The equation ( —m) ((' — M)) has the 1st and 2nd basic dispersion equal to 

/ H — I t + ----- ), the 3rd and 4th basic dispersion equal to t H — 
%/m \ yj M / 2^/ra 

t H ẑ— ) and the 3rd and 4th central dispersion with the index — 1 equal to 
2 \ / M / 

I _ . — _ _ [ t — -—— I. The statement of Lemma 3 will now come out immediately 
2yfin \ 2yJM 

by using Lemma 2. 

Remark 2. The inequality cp(t) — t g —____ has been proved in the proof of 

Lemma 1 in [4]. 

Lemma 4. It holds 

x(t)-ť(t)\<-^-(x(t)-t\ tel. 

Proof: Let x e I and let w, v be solutions of (q), (q + e), respectively, u(x) = 

= v(x) = 0. Wherever the expressions —}•-/-, - ~ are meaningful, the functions 
u(t) v(t) 

a, P are defined the formulas 

(6) < 0 : = ^ , K 0 : = ^ -
u(t) v(t) 

The functions a, ft satisfy the equations 

(7) a' + a 2 = q(t), 

(8) pf + p2 =q(t) + e. 

The functions a, ft are decreasing wherever they are defined, lim a(t) = oo, lim fi(t) = 
J-;c + t-*x + 

= 0 0 . 
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If e = 0 then the statement of the Lemma is certainly true. We divide the next part of 
the proof into two parts according to the positivity or negativity of e. 

a) Assume sign e = 1. By Lemma 2 we have x(0 < Xe(0» t 6 I- F ° r the s a k e of 
simplicity of notation we put xj = #(x), x2 = xe(x)', x < xt < x2. This gives us 

Xl XI 

a(Xl) = P(x2) = 0, J a(0 dl = oo, J p(t) dt = oo. With regard to (7) and (8) 
X X 

(9) (<x(t) - P(t))' + («(0 + P(0) («(0 ~ HW) = ~* on (x, xt> 

and thus 
t t s 

- / [(a(sH"0(s)]ds/ f» /(a(z) + .3(z))dz \ 

a (r) - /?(r) = * *» ( f c - c eXl d s j , fe(x,x,> 

where k = —p(xx). From the other side 

k= - e 

Л l S 

/Гa(z) + /?(z)]dz 

ds, 

which follows from the equality J (a(t) + fi(t)) dt = oo and from lim (a(t) - /?(/)) = 
.X S t~>X + 

= 0 proved in Lemma 1. At the same time there holds J (cc(t) + p(t))dt S 0 for 
Xl 

se(x, xx> thus 

(10) k > - £ (x t - x) = S(X(X) - x). 

Integrating (8) from xt to x2 we obtain (k = -P(x1)i fi(x2) = 0) 

Xz X2 

k+ íp2(s)ds= i (l2(s)ds = q(s)ds + e(x2 - *-) . 

Xl 

By the mean value theorem there exist numbers £1? £2 on (x1? x2) so that 

k=(q(Z1)-p
2(Z2) + z)(x2-xl) 

and with regard to (10) 

Xe(x) — y(x) = x2 — xi = -——— < — —(x(x) — x) < 
^ «(«,) - /J2(^2) + £ «(«.) - /32(^) + e ' 

-W^т^-X^тг^^-X> 
b) Assume that sign e = — 1. Then we proceed in an entirely analogous fashion 

to that in the first part of the proof only that we shall consider q + e and q in place 
of q and q + e, respectively. Since a similar process will appear once more in the 
proof of the next Lemma, we shall carry it out at least in this case for the reader's 
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convenience. If we put xx = %8(x), x2 = x(x) then x < x\ < x2, which follows from 
Lemma 2. With respect to (7) and (8) and thus also (9) hold, then (P(xt) = 0) 

t t S 
/ [«(s) + ß(s)ì ds / f / [a(z) + /?(*)] dz 

a(0 - /J(0 = e " ( fc - e e*' ds 1, fs(x, *.>, 
Xi 

*1 

where k = a(xx). On the other side from the equality J (a(t) -f fi(t)) dt = oo and 

from lim (a(f) — f}(t)) = 0 proved in Lemma 1 we get 

fi*(t) + fi(t)W 
ds - Í -

and there hold the estimates 

k < -e(xi - x) < -e(x2 - x) = -e(x(x) - x). 

Integrating (7) from xx to x2 we get (a(xt) = k, a(x2) = 0) 

X2 X2 

í"I(')d'=í - fc+ <x2(f)df = q(t)dt. 

By the mean value theorem there exist numbers <!;., £,2
 o n (*i> ^2) so that 

k = (a2(il)-q^2))(x2-x1) 

and therefore 

X(x) ~ / (*) = x2 - xi = - j — — < -2
 B rr()t(») - x) 

« (£1) " «(W a Ui) - «(fc) 

- 18 L^») - x) < - i i L - (Xx)-*). 
m ' m — I e I 

Remark 3. From the proof of Lemma 4 we even get the estimates: 

a) 0 < x\t) - z(0 < ~^rj WO ^ 0 for sign * = U e J, 

*) 0 < X(t) - X*(t) < ~~~(xe(0 - 0 for sign a = - 1 , r e / . 

Lemma 5. Jt hOWS 

!*_.(.)- *•_.(.•). < - ^ j ^ t ' -z-i(O), teI°^I'. 

Proof: Let x e J0 n Je. Let the functions u, v be solutions of (q), (q + e) respective­
ly such that u(x) = t?(x) = 0 and let the functions a, /? with the aid of t#, v be defined 
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by the formulas (6). Since the Lemma holds for e = 0 it may be assumed that e # 0. 
The next part of the proof will be divided again according as the sign of the number e 
is -f or —. 

a) Let sign e = 1. Next let xj = xE-i(x)> x2 = X-_(*)• Then a(x2) = p(xx) = 0 
and by Lemma 2 we get x_ < x2 < x. The function a — /? satisfies (9) on <x 2, x) 
and thus 

t t s 
- fta(s) + fi(s)]ds / [ f (ot(z) + p(z))dz \ 

a(l) - fi(t) = e X2 Ik- e \eX2 ds J, t e < x 2 , x), 

X2 

where k = — fi(x2). From the properties of the functions a, /? it follows 
X 

J (a(/) -f /?(t)) dt = - oo, by Lemma 1 we get lim (a(t) - fi(t)) = 0 and consequently 
X2 t~*X" 

r fiat(t) + p(t)]dt 

k = e \ eX2 ds. 
Г fl*(t) + ß 

"Г 
With respect to J (a(t) + P(t)) dt <_ 0 for s e <x 2 , x) we have 

X2 

(11) k < e(x - x2) = s(x - X-_(*))• 

Integrating (8) from x_ to x2 we obtain (j?(x_) = 0, P(x2) = —k) 

xг x: 

íß2(t)dt=í -k + p2(t)dt = q(t)dt + e(x2 - x_). 

By the mean value theorem there exist numbers £_, £2 on (x_, x2) for which 

-k = (q(Zl)-p
2(£2) + e)(x2-xl) 

holds. Herefrom and from (11) we have 

*..(,.) - xi.w . xa - xt -. ^2)_
k
q(ii)_- < ̂ T 3 7 ( ^ - *--(*» < 

( x - ^ . ^ x ) ) . 
m — e 

b) Let signs = — 1. We may proceed analogously to the proof of Lemma 4 
when we consider q + e and q in place of q and q + e. Then there exist numbers 
{_, £2 on (#-i(x)- X- iW) s o that the estimates 

- a 2 

< - l e | 

m 

hold true. 
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Remark 4. From the proof of Lemma 5 we even get the estimates: 

a) 0 < x-i(t) ~ X-i(t) < -^~j(l ~ X-i(t)) for sign e - 1, tel',-

b) 0 < X'-i(t) - X-i(t) < - ^ - ( t - Z-.(t)) for sign B = - 1 , re/ 0 . 

Lemma 6. // ho/dy 

| „ ( . ) - (o\t) | g ' " ' ' " - (_{.) - r), * 6 7° n /• _ _ _ _ _ _ . W Л - Л r ^ " 
( m - | є | ) 2 

Proof: Assume that x e 1° n I£. The statement of the Lemma is valid provided 
that e = 0. Assume first that sign e = — 1 and let us put xx = coe(x), x2 = co(x), 
x3 = X-i(*i)- By Lemma 2 we have x < xx < x2 and it holds x3 < x, xe- i(*i) = x> 
co(x3) = xx. Hence according to remark 4 we see that 

0 < x - x3 = x-i(xi) - *-i(*i) < - ^ - ( * i " *-i(*i) = -~~(xi - x) 

and further—by the mean value theorem—there exists a number £ and by (3) 
a number tx such that 

0 < x2 — xx = co(x) — co\x) = co(x) — co(x3) = 

ш'(«(x-x 3 ) = Ä ( x _ X з ) . 

Therefore the estimate 

/ \ 6/ \ I e I g(£) / \ M M / x | e | M / / x x 
co(x) - a/(x) < J - L • - ~ ^ - ( x t - x) < i - 1

T ~ ( x 2 - x) < ' T (co(x) - x) 
m g(ti) m2 (m - |e |)2 

holds. 
Assume now that sign e = 1 and let us put xx = co(x), x2 = coe(x), x3 = X-i(xi)-

Then x3 6 I, x3 < x < xx < x2, coe(x3) = xx and from remark 4 we get 

o < x - x3 = x-i(xi) - x-i(xi) < —4rr(xi ~ x-i(*0) = i ^ z r ^ 1 "" *)• 
ffl o fJT o 

Next, by the mean value theorem there exists a number £ and by (3) a number tx 

for which 
0 < x2 — Xj = co£(x) — co(x) = a>e(x) — coe(x3) = 

Therefore 
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. e(M — B) , , , , eM , , , , 
< -v -Z (w(x) - x) < — (a>(x) - x). 

(m — e) (m — e) 
Lemma 7. It holds 

I^O-^Ol^^Mi^WO- t ) , tel°nr. 
(m - | e |) 

Proof: From the formula (2) with some evident modifications we obtain 

\q>(t)-<p\t)\ =\co.x(t)-co°.x\t)\ <\co°x(t)-co°.x(t)\ + 

+ \co°.x(t)-co°.x\t)\. 

By the mean value theorem there exists a number £ and by (3) a number /, such that 

I co' . x(t) - c>° . x\t) I = co*(0 | x(t) ~ XV) I = - ^ J ~ I X(0 - XV) I 

and w^ can see that with regard to Lemmas 4 and 6 ths following estimate 

| cp(t) - cp\t) \<\co. x(t) - of . X(t) \ + \co°. X(t) - co° . X\t) I < 

^ | e I M , , , , „ M + | e | | e | , , , , 

= O^TT^ (cw"z(0 - z ( 0 ) + ^ M T T • ^ T ^ T T ^ ^ - ( ) < 
< j £ l ( M ^ a l ) ( ( p ( 0 _ 0 ) , e / 0 n / « 

(m-\e\) 
is true. 

Lemma 8. It holds 

i m - *xoi < |£'M(M + '£|) w o -o> * e i ° - /•• 
( m - | s | ) 

Proof: From the formula (1) with some evident modifications we get 

I <Kt) - V(t)\ = I X °co(t) - xe°co\t)\<_ I x °co{t) - X
e°co(t)\ + 

+ \Xe°co(t)-f°co\t)\. 

By (3) there exist numbers tt, t2 and by the mean value theorem a number £, such 
that 

| xe -a(t) ~ Xe -oAO I = Xa'(« I co(t) - co\t) | = f ^ l I co(0 - <*>'(') I 

Consequently by Lemmas 4 and 6 we have 

| W) - i /^) | £ | X ° co(t) - X
e • co(t) \ + \xe° co(t) - f ° co\t) I < 

( m - | e | ) 3 
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Theorem 2. Let the functions p, q satisfy the assumptions (i) and(\\). Then the follow­
ing estimates hold for t e 1° n Ie: 

l < K 0 - < p £ ( t ) l _ 

W O - ^ O I -

l z ( t ) - / ( t ) l _ 

|w(0-co£(t)l_ 

| e | ( j t f + |ej) . Д ^ 

(m - | e | ) 2 ^/m ' 

| e | M(M + | e j) _j_ 

( m - | e | ) 3 " 7 m 

| e | 

m - | e | 2^/m 

\s\M n 

( m - i e | ) 2 2y/m 

l / - i ( t ) - ť - , ( t ) l _ 

<v 
Є I 7Г 

m-\e\ 2,/m 

Proof : The statement of the Theorem immediately follows from Lemmas 3 — 8. 

Corollary 1. Let {q„(t)} be a sequence of continuous functions on I cornverging 
uniformly on /°( = (b, oo)) towards the function q(t) and let ncp, n\j/,-nx^ n&> be basic 
dispersions of the 1st, 2nd, 3rd, 4th kinds of(qn), c > 0 a number. Then the sequences 
of functions {n<p(t)}, {W*K0}, {w#(0}> {n&>(0} o n the interval (b + c, oo) converge uniform­
ly towards (p(t), \l/(t), x(t), o)(t), respectively. 

Proof : Let £_ > 0 and let us choose e > 0 so that — -~ ~~- • - — __ ex, 
eM(M + e) ^ jt 

(m — e)3 V m 

P1 3 (b + c, oo). Let now N be such an index that for all n > N we have 
I q(0 - qn(t) I < e on /° . Lemma 2 yields the inequalities <p~\t) < ny(t) < (p\t), 
il/-\t) < V ( 0 < V(tl X'V) < nx(t) < l\t), oo~\t) < nco(t) < co\t) for t e 1° and 
every n > N Hence | ncp(t) - cp(t) \ __ 6_, | > ( 0 - <K0 I __ «i, I"x(0 - z(0 I __ «i, 
I "co(0 — co(0 | __ e_ • for f e <£» + c, oo), which follows from Theorem 2. By this 
we have proved the foregoing Corollary. 

We proceed now to the proof of Theorem 1. 
P roo f of T h e o r e m 1: Let e_ > 0 be an arbitrary number. It is sufficient for this 

proof to show the existence of a number f _ 6 / that for t __ tt it is | q>(t) - 7p(t) \ __ e_, 

I <K0 ~ $ ( 0 I __ Ci, I X(0 - x(t) I __ «i, I <*>(0 ~ S (0 | __ fii. Let e > 0 be a number 
eM(M -\- e) TE 

for which the inequality * ---- - —= __ fii is true and / _ e / ° n /£ such a number 
(m - e) yjm 

where g(0 - ex < p(t) < q(t) + ex for te{tl, oo). The existence of such a number t_ 
follows from the assumption (5). Thus for t __ f_ we have 9~£l(0 < <p(0 < <Pei(0> 
$~Bl(t) < $ (0 < Vl(t),x"B'(t) < x(t) < *e,(0> oj-£l(t) < w(t) < (oei(t), which follow 
from Lemma 2. Theorem 2 yields then | <p(t) - cp(t) | __ e_, | *K0 - # (0 I __ e_, 
| x(0 ~ *(0 I __ «i, I 0*0 ~ ^(O I __ ci f°r ' > •'-• 
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Corollary 2. For every positive integer n 

lim (<pn(t) - £„(.•)) = 0, lim (ij/n(t) - $n(t)) = 0, 
f->oo f-*oo 

lim (x„(t) - XniO) = 0, lim (on(t) - «„(0) = 0. 
t-*oo f~*oo 

Proof: Since the proof of all four equalities above are similar to each other, we 
shall give here just one of them. So, let us prove lim (<pn(t) - <pn(t)) = 0, n = 

f-*oo 

= 1,2,3,... This can be done by mathematical induction. The instance n = 1 has been 

proved in Theorem 1. Thus, let lim (<pk(t) — <pk(t)) = 0 for k ;> 1. From the formulas 
t->oo 

(see[l]p. U5)<pk+l(t) = <p *<pk(t),<pk+l(t) = <p • 7pk(t) we obtain <pk+l(t) - <pk+l(t)~ 
= (<P °j>k(t) - <P j %(0) + (<p • £t(r) - $ • ^ ( 0 ) = <p'(n) (<pk(t) - £*(0) + 
+ (<P ° ĵk(̂ ) — ^ ° ^(0)» where ?; is a appropriate number. From the assumption 
lim (<pk(t) — <pk(t)) = 0 and from the boundedness of the function <p' on /following 
- * CO 

rom the assumption (i) and (3) we come to lim (<pk+1(t) - <pk+i(t)) = 0. 
r-*oo 

Remark 5. Eventually we can prove that the statement of Corollary 2 applies to 
every integer n, n # 0. 

From the next two examples it is apparent that Theorem 1 does not hold when m, 
in the assumption (i), is not a positive number or when m = 0 and at the some time 
M = -oo. 

Example 1. Let / = (1, oo) and let p(t): = —~ , q(t): = —— for t e /. Then the 
t At2 

equation (q) is nonoscillatory and the equation (p) is oscillatory for t -» oo ([2] p. 427). 

Thereby lim (p(t) - q(t)) = 0 and we have m = 0, M = — in (4). Since the functions 
f-+oo 4 

<P> t / s X> <i> a r e n o t defined on /, Theorem 1 is meaningless. 

Example 2. Let / = (0, oo), qeCl,q(t) < 0 for t e /. Let next q be lower unbounded 
00 t A 

and such that J q(t) dt converges and lim t J q(s) ds = k > . By Theorem 2.1 
0 t->oo o 4 

in [5], page 45 (q) is nonoscillatory for t -> oo. Let A be such a function, where 
oo 

A 6 Cj, J A(t) dt = - oo, lim A(t) = 0. Putting p(t): = «?(t) + A(t) for t el then we 
0 f->oo oo 

have lim(p(0 - q(t)) = limA(r) = 0 and \p(t)dt = -oo. The equation (p) is 
f->oo r-*oo 0 

oscillatory for / -> oo (see [5], p. 70, Theorem 2.24). The equality (4) is fulfilled for 
m = 0 and M = —oo. In that case Theorem 1 is anew meaningless because of the 
functions <p, \j/, X, co not being defined on /. 
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