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ARCH. MATH. 2, SCRIPTA FAC SCI. NAT, UJEP BRUNENSIS 
XII: 107—116, 1976 

ON HOMEOMORPHIC TOPOLOGIES 
AND EQUIVALENT SET-SYSTEMS 

JAN CHVALINA, Brno 
(Received December 16, 1975) 

1. Introduction. Let P be a non-void set. Set-systems Sf x, Sf2 c exp P are said to be 
equivalent if there exists a permutation/of the set P (i.e. a one-to-one mapping of P 
onto itself) such that Sf2 = {f(X): Xe^J, (cf. [6] p. 323). To every topology u 
(in the sense of [2] or [5]) it can be assigned such a set-system Sf(u) so that topologies 
u, v are homeomorphic if and only if set-systems Sf(u), Sf(v) are equivalent in the 
above sense and u ^ v implies Sf(u) ^ Sf(v). The aim of this note is to give a con
structive proof of the possibility of a non-trivial extension of the set-system valued 
mapping Sf onto a system of more general topologies which do not satisfy the so 
called U-axiom (the idempotency of closures). 

2. Preliminaries. By a topological space we mean the so called tech's topological 
space (see [1]), that is a pair (P, u), where P is a set and u a mapping of exp P into 
itself satisfying the following axioms: 

1° u0 = 0, 2° X c uX for X c P, 3° X c Y c P implies uX c uY. 

If 
4° U(XKJ Y) = uXuuY, XcP, YcP 

holds then the topology u is called an A-topology and (P, u) an A-space (closure 
operations, closure spaces in the terminology of [2]). Topologies fulfiling axioms 1° 
through 3° and 

5° uuX = uX for each XcP (U-axiom) 

are called U-topologies and corresponding spaces U-spaces. If axioms 10 through 50 

are satisfied, we speak about AU-spaces, AU-topologies (topologies in the sense 
of [2] or [5]). 

Denote by %(P) the lattice of all topologies on the set P (with respect to the order
ing: u,ve <$(P), uSvifuXavYfor each XcP, cf. [7] 1.2., 2.1.). For u,ve <$(P) 
there holds (u v v) X = uX u vX, (u A V) X = uXn vX, X c P. Subsystems of 
^(P) of all A-topologies and U-topologies are denoted by s/(P) and <%(P) respectively 
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Let #*(P) means the set of al totally irreducible elements in the lattice C^(P), A , v ) , 
^max(^) the set of all maximal elements in #*(P) and let ^o(P) be the system of all 
atoms in (^(P), v , A ). For u, v e ^(P), u ^ v means that u, v are homeomorphic 
for Sj cz exp P, S2 cz exp P, St ~ S2 means that Sx, S2 are equivalent in the above 
sense, i.e. there exists a permutation / of the set P such that S2 = {f(X) : Xe SJ. 
In this case we shall write S2 = f(S i ) . Similarly, if S2 = {/_1(X) : Xe SJ, then we 
write S2 =f~1(Si). The permutation group of the set P will be denoted by #(P). 
If X is a set, Q the equivalence relation on X then X/Q denotes a decomposition of X 
induced by Q. A system of topologies 9£ c < (̂P) is called topological if u e X, v e ^(P), 
v £ u implies v e X 

In [7], 2.3. is given a characterization of totally irreducible elements of ^(P): 

Proposition hue ^*(P) iff there exists a non-void set X0 a P and a point aeP 
such that uX = X u {a} for X cz P, X0 cz X and uX = X otherwise. 

From here it follows immediately 

Lemma 1. The topology ue^(P) belongs to <ax(P) iff there exist points aeP, 
beP so that uX = Xu {b} if aeX and uX = X otherwise. 

Evidently, ^^(P) is a topological system. 

3. Auxiliary assertions. Let P be a set of the cardinality at least 5, ue%>*(P). 
By Tu will be denoted the set X0 cz P and by au the point a both considered in pro
position 1. §2. Put <<g*(P) = {u e <$*(P): card Tu = 2, card (P - Tn) = 3}. Evidently, 
<*AP) = {u e ^*(P) : card Ptt = 1}. Put 3TC(P) = {uvv : u e < ( P ) , v e < a x (P ) , 
r u = {aM}, ay <£ Tu}. It is easy to see that a topology w belongs to «^C(P) iff there exist 
a set X! cz P with card Xx = 2, card (P - Xx) = 3 and points xl9 x2eP - Xl9 

xt # x2 such that X cz P, Xt cz X implies wX = X u {jq}, X cz P, ^ G X implies 
wX = X u {x2} and wX = X otherwise. If we denote by u, v topologies from ^f(P), 
^maxW respectively such that w = uvv, then Xx = Tu, { x j = {a j = Tv9 x2 = av. 
If we3TC(P\ then by T(w) will be denoted the set Xt (considered above), by Xw 

and bw the above considered point xt and x2 respectively. Hence, there is defined 
a one-to-one mapping T of the system ^ C (P ) into the set 2 p x P x P by the rule: 
T(u) = <T(u), au, &„>, for u e 3TC(P). 

Further, denote by s^x(P) a system of all A-topologies on P satisfying the following 
condition: 

There exists a pair Xv, X2 of non-void disjoint subsets of the set P with Xx u X2 = 
P such that 

(i) u^ = X t u X 2 , 
(ii) uX = Xu Xx i f Xcz P, Xn Xx ^ 0, 
(iii) uX = X if X cz P, X n X! = 0 or Xx u X2 cz X. 

Clearly, siX(P) # 0. To every A-topology u from the system s4\(P) is assigned a pair 
of sets Xj, X2 with above described properties. We shall denote these sets by Lx(u)9 
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L2(u). It is easy to see that <ax(P) £ sfx(P). Put rA(P) = {u e s/x(P) : card Lt(u) = 

£ 2, P 9* L,(u) u L2(u)} and finally r(P) = ^A(P) u rc(P) u 4f(P). 
Let f be a permutation of the set P. By f will be denoted a mapping of ^(P) into 

itself induced by the permutation f in the way: f(u)X =f_1uf(X) for ue^(P), 
X c P, (i.e.f(u) is a topology projectively generated by the mappingf: P -»(P, u)). 
Notice that in [7] 1.4. isf(u) denoted byf° u, where is also examined that forfe#(P) 
is f an automorphism of the lattice (^(P), v, A ). It is clear that a system 9*(P) c 
c <€(P) is topological iff* it isf-stable for every permutation of the set P, i.e.f(^(P)) c 
c «Ŝ (P) for eachfe<£(P). A union of an arbitrary collection of topological systems is 
evidently a topological system. 

Lemma 2. Le* P be a set. Systems r A(P\ rc(P\ r(P) are topological 
Proof. Let uerA(P),fe<P(P). It holds f'^L^u)) nf~l(L2u)) = 0. Let Xc P 

be such a set that Xnf^L^u)) # 0. Since 0 #f(Xn/""1(L1(w))) =f(X)nLx(u) 
and uesft(P) we have f(u) X =f~ VCX) =f_1(f(X) uL,(u)) =f"1uL1(u) = 
= f~1(L1(u)uL2(u)) ^ f ' ^ A C ^ u f - ^ L ^ u ) ) . From Xnf-^u)) = 0 there 
follows f(X)nL,(u) = 0, i.e. f~luf(X) = X. We get that L,(f(u)) =f~1(Li(u)) 
(i = 1, 2) thus it holds f(u)<srA(P)y i.e. the system ^A(P) is topological. It can be 
proved in a similar way that the system rc(P) is topological hence the system r(P\ 
which is a union of rA(P), rc(P) and %(P), is a topological system, too. 

Lemma 3. Let P be an infinite set. It holds card [(r(P) n s4(P)) - ^(P)] = 2cardp, 
card [((,T(P) n j/(P)) - *(P))/s] = card P. 

Proof. Let uerA(P), xeLt(u). Then u{x} = L,(u) # {*}, u2{x} = uLt(u) = 
= Li(u) u L2(u) 7- Li(w), thus u2 ^ u and we have that rA(P) n €(P) = 0. Further, 
for arbitrary u e rc(P) and arbitrary x e T(u) there holds u[{x} u (TTu) - {x})] = 
= uF(u) = F(u) u {aM} ± T(u) = {*} u (T(u) - {*}) = u{x} u u(T(u) - {x}),thus 
.TA(P) n ^ C(P) = 0. It holds (T(P) n j/(P)) - %(P) = ^ ( P ) . If we put ST = 
= {<X, F> e exp 'P x exp P : card X = 2 and X n 7 = 0}, where exp 'P = 
= expP - {0}, then we have card^ = 2ca rdp . 2cardp = 2cardP for cardP = X0. 
The mapping L : r A(P) -+ ST defined by the rule L(u) = (L^LiM), for uerA(P), 
is bijective, hence c a r d ^ ( P ) = 2cardp. Assign to every A-topology u *=rA(P) & triad 
of cardinal numbers <m1? m2, rn3>tt, where mf = cardL^u) for i = 1, 2 and m3 = 
= card(P - (Lx(u)) u L2(u)). Evidently, if u, v erA(P) are nonhomeomorphic topo
logies then <m1, m2, m3>M ^ <ml5 m2, m3>l;, hence card [rA(P)\^] <S cardx 
x {<m1, m2, m3> : mt S card P, / = 1, 2, 3} = card P. On the other hand, if a, b 
are arbitrary points in P, Se <z 2P is a set-system of the cardinality card P such that 
XeSe implies a^X and Xe«£f, Ye«£\ X# F implies cardX # card F then 
cardP = card if = card {uerA(P):Ll(u)e^9 L2(u) = {a}} = card [rA(P)l*]. 
Therefore it holds card [((r(P) n d(P)) - ^(P))/^] = card P. 

Lemma 4. Let P be an infinite set. It holds card [T(P) - (s#(P) u ^(P))] = 
= 2cardp, card [(r(P) - (j/(P) u *(P)))/s] = card P. 
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Proof. If uerc(P) then u£s/(P)v %(P). Hence rc(P) =r(P) - (sf(P) u 
u ^(P)). Now, similarly as in the proof of lemma 3, we put Sf = {<X, x, j> : X c P, 
x e P, y e P, card X = 2, card (P - X) = 3, x <£ X, j> <£ X, x ?- >>}. The mapping 
T '^rc(p) -* ̂  defined by T(u) = <F(u), a„, btt> for uerc(P) is evidently bijective 
hence card^c(P) = card^ = 2cardF . card P . card P = 2 , rJp. Denote by M the set 
of pairs of cardinal numbers {(titj, m2> : m(- g card P for i = 1, 2}. We have (simil
arly as in the proof of lemma 3) that card (TC(P)\^) ^ card ,// = card P. On the 
other hand, let aeP, beP, a ?- b be arbitrary but fixed points, if be a system of 
subsets X c P such that card $£ = card P, X e <£ implies card X = 2, a £ X, b$X 
and such that X, Y e 5£9 X ?- Y implies card X ^ card Y. Then we have card P = 
= card 5e = card {u erc(P) : u non s v} = card [rc(P)\^]. 

Lemma 5. Lel P be an infinite set, % e [T(P) - ^(P)]/^. Then it holds card X = 

§ card P. 
Proof. ^"(P) - %(P) = ^"X(P) u , r c (P ) with disjoint summands. Let u erA(P). 

Since cardP = K0 there exists a set Xe {Lx(u)9 L2(u), P - (Lx(u) uL2(u))} such 
that card X = card P. Suppose that X = Lt(u). Let a e L2(u). Put Ftt = {vx erA(P) : 
:Lx(vx) = (Lx(u) - {x}) u {a}, L2(vx) = (£2(u) - {a}) u {x}, xeL^u). Then card 
Tu = cardL1(u) =cardP and every A-topology belonging to the system Tu is 
homeomorphic to the A-topology u. (If vxo e Tu then the permutationfe#(P) defined 
by f(x) = x for x e P, x0 7-= x ^ a andf(x0) = a, f(a) = x0 is a homeomorphism of 
the space (P, u) onto the space (P, vXo). Thus X erA(P)\^ implies card 9E = card P. 
In the same way we get that ?X e rC(P)\ ^ implies card 3C = card P, as well. 

Let u e T(u). Denote by D(u) the system of all subsets of P closures of which are 
proper subsets of P dense in the space (P, u), i.e. D(u) = {X c: P : uX ^ P, u2X = P}. 
Further, for u er(P) we put F(u) = D(u) u C(u), where C(u) is the system of all 
closed sets in the space (P, u). It is clear that ueue W(P) iff D(u) = 0, hence F(u) = 
= C(u) for each u e °U(P). In futher development we shall deal with properties of the 
mapping F: r(P) -» exp exp P. Cardinality of the set P is supposed at least 5. 

Lemma 6. Let u erA(P)9 v erc(P). Then F(u) non ~ F(v). 
Proof. Admit that there exists such a permutation/ of the set P thatf(F(u)) = 

= F(v). Let x0 £Lx(u)9 xA eLt(u) be arbitrary points, x0 ^ xt. Such points exist 
because of card Lx(u) = 2. Since {x0} £ F(u), {x j £ F(u) andfis a permutation of P, 
we have {f(x0)} $ F(v)9 {f(xt)} 4 F(v). However, the only singleton which does not 
belong to the system F(v) is {av}. This is a contradiction, hence systems F(u)9 F(v) are 
not equivalent. 

Corollary. Let u erA(P)9 v erc(P). Then F(u) # F(v). 

Lemma 7. Let u e %(P)9 v e=r A(P). Then F(u) non * F(v). 
Proof. Admit that there exists a permutation fe $(P) such thatf(F(u)) = F(v). 
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Let x0 e Lx(v). Since [P - (Lx(v) u L2(v))] u {x0} e D(v) cz F(v), there exists a set 
XeF(w) = C(w) such that f(X) = [P - (Lx(v) u L2(v))] u {x0}. Since Lx(v) u 
ui2(u) e C(v) c F(i?) there exists a set Ye C(u) with the property/(F) = Lx(v) u 
u i2(t;). There is X n Ye C(u) (an intersection of an arbitrary system of closed sets 
inaU-spaceisaclosedset),thus/(Xn Y)eF(v).From{x0} =/(X)n/(F)=/(Xn Y) 
and {x0} £ C(v), {x0} $ D(v) (because of Lx(v) u L2(v) # P) we get a contradiction. 
Hence F(w) non ~ F(u). 

Corollary. Let u e *(P), t; eFA(P). Then F(u) * F(v). 

Lemma 8. Lef w e %(P), v e^c(P). Then F(u) non ^ F(t;). 
Proof. Suppose similarly as above that/(F(v)) = F(w) for some/e #(P). Since 

v[P - K , *„}] = P - {60}^2[P - {av, bv}] = t>[/> - {bv}] = P, thusP - {a„ bv} £ 
eF(v), we have that P - {/(a,),/(&„)} = / [ F - {av, bv}]eF(u) = C(w). Further, 
v(T(v) u {*,, ftj) = T(v) u K , ft,} hence the set f(T(v)) u {f(av),f(bv)} is closed 
in the space (P, w). Then f(T(v)) = [P - {f(av),f(bv)}] n [/(F(v))) u {/(ay), /(ft,)}] 
is a closed set in (P, w). From here T(v) =f~lf(T(v)) e F(v). Since card (P - T(v)) = 

;> 3, thus T(v) $ D(v) we have T(v) e C(v), i.e. v(T(v)) = T(v), which is a contradiction. 
Hence F(w) non ^ F(v). 

Corollary. Let u e <%(P), v e$"c(P). Then F(u) 4= F(v). 

Lemma 9. Le<< w e^A(P), v e^A(P), u # v. Then F(u) * F(v). 
Proof. Let ue^A(P), ve$~A(P) be different A-topologies. Then either Lx(u) # 

T£ LX(V) or Li(w) = Lx(v) and L2(w) ^ L2(v). Suppose that Li(w) - Lx(v) ^ 0. Let 
aeLx(u) - Lx(v). Then v{a} = {a}, thus {a} e C(v) <z F(v). On the other hand, 
u{a} = Lx(u) * {a}, u2{a} = L^w) u L2(w) *- P, thus {a} £ C(w) u D(w) = F(w). 
Hence F(w) # F(v) in this case. The same result we get under the assumption Lx(v) — 
- Lx(u) # 0. Now, let Lx(u) = Lx(v), L2(u) # L2(i?). If L2(w) - L2(v) # 0 we choose 
a point aeL2(u) — L2(tO

 a n (l a P°1nt beLx(u). Put X = P - {a, b}. Then wX = 
= Lx(u) u X = P - {a} and w2X = w(P - {a}) = P, thus Xe D(u) c F(u). Similarly 
vX = P - {a}. However t;2X = v(P - {a}) = P - M , thus X£ C(v) u D(») = 
= F(v). Hence F(w) ^ F(v) again. If L2(t;) - L2(w) ̂  0 then we get F(w) ?- F(t?) 
in a similar way as above. 

Lemma 10. Let ue$~c(P), ve$~c(P\ u # v. Then F(w) # F(v). 
Proof. Topologies w eS~c(P), v eS~c(P) are different iff exactly one of the follow

ing cases occurs: 

(1.1) F(w) = T(v), au * av, bu = bv, 
(1.2) T(u) = T(v), au # av, bu # bv, 
(1.3) T(w) « r(t?), ay = a„ fttt # bv, 
(2,1) T(w)^T(t;), « „ = « „ bu~bv, 
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T(u) Ф T(v), au Ф av, b„ = bv, 

T(u) Ф T(v), au Ф av, bu ф bv, 

T(u) Ф T(v), au = av, bu ф bv. 

(2,2) 

(2,3) 

(2,4) 

In cases (1,1), (1,2) there holds u{au} = {au,bu}, u2{au} = {au, bu} ^ P, thus {au}$ 
$F(u), {au}eF(v). If (1,3) occurs we have u{au, bu} = {au, bu}, v{au, bu} = 
= {au9 bu, bv}. Since v2{au, bu} = {au, bu, bv} * P, it holds {au, bu} e F(u), {au,bv} $ 
$F(v). Now, consider these possibilities: F(u) £ T(v), T(v) g T(u), T(u)\\ T(v). If 
T(u) g F(v) then in cases (2,1)-(2,4) there is uF(u) = F(u) u {au} ± T(u) = vF(u) 
and u2F(u) = T(u) u {au, bu} # P for card (P - F(u)) = 3. Thus F(u) $ F(u), 
T(u) e F(v). If F(v) s F(u) then similarly as above uF(v) = F(v), vT(v) = T(v) u 
u K } 7- F(v), v2T(v) = T(v)u{av,bv} *P, hence T(v)eF(u), T(v)$F(v). Let 
F(u) || T(v). In cases (2,1), (2,4) it holds vF(u) = F(u) for av$T(u). However, uF(u> ^ 
# F(u), u2F(u) # P , thus T(u)$F(u), T(u)eF(v). In cases (2,2), (2,3) are au,av 

different. It can be shown, similarly as in cases (1,1), (1,2) that set-systems F(u), F(v) 
are also different. Therefore we get that set-systems F(u), F(v) are distinguished 
in all possible cases (1,1) —(2,4) by a suitable subset of P, q.e.d. 

For the sake of completeness we formulate here the following well-known theorem: 

Lemma 11. Let u, v be U-topologies. Then u # v implies F(u) ^ F(v) and u, v are 
homeomorphic iff F(u) ~ F(v). 

Lemma 12. Let u e 3~(P), v e ̂ (P) be homeomorphic topologies. Then F(u) ~ F(v). 
Proof. Letfbe a homeomorphic mapping of the space (P, u) onto the space (P, v). 

Then C(u) =f-x(C(v)), (it follows e.g. from [2] 16 C.2. and 16 C.4.). Let u e2T(P) - , 
- %(P). Then D(u) # 0. Let Xe D(u) be an arbitrary set, Y =f(X). Then Ye D(v) 
for vY = vf(X) =f(uX) ?-f(P) = P and v2Y = v2f(X) =f(u2X) =f(P) = P, thus 
veJ^P) - W(P). Since Xef~l(Y) we have D(u) af-l(D(vj). Let Xef_1D(v)). 
There exists YeD(v) such that X = f " 1 (Y ) . Since uX = P implies P =f(uX) = 
= tf(X) = vY, uXis a proper subset in P. Further, u2X =f_1f(u2X) =f"1(v2Y) = 
= / " 1 ( - p ) =-P, thus XeD(u). Therefore D(u) ^f-\D{v)) and we get F(u) = 
= f"1(F(v)),i.e. F(u)^F(v). 

Lemma 13. Let ue3~A(P), ve^~A(P) be A-topologies with the property F(u) *, 
^ F(v). Then u, v are homeomorphic. 

Proof. Let ue^~A(P), ve^~A(P) be such A-topologies that F(u) * F(v). Let 
fe 4>(P) be a permutation with F(u) = f(F(v)), x e Lx(v). Since {x} $ C(v), {x} $ D(v), 
i.e. {x} $F(v), it holds {f(x)} $F(u). Since every point aeP with the property 
u{a} T£ {a} belongs to Lt(u), there is f(x)eLl(u), hence Lt(v) c f'^L^u)). Let 
yef'^L^u)). If xeP is a point with x -f(y), then xeLx(u), thus {x}$F(u). 
Then {y} = f~l{f(y)} = f_1{x} £ F(v) hencey *Lx(v). Therefore we get the equality 
Lt(v) = f-H£i(")).Nowletx0e^^ 

112 



Since [P - (Lt (v) u L2(v))] u {x0} e D(v), we have that M = f[P - (Lt(v) u 
u L2(v)] u f{x0} € F(u). Since f(x0) eLt(u) it holds uM # M, u2M = P thus 

f(L2(v)) cz L2(u). Admit thatf(L2(v)) ^ L2(u). There is Lt(u) uf(L2(v)) = f(Lx(v) u 
u L2(v)) e F(u). On the other hand, u(Lt(u) uf(L2(v)) =-= Lt(u) u L2(u) ^ P, 
u2(Lj(u) uf(L2(v))) = u(L,(u) u L2(u)) = Lt(u) u L2(u) = u(Lt(u) uf(L2(v)), thus 
Lx(u) uf(L2(v)) £ C(u) u D(u) = F(u), which is a contradiction. Therefore L2(u) = 
= f(L2(v)), i.e. L2(v) =f~1(L2(u)) . From equalities Lt(v) = , " ' ( L ^ ) ) , i = 1, 2, it 
follows immediately that A-topologies u, v are homeomorphic 

Lemma 14. Let ue^c(P), VG^C(P) be such topologies that F(u) * F(v). Then 
u, v are homeomorphic. 

Proof. Let ue-Tc(P), v e^c(P) be topologies with the required property. There 
exists a permutation fe <P(P) such thatf(F(u)) = F(v). Since xeP, x ^ av implies 
{x} e F(v), it holds f(au) = av. From {au, bu} e C(u) cz F(u) it follows {av,f(bu)} = 
= f{aM, bu} = F(v). Since Xe D(v) implies card X = 3 for card (P - F(v)) = 3, 
there holds {av,f(bu)} e C(u). From here, with respect to v{av} = {av,bv}, we get 
{av,bv} cz v{av,f(bv)} = {av,f(bu)}, hence f(bu) = by. We are going to show that 

f(T(u)) = T(v). Put X =f(F(u)), let ae T(u). There is f(r(u) - {a}) =f(T(u)) -
- {f(a)} = X - {f(a)}, where f(a)eX Further, u(T(u) - {a}) = T(u) - {a}, i.e. 
F(u) — {a}eF(u), hence X— {f(a)}eF(v). Since the system D(v) contains the only 
set P - {av, bv} and au ^ a ^ bu, i.e. aV ^ f(a) ^ by, it holds P - {av, bv} ?-
* X - {f(a)}, hence X - {f(a)} e C(v). It means that v(X - {f(a)}) = X - {f(a)}. 
Since F(u) $ F(u) it holds that X£ F(v) thus vX ?- Xand we have F(v) c X = f ( r (u ) ) 
for av $ X. Futher, T(v) is not a subset of X — {f(a)}, hence f(a) e T(v). Since a was 
an arbitrary point from T(u) we havef(T(u)) cz T(v), thusf(T(u)) = F(v). Therefore 
u, v are homeomorphic. 

4. Main theorem. Now, we summarize results obtained in the preceding paragraph. 
Let A, B be sets, Q be a binary relation on A, a a binary relation on B. We say that the 
mapping cp : A -> B is an embedding of a monorelational system (A, Q) into a mono-
relational system (B, o) if <p is injective and for every pair of elements ae A, be A, 
there holds a Q b ifff(a) o /(b). 

Theorem. Let P be an infinite set. There exists a topological system &~(P) cz ^(P) 
with the property %(P) cz 3~(P) and a mapping F: ZT(P) -* exp exp P such that it holds: 

1° card [(F(P) n s/(P)) - %(P)] = card [JT(P) - (st(P) u *U(P))] = 
= 2card p, card [((T(P) n s/(P)) - W(P))\ £ ] = 
= card [(«T(P) - (j/(P) u ^ (P ) ) ) /^ ] = card P and & e [3T(P) - ^ ( P ) ] / ^ 
implies card :#* g; card P. 

2° F: « "̂(P) -* exp exp P /s an embedding of the monorelational system (&~(P), = ), 
into the monorelational system (exp exp P, ^ ) . 

3° If u is a U-topology on P, then F(u) ii the system of all closed subsets of the space 
(P, u). 
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Proof. Let P be an infinite set. Let symbols 2T(P) and F: ^(P) -+ exp expP have 
the same meaning as in the beginning of the preceding paragraph. By lemma 2, the 
system !F(P) is topological. Assertion 3° is cointained in lemmas 3, 4, 5. Assertion 
2° follows from lemmas 6 to 14 and corollaries of lemmas 6, 7, 8. Assertion 3° is 
an immediate consequence of the definition of the mapping F, q.e.d. 

Let (P, u) be a topological space which is not a U-space, v a (/-modification of the 
topology u (see [1], 6.1). Then the system C(u) of all closed sets of the space (P, u) 
coincides with the system C(v) of all closed sets of the (/-space (P, v) hence using 
subsets of P, closures of which are proper dense subsets of (P, u), we get different set-
systems for u and v with above described properties. 

Let us mention in this connection a problem formulated in [6] p. 328: Is it possible 
to assign to any tech's space (P, u) the system ¥(u) c expP so that u ^ v implies 
^(u) # £f(v) and u, v are homeomorphic iff «9*(w) ~ ,9*(v)7 

From results of pzper [3] there follows the negative answer for card %>(P) > card 
exp exp P if card P = 4 or 5. However, if card P ^ 6 the problem seems to be unsolved 
up to now. Note that it is not difficult to get a negative answer in the case when 
a homeomorphims of topological spaces and the equivalence of corresponding set-
systems are given by the same permutation fe $(P). Such a modification of the men
tioned problem can be expressed in the language of category theory. Related problems 
are treated in [4]. Denote ̂ by $l(P) a category, objects of which are A-spaces (P, u), 
where P is a fixed set of the cardinality at least 4,ue s#(P) and morphisms are homeo-
morphisms. Let S(P) denote a category with objects (P, S), S c expP, where P is 
a fixed set. Morphisms between (P, S) and (P, T) are permutations fe #(P) such that 
XeS impliesf(X) e T. By Um, ((/<--) there will be denoted the forgetful functor from 
S&(P), (®(P)) into the category of sets. 

Proposition 2. Let P be a set, card P = 3, F: 2l(P) -* S(P) such a functor that 
U® • F(f) = Um(f) for each fe mor 2I(P). Then there exists a pair (P, u) e ob A(P), 
(P, v) e ob A(P) so that (P, u) ^ (P, v) and F(P, u) = P(P, v). 

Proof. Let P be a set of the cardinality at least 3. Let ax,a2, a3 be different points. 
Put Q = P - {ax, a2, a3}. Consider A-topologies u, v on the set P such that u{at} = 
= {«i> #2} - v{ai}> u{a2} = {a2, a3} = v{a3}, u{a3} = {al9 a3} = v{at} and wX = 
= vX = X for each X c Q. Denote by S(u), S(v) such set-systems that (P, S(u)) = 
= P(P,u), (P,S(v)) ^F(P,v). Consider an arbitrary set XeS(u). If l e g or 
card (X — Q) = 3 we consider a morphism fe [(P, u), (P, v)]m which satisfies the 
conditions U$(f)\Q = idQ, Um(f)(ax) = ax, U%(f)(a2) = a3, U%(f)(a3) = a2.Then 
X = F(f)(X)eS(v). If card (X - Q) = 1, e.g. X - Q = {a2} then using the homeo-
morphism g : (i\ u) --> (P, v) such that UM(g) (a2) = a2, Um(g) (a3) = at, U^(g)(at) = 
= a3 and U$(g) \Q = id?, we get X = g(X) = F(g)(X). Let card (X - Q) = 2. Let 
ae {ai, a2, a3} be a point which does not belong to X. Considering a morphism 
he[{P9u),(P,v))m such that U^h) \Q = idQ and £ (̂A) (a) = a, U%(h)(b) ~ c, 
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U^(h) (c) — by where {a, A, c} = {at, a2, a3}, we have X = F(A) (X)eS'(i?). Therefore 
S(u) cz 5(v), hence S(w) = S(v), whereas u # v, q.e.d. 

Note that the above proposition and its proof can be modified for the case of 
connected compact A-topologies (for definitions see [2] 20 B.l. and 41 A.3.). 
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