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ON CLOSURE OPERATORS ON M O N O I D S 

JAROMÍR FUCHS, Rožnov 

(Received June 27, 1975) 

INTRODUCTION 

The essential part of gramatical categories theory is based on the idea of Galois 
connection using the induced closure operator. 

A groupoid is a set G with a binary operation. If x, y are elements of G, then we 
denote by xy the element which is obtained by applying the operation to the ordered 
pair (x, y); xy is the product of x, y. An element e e G is called an identity if ex = 
= xe = x for each xeG. Clearly each groupoid has at most one identity. A groupoid 
with an identity and with an associative operation is called a monoid. If xt is an 
element of a groupoid G for i = 1, 2, . . . , n, where n = 0 is an integer, then it is 
possible to form products of these elements in the given order in several ways, e.g. 
(...((xxx2)x3 ... xn-t)xn or xt(x2 ... (x.f_2(x„_1x/I))...). If the operation of G is 
associative, then all these products are equal; we shall denote them by xix2 ... xn. 
If xf = x for i = 1,2,..., n, then we write x" instead of xtx2 ... xn. 

Let Vbe an arbitrary set. We denote by V* the set of all finite sequences of elements 
of V including the empty sequence A; these sequences are called strings. For any 
xe V, we identify x with the string (x)e V*. We define the operation of con­
catenation in V*: If x = (xt, x2,..., xm), y = (yt, y2,..., yn) where m,n = 0 are 
integers and x^y^V for i = l,2, ...,m, j = 1, 2, . . . , n, then we put xy = 
— (xx,x2, ...,xm,y1,y2,...,yn). It is easy to see that A is an identity and that this 
operation is associative. Thus, V* is a monoid, if provided by the operation of 
concentration; this monoid is called the free monoid on V. We have (xl,x2,..., xm) = 
= (x1)(x2)... (xm) = x1x2 ... xm for each integer m = 0 and for arbitrary elements 
xte V (i = 1, 2, ...,m), which implies that each element xe V* is of the form 
x = xxx2 ... xm where m = 0 is an integer and x{ e V for i = 1, 2, . . . , m. We put 
| x | = m and | x | is called the length ofx. Let Vbe a set, L s V* a subset of the free 
monoid V*. Then the ordered pair (V, L) is a called a language. Let (V, L) be a lang­
uage, x e V*, (u, v) e V* x V*. If uxv e L, then we put (x, (u, v))e Q = V* x (V* x V*). 
We say that (u, v) is a context accepting x. The correspondence Q from V* to V* x V* 
induces a Galois connection between 2F* and 2V**V*. The last defines a closure 
operator on 2F*. 
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In [2], necessary and sufficient conditions have been found for obtaining a Ga­
lois connection between 2V* and 2V*XV* by means of some language (V, L). This 
paper solves a similar problem for closure operators. 

At first, we study some basic properties of the closure operators mentioned 
above. It has appeared that this study can be generalized and transferred from 
a free monoid to a general one. In solving the basic problem we start from general 
closure operators on monoids. We are looking for necessary and sufficient condition 
s for a closure operator to be derived from a Galois connection given by means 
of contexts. From the standpoint of linguistic interpretation of these results the 
following question formulated by prof. Novotny, is answered: Which are 
necessary and sufficient conditions for closure operator c on 2V* having the property 
c(M) c(N) £ c(MN) for all M, N £ V*, to be derived from a language (V, L) by 
constructing the Galois connection by means of its contexts. 

1. P R I N C I P A L C L O S U R E O P E R A T O R S 

1.1. Definition. Let G be a set, (2G, £ ) the set of all its subsets partially ordered by 
inclusion, (p a mapping of 2G into 2G. Let the following three conditions be satisfied 
for arbitrary X, Y £ G: 

(A) cp(X) 2 X. 
(B) cp(<p(X)) = <p(X). 
(C) Z £ Y implies <p(X) £= q>(Y). 

Then cp is called a closure operator on 2G. The set cp(X) is called the (p-closure of the 
setX. 

1.2. Definition. Let G be a set, cp be a closure operator on 2G. A set X£ G is 
called (p-closed if (p(X) = X. 

We denote by <PG the set of all closure operators on 2G. 

1.3. Remark. If G is a set then we say a "closure operator on G" instead of a 
"closure operator on 2G", too. 

In this paper we shall study the closures, which can belong to various closure 
operators on a given set. Therefore the distinction, introduced in 1.2, is necessary. 

1.4. Theorem. (See [1], § 23). Let G be a set, <p a closure operator on G. Then the 
following assertions hold: 

(A) G is q>-closed. 
(B) <p is defined, in a unique way, by the system of all (p-closed subsets of G. 
(C) The (p-closure of each subset XofG is the least (p-closed subset ofG including X. 
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1.5. Lemma. Let G be a set. A subset $ o/2G is the system of all (p-closedsubsets for 
a closure operator (piff<P is closed with respect to intersections. 

Proof. See [1], p. 75. 

1.6. Definition. Let G be a monoid,PX,P2, ...,Pn subsets of G where n is a natural 
number. Then we put PtP2 ...Pn = {xtx2 ... xn; xtePi9i = 1, 2, . . . , «}. 

1.7. Definition. Let S and T be a pair of partially ordered sets, a a mapping of S 
into T and x a mapping of T into S. We say that the ordered pair of mappings (<r, x) 
establishes a Galois connection between the partially ordered sets S and T, if the 
following conditions (l)--(4) are satisfied: 

(A) x! ^ x2 implies a(xt) _ a(x2) for arbitrary xt, x2e S. 
(B) yx = y2 implies x(yt) = x(y2) for arbitrary yi, y2 e T. 
(C) x g xa(x) for every element x of S. 
(D) j g OT(J) for every element y of T. 

1.8. Theorem. Iff/ie ordered pair of mappings (a, x) establishes a Galois connection 
between the partially ordered sets S and T, then xa is a closure operator on S, and ax is 
a closure operator on T. 

Proof. See [1], Theorem 16. 

1.9. Remark. Let G be a monoid, L c G its subset. For X c G we put <rL(X) = 
= {(w, v); (w, v)eGxG, uxv e L for each xeX}. For F g GxG we put tL(Y) = 
= {x; x G G, wxv e L for each (w, v) e Y}. Then the ordered pair of mappings (<rL, xL) 
is a Galois connection between 2G and 2GXG 

Indeed, if Xx, X2 e 2G are arbitrary sets such that Xt £ X2, and (w, v) e aL(X2)9 

then wxv e L for each x e X2. However, Xj s X2 implies uxv e L for each x e Xt. 
Thus, (w, v) e Oi/Xi); we obtain aL(Xx) 3 <xL(X2). Further, let Xe 2G be an arbitrary 
set, x e Xits element. Then uxv e L for each (w, v) e aL(X), which implies x e xL(aL(X)). 
Therefore we have *L(aL(X)) 2 X. Thus, we have verified the validity of (A) and (C) 
from 1.7. Similarly, we can prove that (B) and (D) holds true, too. Thus, (aL,xL) 
establishes a Galois connection between partially ordered sets (2G, £) and (2GxG, £) . 

1.10. Corollary. Let G be a monoid, L £ G its subset, (aL, xL) a Galois connection 
between 2G and 2GXG We put rL(aL(X)) = cpL(X) for arbitrary Xc G. Then q>L is 
a closure operator on G. 

1.11. Definition. Let G be a monoid, q> a closure operator on G. q> is called principal, 
if there exists L £ G with the property (p = <pL. 

We denote by #Gp the set of all principal closure operators on G. 

1.12. Theorem. Let G be a monoid, L £ G iYs subset, <pL a principal closure operator 
on G. Then L is q>L-closed. 
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Proof. By 1.1. (A) we obtain L c <pL(L). 
Let us have x e cpL(L). Then uxveL for each (u, v) e aL(L). As (e, e) e aL(L), we 

have x = exe e L which implies q>L(L) =" L. 

1.13. Theorem. Let G be a monoid, L <= G #s sufoeL Then the following conditions 
are equivalent: 

(i) cpL(X) = Gf0r each X c G. 
(ii) L = G. 

Proof. Let us have L = G. Then <xL(X) = GxG for each Xs= G and further 
xL(Y) = G for each Y c G x G. Thus, cpL(X) = G for each X <= G. 

Let us have <pL(X) = G for each X .= G. If L =j= G then, according to 1.12, we 
have <pL(L) = L ¥= G, which is a contradiction. Thus L = G. 

1.14. Theorem. Let G be a monoid, L <= G its subset. Let M, N _= G be arbitrary 
sets. Then <pL(M) q>L(N) <= cpL(MN). 

Proof. Let x e q>L(M), y e <pL(N), (u, v) e aL(MN). If m e M a n d n e Nare arbitrary 
elements, then m« 6 MN. It yields umnv e L. Thus um(nv) e L for each me M. Hence 
(u,nv)eaL(M); we have uxnveL seeing that x e TL(<TL(M)). It implies (ux)nveL 
for each n e N. We have proved that (ux, v) e aL(N). Since j ; € rL(aL(N)), we obtain 
uxyv e L. It follows xy e TL(erL(MN)) = <PL(MN). 

1.15. Example. Let (V, L) be a language where V = {a} and L = {a2, a3}. We put 
M = {a3}, N = {A, a}. 

Evidently, M, N s V*. We have <rL(M) = crL({a3}) = {(A, A)}, cpL(M) = 
= rL({(A, A)}) = {a2, a3}. Further, <xL(N) = <rL({A, a}) = {(A, a2), (a, a), (a2, A)}, 
<PL(N) = TL({(/1, a2), (a, a), (a2, A)}) = {A, a}. Thus, <pL(M) cpL(N) = {a2, a3} x 
x {A, a} = {a2, a3, a4}. Clearly, MN = {a3, a4}. It follows that <rL(MN) = 
= <rL({a3,a4}) = 0, <pL(MN) = rL(0) = V*, which implies cpL(M)q>L(N) = 
= {a2, a3, a4} c V* = <pL(MN). 

2. A D M I S S I B L E C L O S U R E O P E R A T O R S 

2.1. Definition. Let G be a monoid, cp a closure operator on G. We say that cp is 
admissible if <p(M) (p(N) c q>(MN) for arbitrary M, N £ G. 

We denote by 4>Ga the set of all admissible closure operators on G. 

2.2. Remark. By 1.14, we see that every principal closure operator is admissible 
on a monoid. 

2.3. Theorem. Let G be a monoid. Let elements a, x in G exist such that a 4= e and 
ax =t= a. 

Then #Ga c # G . 
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Proof. We put 99 = {X; X <=. G, e £ X}. If 0 4= 9M c 41^ u G then f| 6 9l„ u G. 
.469)2 

Thus, by 1.4.(C), $1^ u G is a system of all <p-closed subsets from G, where cp is 
a suitable closure operator on G. According to 1.4.(B), the closure operator cp is 
defined by this system. 

By 1.4.(C) we have, for every M c G, that <p(M) = M when e ^ M, and <p(M) = G 
when e e M. 

Let M = {a}, N = {e}. Then cp(M) = {a}, <p(N) = G, MN = {a}, <p(MN) = {«}. 
Thus, <p(M) cp(N) = {a} G $ {a} = <p(MN). 

2.4. Theorem. There exists an admissible closure operator not principal on a monoid. 

Proof. Let V be a set, ae V. We put ®„ = {0, {A}, {a}, {A, a}, V*}. 
It is easy to see that S^ is a system of all <p-closed sets, where cp is a suitable closure 
operator. This system defines cp. 

Let M c V* be a set. 
(a) Let us have M = 0. Then <p(M) cp(N) = Mcp(N) = 0 = cp(MN) for arbitrary 

Nc V*. 
(b) Let us have 0 * M s V*. 
Let us suppose that M = {A} and N _= V*. Then <p(M) <p(N) = Mcp(N) = <K-V) = 

= <p({A} N) = <p(MN) for an arbitrary N c V*. 
Let us suppose that M 4= {A} and N £ V*. If N = 0 or = {A}, then we have 

cp(M) cp(N) = <p(M) N = <p(MN). If 0 # N * {A}9 then the set MN c V* contains 
a string having the length greater than 1. Thus, by 1.4.(C), 

cp(MN) = V* 2 <KM) <p(N). 

We have proved <p(M) <p(N) c cp(MN) for any M, N <=. V*. Therefore <p is an 
admissible closure operator on V*. 

Let us suppose that cp is principal; we put cp — <pL for a suitable L c V*. By 1.11, 

(1) Let L = 0 or = {A} or = {a}. 
We obtain <rL({A, a}) = 0 and cpL({A, a}) = T L (0 ) = V* * {A, a} = <p({A, a}) 
which is a contradiction. 

(2) Let us have L = {A, a}. 
Then GL({a}) = {(A, A)}, <pL({a}) = tL({(A, A)}) = {A, a} * {a} = ?({«}), which 
is a contradiction. 

(3) Let us have L = V*. 
Byl.ll,<pL(X) = V* holds for each Xc V*. It follows that <pL(X) = V* * X = <p(X) 
for l e ^ - {V*}, which is a contradiction. 

We have proved that cp is not principal. 

2.5. Corollary. Let V #= 0 be a set. 
Then #F* c 3V* c 4v*. 
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Proof. 1. Let us have a e V*9 a 4= A. Then ax 4= a for each x e V*. Thus, accord­
ing to 2.3, we have <Pv*a c <PF*. 

2. Vis not empty. Thus, by proof of 2.4, {0, {A}9 {A9 a}9 {a}9 V*} is the system of 
all <p-closed subsets from V*, where q> is an admissible closure operator not principal 
on V*. Therefore, by 2.2, the second part of our assertion holds true, too. 

3. C H A R A C T E R I Z A T I O N O F P R I N C I P A L 

C L O S U R E O P E R A T O R S 

3.1. Lemma. Let G be a monoid, L f= G its subset. Let there exist q>L-closed sets 
X9Y^G such that Y $ X. Then there exist q)L-closed Sets U, V := G, such that 
UXV^Land UYV $ L. 

Proof. There exist (u0, v0) e <rL(X) and y0 e Y, such that u0j0v0 $L. Namely, if 
uyv 6 L for each (u, v) e aL(X) and each y e Y, then Y <= TL(<rL(X)) = q>L(X) = X, 
which is a contradiction. 

We put U = <pL({u0}), V = <PL({̂ o})- Then we have u0y0^o e UYV and u0y0^o $ £• 
Thus, UYV £ L. 

On the contrary, u0xv0 e L holds for each x e X. We obtain (e9 xv0) e <rL({u0}) for 
each xeX. Then we have uxv0eL for each xeX and each u e TL(<rL({u0}) = 
= <pL({u0}) = U. It implies (ux, e) e oL({v0}) for each u e U and each xeX. Thus, 
uxveL for each ueU, xeX, v e TL(<rL({v0})) = <pL({v0}) = V, which implies 
UXVSL. 

3.2. Definition. Let G be a monoid, L <= G its subset, q> a closure operator on G. 
We say that L is a disjunctive set for q> if, for arbitrary <p-closed sets X, Y £ G with 
the property Y<£ X, there exist <p-closed sets U, F g G, such that UXVi= L and 
UYV$L. 

3.3. Theorem. There exists a disjunctive closed set for any principal closure operator 
on a monoid. 

Proof. It follows from 1. and 3.1. 

3.4. Theorem. Let G be a monoid, q> an admissible closure operator on G. If there 
exists a q>-closed set disjunctive for q>9 then q> is principal. 

Proof. Let X<= G be an arbitrary set. 
(A) Let us suppose that y e <pL(X) - <p(X). 

Clearly, <p(X) and q>({y}) are <p-closed sets with the properties y e q>({y}) and y $ q>(X). 
Thus, <K{y}) $ <PW. Since L is a disjunctive closed set for q>, there exist ^-closed 
U, V £ G such that Uq>(X) V <= L and Uq>({y}) V $ L. Evidently, U * 0 # V. 
Further, there exist u0 e U, y0 e <p({y}) and v0 e V such that uoyo^o $ L. But u0xv0eL 
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for each x G X, thus, (w0, v0) e aL(X). Moreover, y G (pL(X) = TL(trL(X)) which 
implies u0yv0 G L. It follows u0y0v0 e <K{w0}) <K{y}) <K W ) £ <K{"oy*>o}) £ £ 
seeing that <p is an admissible closure operator and L is a ^-closed set. Thus we have 
a contradiction. Hence, we have <pL(X) =" <p(X). 

(B) Let us suppose that y c= <p(X) — <pL(X). 
Then there exists an ordered pair (w0, v0) G <rL(X), such that u0yv0$L. Indeed, from 
the fact that uyv e L for each (w, v) e aL(X) it follows that y e TL(<rL(X)) = cpL(X)> 
which is a contradiction. It implies u0jv0 G <p({w0} <p(X) <p({t?0}) £ <p({u0} X{v0})> 
because cp is an admissible closure operator. The fact that (u09v0)eaL(X) implies 
{u0} X{v0} <= L. It follows <p({u0} X{v0}) --- <p(L) = L seeing that L is cp-closed. 
Thus, we obtain u0yv0 e L9 which is a contradiction. Therefore we have <p(X) <= <pL(X)-

We have proved <p(X) = (pL(X) for each X <= G. 

3.5. Main Theorem. Let Gbea monoid, (p a closure operator on G. Then the following 
assertions are equivalent: 

(A) cp is principal. 
(B) cp is admissible and there exists a disjunctive <p-closed subset in G. 

Proof. It follows from 2.2, 3.3 and 3.4. 

3.6. Example. Let V* be a free monoid over V = {a}. We put sf^ = 
= {0, {A}9 {a}9 V*}. It is easy to see that s/^ is a system closed with respect to inter­
sections, which defines a closure operator W on V*. 
1. We put L = {a}. 
Let X, Yest^ be sets with the property Y $ X. 

(a) Let us have X = 0. Then Y = {A} or = {a} or = V*. We put U = {a} = W. 
Then we obtain UXW = 0 _= L and UYW = {a2} in the first case, = {a3} in the 
second case, and = {a2} V* in the third. None of these sets is a subset of L. 

(b) Let us have X = {A}. Then Y = {a} or = V*. If U = {A}, W = {a} then 
UXW = {/l}{zl}{a} = {a} = L. If Y = {a} then UYV = {-4}{«}{a} = {a2} $ L = 
= {a}. At last, if Y = V* then UYV = {A} V*{a} = V* - {A} =f= {a} = L. 

(c) Let us have X = {a}. Then Y = V* or = {A}. If U = {A} and W = {/1}> 
then UXW = {^}{a}{-4} = {a} = L. Further, UYW = {A} V*{A} = V* or = 
= {A}{A}{v4} = {A}. It follows that UYW$ {a} = L. 

We have proved that to each ^-closed sets X, Y £ V* with the property Y $ X 
there exist !F-closed sets U, W s V* such that UXW c and UYW $ L. Thus 
L = {a} is a disjunctive set for W. 

Let i* <= V* be a !F-closed set, i.e. R e s/^. 

(i) LetushavcK = 0.Then<rL(0) = V*x V*,TL(V*x V*) =0,<pL(0) = TL(<XL(0)) = 
= 0. 

(ii) Let us have R = {/l}. Then <TL({^1}) = {(A, a), (a9 A)}9 cpL({A}) = TL({(/1, a)9 

(a9A)}) = {A}. 
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(hi) Let us have R = {a}. Then aL({a}) = {(A, A)}, cpL({a}) = TL({(A, A)}) = {a}. 
(iv) Let us have R = V*. Then <rL(V*) = 0, <pL(V*) = T L (0) = V*. 

We have proved that <pL(R) e ja^,. 
Let Z e V* be a set with the property Z<£ ja^. By 1.4.(D) we have ¥(Z) = V*. 

Clearly it follows that trL(Z) = 0 and cpL(Z) = T L (0) = V*. 
From this analysis it follows that ¥ = cpL. Simultaneously, we have proved that ¥ 

is obtained by constructing the Galois connection by means of contexts of the langu­
age (V,L), where L = {a} is a disjunctive set for!F. 
2. We put L = {A}. 

Let us denote £> = {UXW; X = {a}, U, We stf^}. It is easy to see that $ = 
= {0, {a}9 {a2}, {a3}, {V* - {a, A}, {V* - {A}}}, thus UXW$ L for any not 
empty ^-closed sets U, W .= V*. It follows that UXW £ L implies either U = 0 or 
W = 0. Thus UYW = 0 _= L for each Y c V*. Therefore L is not a disjunctive set 
for*P. 

We have <rL({a}) = 0 and (pL({a}) = T L (0) = V* 4= {a} = ¥({a}). Thus, we 
obtain W + cpL. 

We have proved thatL = {A} is not a disjunctive set for ¥, and this closure operator 
on V* cannot be obtained by constructing the Galois connection by means of contexts 
of the corresponding language (V,L). 
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