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ON REPRESENTATIONS OF NUMBERS BY SUMS
OF SQUARES AND QUADRATIC FIELDS

I. SH. SLAVUTSKY, Leningrad
(Received August 16, 1976)

This article is concerned with the well-known arithmetical function —the number
of representations of naturals by sums of an odd number of integer squares. The
famous results are summarized and some new arithmetical properties of this function,
its connections with other number —theoretic functions, are proved.

1°. Let be N, Z, Q, R and C correspondingly the set of natural, integer, rational,
real and complex numbers, a prime p >23,s=20+1,0€eN,

1.1 rm= Y 1

x12+ . +xs2=n
is the number of representations of a number n € N by the sums of squares of the
numbers x; € Z, i = 1,...,s.

The classic investigations of the function r(n) (cf. [14] for historical remarks on
this topic) was continued by Lomadze ([14] —[16]). Following to the results of Hardy
and Estermann with the help of only elements of the theory of the functions of complex
variables, Lomadze proved Mordell’s identity (simultaneously for even and odd
numbers s > 8) in the form

(12) 85017) =1+ 3 o) 8" + 3 a(k) 950 7) 9301 7) 82(0 | ),
n=1 k=1
where the theta-functions

(z 1) = i w(—- 1)" B exp (2miz),

m=—

3,(z|7) = i B exp (2m + 1) iz),

m= — oo
oo}

9(zlt)= Y B™ exp(2miz),

m= — o0

so that

01D =1+ 3 (),
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and § = exp (int), t = x + iy, x, ye R, y > 0. The number e € N is determined uni-
quely from the condition (for s > 8)

8e < s = 8(e + 1)

The arithmetical properties of the constants a(k) are considered below and the main
member g,(n), containing the singular series, in the formulae for the quantity of
representations

(1.3) rin) = oyn) + o4n)

has the form
220‘+ 10_! na—i-

na(zza _ l) | Bz,,' XZ(n)Ta(n) g(a’ 'lt),

os(n) =

where n = f2t = 2'u, t is squarefree number, (2,u) = 1, n = (=1)%, v = ng™°, if
(v, ) = 1 and q is a prime odd number, (%) — symbol of Kronecker with (—Z—) =0
for(d,u) =56 > 1,

Zom= 3, (L)o,

v=0,2v\ U

t\ _, — gy (1-20) 231
no=T[1- (&)ema-a 1 (-a"%)

af q aln aln,2 ta
LIAYIRE

(1.4) x 1 [1+ 3L/ 07377,

qin,2|a nv —
1=
\ (q)q

and as usual the empty product is supposed to be equal to one,

a

—2q 221
1F A4 +402 2172920727, y21,24y,
20 L
(195 pmy= |l FATAC-2T2T05 =3 (med4), 21y,
. o
1FA4+402°-1-27"92""2"2" yu=5(mod8),2|y,
+2 ‘y
TFATF A2 -1-292""2"2,  yu=1(mod8),2]|y,

where 4 = (2° — 2! 7)1 and the upper signs are taken when ¢ = 1; 2 and the lower
ones when ¢ = 3; 0 (mod 4).

Further, starting from the famous investigations of Hardy ([5], [6]), Suetuna ([24])
and Bateman ([2]), we conclude that the representation (1.3) is true for every odd s =
2 3, if we assume 6,(n) = 0 for s = 3,5, 7.

30



Let below
_om, nt = 1(mod 4),
" \4nt,  nt=2;3(mod 4),

B, be Bernoulli numbers, satisfying symbolic identity B, + k = (B + Dk =23...,
k

By, =1, B(x) = Z (%) B,x*~ be Bernoulli polynomials (for the identity character
i=0

Id| d u
HONED R

B,(x)=F"" 1élx(u) B, (7})

are supposed) and

be generalized Bernoulli numbers belonging to a primitive residue character x
modulo #. Then in the force

PL(o,nt) = [1 - (;) 2“’] Z(o,d), Z(o,d)= il (%) v,

and -
Z(o,d) = (_1)[3]“ __(2my

e Ba y
2! dt ()

where x(x) = (%) is a symbol of Kronecker ([13]), we obtain finally

97, 220 201 2° - x(2)
08 o) = (-nlzl* - _fl) T g BTG,

wodb2 | 4,

0,2 44

Here as usual [Z] is the integral part of Z. If we propose that n is squarefree so that

all representations are proper: in (1.1) (x, ..., X;) = 1; then in this case T,(n) = 1,
as it follows from (1.4), and therefore by (1.6) we obtain

220‘ 20 x(z)

(220’ _ 1) leal : 2a(20—1)

with

an el =-nlET 12(m) BL(1).
Since equation (1.3) for s = 3, 5, 7 is transformed to r((n) = o,(n) we obtain from
(1.7) (or from corresponding results of Bateman, Suetuna or Lomadze with s = 3)
Gauss formulae for the number of a proper representations of naturals by the sum
of three square for s = 3 (note that for n = 7 (mod 8) the vanishing of r(n) takes place
because of x,(n) = 0) and Smith —Minkowski formulas for s = 5 and 7.
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2°. As it is known, Gauss determined the connections between the number r(n) of
the representations. of natural n by the sum of three square and the class number
H(df?) of binary quadratic forms with the determinant df? which is some multiple
of this natural. The investigations in this way were continued for squarefree naturals
by Kiselev ([9]) and Kiselev, Slavutsky ([10], [11]). More general connections of this
kind are given below and new facts about the arithmetical structure of the remainder
term in (1.3) are received.

Lemma 1. ([10], [11]). If H(df?) is the class number of equivalent binary quadratic
forms (positive for d < 0) of the type ax* + bxy + cy? where (a, b, ¢) = 1, with the
determinant df?, then

en @)Y= o1 () 5] 22 (moa
D alf q m

q
ford=mnp>0,n21, ymodn;
d\1]B,::(x)
2. H(df?) = — 1-(— )= |02l !
2 @)= =11 = (5) 5] 222 tmoa )
ford= —np < —4,n = 1, y mod n;
U = i d\ 17 B,.(%)
2.3 H(df?) =Yl = T, 1—(——)— Z2m) (mod p
(2.3) (df*) 7 m,lﬂ_ 7)q| m (mod p’)

ford > 0, p t df, y mod d;

(2.4 H(df?) U<f>i = —xTa ]| = <—d->-1_ M(mod )
alfolL q/ 9 ] 2m

ford> 0,p ¥d,(p,fo) = 1,f = p%y, ceN, y mod d;

@.5) [1 - (%)] H(df?) = —fU[l - (_) q]_’%’i‘l(mod )
ford < —4,p ¥ d, ymod|d|,

where m = 2 ; 1 p'™Y, x(u) is coincide with the corresponding symbol of Kronecker,

x = 1 for N(E,) = —1 and » = 2 for N(E,) = 1, N(E,) is the norm of the main unit
E, = T, + U, \/d in the quadratic field Q(\/d), T, U, is the least positive solution
of the equation T* — dU? = +1 in integers or halfintegers, with the same sup-
positions Ty 1, Uy, is the solution of T? — df*U* = %1, Eyy, = Ty, +

pl 1
+ Uy fd = Efpys Egy = Ty + Oy fVd = E([f) 1( )

Remark. The properties of the generalized Bernoulli numbers B,(x) introduced by
Leopoldt ([13]) were considered by many of the authors ([3], [23] etc.). In particular,
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k(X)

it is known that —22Z is p-integer number for the character y mod #, (p, #) = 1

and # > 1. At last, going to the p-adic limit in (2.1) — (2.5) we obtain the local analog
of the formulas of Dirichlet for the class number of quadratic fields (in the narrow
sense) in terms of p-adic #-functions of Kubota —Leopoldt ([12], [8), [7], [19], [22]).

Lemma 2. If ee N is fixed by the prime p > 7 so that 8¢ <p < 8(e + 1), k S e,
k €N, then the rationals o, (k) determined by the identity (1.2) satisfy the condition

a,(k) = 0 (mod p).
First of all from (1.6) = g,(n) € Q, then also §,(n) € Q. Further
957°(0 1) 98%(0| 1) 930 | 7) =
=(1+28+2B8* + . %1 =28 + 2p* — ..)*%(1 + B* + ...)*2%p"

(2.6) i hi(s, k) **',

where h(s, k)e Z for i,seN U {0} and s > 8, 1 < k < % ho(s, k) = 2%, so that

the identity (1.2) may be written as

3 rm 8 = Temf + T o) 3 his P

or
@7 "er,(n) g ="§IQ,(n) g +n§:jlﬂ"élas(k) i) + =i+1ﬁ";21a,(k) o5, ).

Therefore from the three-cornered system

(2.8) Y oy(k) hyoi(s, k) = 8,(n), n=1,..,e
k=1

about a (k) we conclude that a(k) € Q.
Let further s = 26 + 1 = p be a prime. Since r,(n) = 0 (mod p), then the con-
gruence

29 0,(n) = 0 (mod p)

is the consequence of g,(n) = 0 (mod p), as this follows from (1.3).
To prove the lemma it is sufficient to verify the congruence (2.9) for n < e only,
where 8¢ < p < 8(e + 1).
p—1
7

Indeed, as n < p, then g?~2 =£ | (mod p) for ¢ [ n. Further so ( :’; ) ('Zlv ) in this

First of all we turn to (1.4) and show that T,(n) is p-adic integer for o =
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case when 2| a, ¢°| n, but ¢°*' }n, then every multiplier from the denominator in
(1.4) is found to be equal to that of the first product.
1

pP— _ - — _ :I:v=£_
3 , 1 =20 (p—2), so 2 _(p)’

2'~29 = 2 (mod p) and the upper signs in (1.5) are corresponded to the cases
P = 3; 5 (mod 8) but the lower ones to p = 1; 7 (mod 8). Then from (1.5) in the case
y 2 1, 2 fy we obtain

Now consider x,(n). Here o =

y—1
_ 1 — 21—2a F 2-e + 2—0(2 _ 21-—2,) ) 2(1—211) —5—
XZ(n) h 1 =212 =
4 —e -c -a oy A(-200171
(2.10) _ (12 ){1 2 :F12 j'.(},iz ).2 2 }

2
and by making use of the congruences1 + 2° =1 + (—21,—) =1- (%) = 0 (mod p)

finally we have
x2(n) = 0 (mod p).
By analogy in the case 2 |y we get

x2(n) = 0(mod p),  nu = 3 (mod 4),

2 y+2

xa(n)=F [1 + (;—) - 2] .22 (mod p), nu=>5(mod8),

2 r+2

x2(n) = = [1 - (—I—)—> - ] 2 2 (mod p), nu = 1(mod 8).

Hence, always y,(n) = 0 (mod p), except the cases nu = 5 (mod 8), p = 3; 5 (mod 8),
2 | y or nu =1 (mod 8), p = 1; 7 (mod 8), 2 | y. However in these exceptional cases
from 2|y = (12“_) = (12‘.) so that 2° = (%) (mod p) implies 2° — y(2) = 0
(mod p), where y is the character with the conductor z. Therefore in view (2.10) and
the similar representations for y,(r) in the other cases we observe that the multiplier
of the numerator of (1.6), which is divided by p, is equal to 2° 4+ 1 and

x2(n) (2 = x(2))
2% 1
is p-adic integer.
Since the conductor f(x) of the character y is not exceed 4n and n < e < -éi

bl

then f(x) < p and consequently B (x) is the p-adic integer. At last, the theorem of
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Staudt implies Bj,! = 0 (mod p). So g,(n) = 0(mod p) provided n < % and then

the congruence (2.9) is true for any prime p.

To complete the demonstration of lemma we turn to the system (2.8), wheres = p
and as we had proved 6,(n) = 0 (mod p) for n =1, ..., e, the numbers hy(p, k) =
= 2* h,_(p, k) € Z. Consecutively surveying the system (n = 1, ..., e) we convince
that a,(k) = 0 (mod p) for k = 1, ..., e and a prime p > 7 (note that the remainder
term in (1.3) for p < 7 equals zero).

Remark. For the numbers 6,(1), and consequently a,(1), there may be received the
evident expression with the help of (1.3) and (1.6). For example, if p = 5 (mod 8),
then r,(1) = 2p and ¢ = 2 (mod 4) imply

Pt
R ARVEREY))
|B,_y1.2°7"

or as 0,(1) = 2*a,(1) finally ,
p-3
a,(1) = 2‘3<p — (2= —1) 1832, |.BL-_1)
2
p-3
Furtheras2 2 1 (mod p)and p | B,_, | = 1 (mod p), then from the last equality

it follows the equivalent of famous Ankeny— Artin—Chowla hypothesis ([1], [10],
[17], [20], [21]) in the form

B,—; +6,(1)
2

2.11) p 1 #0(mod p) < —2= 8“’( ) —2= 2 1 (mod p).

T2

Analogous calculations for p = 1 (mod 8) lead to (2.11), too, so that (2.11) is true
generally for any prime p = 1 (mod 4).

3°, Starting from above results it can be taken the arithmetical interpretation of the
right parts of the congruences (2.1)—(2.5). Namely, the series of the congruences
connecting o(n) and H(df?) for the discriminant df? (any multiple of #), and hence
r(n) and H(df?), may be derived from (1.6) and (2.1)—(2.5), if the quantities J(r)
are calculated. Here o must be chosen as one of the forms m, m + 1, 2m, 2m + 1,

where ~1 leN, pis an odd prime.

_P=

2

Let for example p = 5 (mod 8), n = 1 (mod 8) be a squarefree integer and hence

f=1,n=1t, T,(n) = 1, then choosing ¢ = m, so that ¢ = 2 (mod 4), n = 1 u=n,
X2 =1, a=0, x,(n) = (1 +27°) (1 — 2!79), we obtain

H(np) U —g—x’I} 05041 p|B;, | (mod p") (n,p)=1
- = .. 1 20 ) ’ =1,
P33 -y
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if we take into account that

2(2°° ' -1
0204'1(") = -_—( IBz |“—)"BU(X)

and

U B,
p"" = —u«T, ~—C(;Q(mod p'), x mod n,

as it follows from (1.7) and (2.1). So

H(np)

PB-1)p-1 = p — 1 (mod p')
and hence in this case

‘ P|Bp-1)p-1| =1 — p(mod p')
then finally

U 2 1
(€R)) H(np) 'pT—lT = -3 %T; 17 020+1(n) (mod p').

Further, if we are restricted by the calculations of Lomadze who found é(n) for
s < 31, then it may be obtained 43 congruences for ryn) with the prime moduli
P < 31 (and some of these powers for p = 3, 5). For squarefree integers n we indicate
some examples.

ILWesetp=3,1=2 06=3 n=1(mod4) so that s=7, n = —1, u =n.
Since in this case qu = 3 (mod 4) and y(x) = (:-31) then (1.5), (1.7) and (2.1)
By(x) _ 1 ry(n)

3 4

imply 7

, so that finally from

H(12n)%1 = —2T, 333(") (mod 9),(3,n) = 1,
we obtain

G2) B(12n) Y2 = 4T, 11(7-”-)-(mod 9),(3,n) = 1,n = 1 (mod 4).

Il Forp=5,l= 1,6 = 3,n = 2(mod 4),thatiss = 7,5 = —landn =t = 24,
(1.5), (1.7) and (2.2) with x(x) = (__xﬂ) imply .

(3.3) H(—20n) = -ﬁg—n)—(mod 5 (15=1 n=2(mod4).

L. Let p=5,1=1,06=2,n =1(mod8), so that s =5, n =1, n = u and
x(x) = (—;—) . Then from (3.1), in particular, we obtain

(34)  H(5n)U, = xT, ’5§”) (modS), (n,5) =1, n=1(modS8).
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IV.Let p=17, I=1, 6 =9, n=2(mod4), so that n =2u, n = —1 and
x(x) = ( —4n ) Calculating ¢,9(7) and turning to (2.2) we conclude that

3.5 H(—68n) = 12¢,4(n) (mod 17), (n,17) = 1, n = 2 (mod 4),
where in this case
835216
619(") 43 867 Z (xl - 3x1x2 -

124, +x“1—n

983 744 8 6,2 4.4
3202 291 x13+x;;i~x31=n(xl 28xyx3 + 35x1x3),

as it shows the calculations ([14]).
V.Letp=3l,l=1,6=15,n=1(mod4),sothats =31, n = -1, t=u=n

and y(x) = ( ‘:" ) Then (1.5), (1.7) and (2.1) imply

(3.6) H(124n)U, = 4T, Q“( )(m d31), (n31)=1, n=1(mod4).

VL. At last, if p = 11,/ = 1,6 = 5, n = 7(mod 8) so that s = 11, = —1 and
1(x) = (_Tn) , then we obtain analogously )

(3.7 H(n)U, = 7T '“(”) (mod 11), (n,11) =1, = 7 (mod 8),
where
176
6.:(n) = 1 — 3x 0
11( ) 31 x13+x1§x;’=n( 1x2)

in the examined case.

In the congruences (3.1)—(3.7), as it is known H(d) = 2h(d) provided N(E,) = +1
ford > 0and H(d) = h(d) in other cases, so that H(d) coincides with the class number
of quadratic field (in the narrow sense). Here h(d) is the class number of quadratic
field Q(\/d).

4°. So far as

(4.1) Bk(X) — Bk+i(X) (mod pl)

k k+i

provided (p — 1) p'~ ' | i, k > I, p ¥ (), f(x) is the conductor of the character y
([10], [7D), then (1.6) implies the congruences connecting g,) (and consequently
r{(n) in those cases when J,(n) was calculated) for the various values s = i + k and
p—1 Pt p—1

the fixed value of a number n. The natural s is chosen equal to 3 —

X
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xp'"'+ 1,(p — Dp'~tand(p — 1) p'~* + 1,/eN. So, for example, if  is square-
free, then (1.7), (1.5) and (4.1) imply

r7§n) = _;_ rlllgl_‘(m()d 3) 3)n, n= 7(mod 8),
rs(n) = 2 o45(n) 13( ) (mod 5), 5kn, n = 7(mod 8),
£5 -3

r7§n) = —4 rlg(n) (mod9), 3kn, n=7(mod3)

In last case d,9(n) = 0 (mod 81) (the value of §,4(n) was given in 3°, case IV).

5°. We fix now s = 20 + 1| and consider (in the previous notations) connections
between g,(z) and o (¢f?), t is squarefree. As d and consequently x(x), «, B,(x) are
fully determinated by ¢ and o, so (1.6) implies

(5.1 o) = o) /T Dy,
1201
If (2,n) =1 in particular, then f2 = 1 (mod 8) and ¢t = n = u (mod 8), so that
x2(n) = x,(¢), and hence from (5.1) it follows
(5.2 0i(n) = oy(t) f2° 7' T,(n), 2 } n.
And if n = 2%%, ¢t = u is squarefree, f = 2%, then T,(n) = 1 and the equality (5.1)
implies
(53 o) = )20~ L2

The correspondences (5.1)—(5.3) contained the results which belong to different
authors and had received as elementaly-combinatory methods as analytic ones. So,
in particular, if n = 4¢, ¢ is squarefree, for s = 5, 7 we obtain the theorems of Cohen
([4]). Namely, the equality (5.3) implies

rodr) = 82200 ()

x2(2)
so that from (1.5) finally
5rs(1), t = 2; 3 (mod 4),
9rs(t), t =1 (mod 8),

—7— rs(t), t=5 (mod 8),

and

ri(d) = 32 ""(‘,? (1),
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so that

47r,(1), t = 1;2 (mod 4),
33r,(1), t = 3 (mod 8),
mH=1, 1;(7)

5 r4(t), t = 7 (mod 8).
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