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THE FIVE-GROUP THEOREM 

JITKA ŠEVEČKOVÁ,Brno 
(Received June 18, 1976) 

O. Boruvka in [1] proved a theorem called "the special five-group theorem" 
(25.4). This theorem is a generalization of Zassenhaus lemma for groups (e.g. [2] 
III 4.3). In Zassenhaus lemma the existence of an isomorphism of factors on certain 
subgroups is given, in the mentioned five-group theorem there is shown that the above 
isomorphism is a consequence of the following set-theoretic relation between these 
factor groups: Every co-set of one factor group meets exactly one co-set of the other 
factor group. The theorem 25.4 [1] is then stronger than that of Zassenhaus. 

In the present note we give a theorem concerning product of congruences in an 
O-group which has 25.4 [1] as its corollary. Our theorem proceeds from 3.5.5 [3], 
reproduces it partly (see our assertions 1, 2, 3 and 5) and moreover, proves 4 and 6. 
In contrast to 3.5.5 [3], our proof is not based on Zassenhaus lemma; quite conversely, 
that lemma follows from our theorem. 

As for concepts concerning partitions and congruences "in" see [3, 4]. The parti" 
Hon in & set © is a family A of nonempty pairwise disjoint subsets of ©. Union UA 
of these subsets is called a domain of A and every element A1 e A is said to be a block 
of A and will be denoted by A1 = A(x) provided it contains the element xe ©. The 
intersection of A and a subset 33 (0 ^ 23 s ©) is defined as follows 23 n A : = 
: = {23 n A1: A1 e A, A1 n 23 # 0} [1] 2.3. Two partitions in © are said to be coupled 
if every block of one partition meets exactly one block of the other partition [1] 4.1. 
The system P(©) of all partitions in © is a complete lattice. This system is evidently 
in a 1-1-correspondence with the family of all symmetric and transitive binary rela
tions in ©. Hence, we need not to distinguish between these both concepts. A stable 
symmetric and transitive relation in an algebra (©, Q) is called a congruence in (©, Q). 
(The congruence on (©, Q) is then a special case of the above concept.) The system 
Jf (©, Q) of all congruences in (©, Q) is a complete latiice. In general, «3f-suprema 
do not coincide with P-suprema. Let (©, Q) be an .Q-group. The symbol 23 <J © or 
23 cz | © means that 23 is an ideal or an (2-subgroup of ©, respectively. Now, let A be 
a binary relation in a set © and x e ©; then A(x) denotes the set {ye®: yAx} 
and UA = U{A(x) : xe ©}. This notation is in accord with the above introduced 
symbols A(x) and UA for a partition A. 
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Theorem. Let B and C be congruences in an Q-group (©, Q). Then 

(1) UBC = UB n [B(0) + UC] = B(0) + UB n UC 

(2) BC(0) = U B n [B(0) + C(0)] = B(0) + UB n C(0) 

w fcof/r (1) and (2), tAe order of summands can be changed; 

(3) BC(0) < UBC c | (5, CB(0) < UCB c | (5, UB n C(0) + UC n B(0) < UB nUC. 

(4) The partitions D := UBC/BC(0), E := UCB/CB(0) and 

F := UB n UC/UB n C(0) + UC n B(0) 

are pairwise coupled and hence 

(5) D^E^ F. 

Moreover, there holds 
(6) UC n D = U B n £ = D A £ = F . 

Proof. (1) and (2) are proved in 3.5.5 [3]. 
(3) UBC is an Q-subgroup of © since UB n UC is an Q-subgroup and B(0) an 

ideal of the fl-group (UB, Q) (e.g. [2] HI 4.1). We shall show that BC(0) is an ideal 
of the .Q-group (UBC, Q). Denote UBC/B(0) = P, BC(0)/B(0) = Q and for x e UBC 
put x = P(x). Evidently, it suffices to show that Q is an ideal of P. The normality of Q 
in P follows from the stability of the relation BC ([3] 3.2). For ifqeqeQ then qBCO; 
if pep eP then (±p) BC(±p). Hence (p + q - p) BC(p + 0 - p), p + q - pe 
e BC(0), p + q - p e Q. We need to prove that for co e Q n-ary (n i> 1), qt e Q and 
xteP (i = 1,...,n) there holds (qx + xt) ... (qn + xn)(o = q + xt ... xna> for a 
suitable qe Q. For qt e q{ there exist at e B(0) and bt e UB n C(0) with qt = at + b(; 
hence qt = ax + bt = bt. Similarly, there exists c{ e UB n UC with xt = ct. Finally 
(qx + xx)...(qn + xn)(o~(bx + ct)...(bn + cn)(o = ((bx + ct)...(bM + cn)(o)- = 
= (b + cx ... cn(o)~~ for a suitable b e UB n C(0) since UB n C(0) is an ideal of 
UB n UC. Thus, we have proved (qx + xt) ... (qn + xn)co = b + cx ... cn(o = 
= b + xx... xn(o with b e Q. 

The assertion for CB can be proved symmetrically. The last assertion in (3) is 
evident. 

(4) First, the following evident relations resulting from (1) and (2) hold 

UBC = B(0) + UBn UC = B(0) + UBn C(0) + UBn UC = 
- BC(0) + UB n UC 2 UB n UC 

UCB = CB(0) + UB n UC 2 UB n UC. 

It follows that every block of D meets a block of £, namely in an element of UB n UC. 
We shall show that it meets only one block of E. Let CB(0) + x = CB(0) + y9 
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x,yeUBnUC. By (2) 

y - xeCB(0)n(UBn UC) = UC n [C(0) + .8(0)] n (UB n UC) s £C(0). 

Hence if blocks £C(0) + JC and £C(0) + y of Z> meet some block CS(0) + 
+ x (= CB(0) + j>) of F, then they are equal. 

The rest of (4) and (6). The domain of the partition UCnD equals to UBC n UC = 
= (B(Q) + UBn UC)n UC = UB n UC = UF since U . 8 n U C s B(0) + UB n 
n UC <= U8. We shall show later that (UCnD)(0) = F(0). Put H = U£n C. 
Then (UCn D)(0) = J5C(0) n UC = UCn [5(0) + U£nC(0)] = (UCn UB) n 
n [B(0) + #(0)]. Use 3.5.3 [3] for Q = UC. Then the last set equals to UB n 
n [UCn 8(0)+ UCn//(0)] = U 8 n [ U C n 8 ( 0 ) + U£nC(0)] = F(0). The 
proof is complete. 

From the preceding theorem Boruvka's (special) five-group theorem [ l ] 25.4 
follows. 

Corollary. Let (©, Q) be an Q-group, » ' <i » c | ®, <£' <3 <£ c | ®, » ' n (£ + <£' n 
n » c » < i » n < £ . Then 

(3a) » ' + » <3 » ' + » n <£ c | ®f <£' + 93 <] <£' + e n » c | ®. 
(4a) The partitions K : = » ' + » n <£ / » ' + 93, L :=<£' + <£ n » / <£' + » and 

M : = » n <£ / » are pairwise coupled and thus 

(5a) K^L^M. 

Moreover, there holds 

(6a) <£ n K = » nL = K A L = M. 

Putting 93 = » ' n £ + <£' n » , we Ob/a/n Zassenhaus lemma. 

Proof. Put 8 = » / » ' , C = <£/<£'. By (1) and (2), U8C = » ' + »n<£, 
8C(0) = »' + » n <£'. By (4), the partitions 

D : = » ' + » n <£/»' + » n <£', if :=<£' + <£ n »/<£' + <£ n »', 
(4b) J F : = » n G : / » ' n < £ + £ 'n9I 

are pairwise coupled 

and there holds 

(6b) £ n D = 8 n £ » D A £ - - F . 

Define V = » n ff / » . Because of UM = UK and by (4b) and (6b), the partitions 

K:=Z>vFK, L : = F v F F and M : = F v F K 

are pairwise coupled, too. We shall express the partitions K, L and M as factor 
Q-groups. By [5] 2.1, there holds Z>v > r F=i )v F V because of UD a UK. By [3] 
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3.5.7, (DvP V)(0) = [D(0) + UD n V(0)] u [UVn D(0) + V(0)] = [93' + 93 n 
n £' + (©' + ® n (£) n 93] u [» n (£ n (» ' + 33 n G') + 93]. By 3.5.7 [3] again, 
the first member of the union is an ideal of D(0) + (UD n UV) = ©' + 93 n <T + 
+ (» ' + » n CE) n S3 n C = S3' + 33 n G and evidently is equal to 33' + 93, the 
other member is contained in the first one. Therefore DvPV-=DvjrV=©' + 
+ ® n £ / S ' + 93==K. Similarly for L and M. So the assertion (4a) is proved. 
(6a) follows immediately. 

Remark. Scheme illustrating the set-theoretic relations (4) between the partitions D9 

E and F. 

Ыocks of 0 

I 1 

blocks of E 
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