Archivum Mathematicum

Jitka Ševečková

The five-group theorem

Archivum Mathematicum, Vol. 13 (1977), No. 1, 51--54

Persistent URL: http://dml.cz/dmlcz/106956

Terms of use:

© Masaryk University, 1977
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ARCH. MATH. 1, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS

XIII: 51—54, 1977

THE FIVE-GROUP THEOREM

JITKA ŠEVEČKOVA, Brno

(Received June 18, 1976)
O. Borůvka in [1] proved a theorem called "the special five-group theorem" (25.4). This theorem is a generalization of Zassenhaus lemma for groups (e.g. [2] III 4.3). In Zassenhaus lemma the existence of an isomorphism of factors on certain subgroups is given, in the mentioned five-group theorem there is shown that the above isomorphism is a consequence of the following set-theoretic relation between these factor groups: Every co-set of one factor group meets exactly one co-set of the other factor group. The theorem 25.4 [1] is then stronger than that of Zassenhaus.

In the present note we give a theorem concerning product of congruences in an Ω-group which has 25.4 [1] as its corollary. Our theorem proceeds from 3.5.5 [3], reproduces it partly (see our assertions $1,2,3$ and 5) and moreover, proves 4 and 6 . In contrast to 3.5.5 [3], our proof is not based on Zassenhaus lemma; quite conversely, that lemma follows from our theorem.

As for concepts concerning partitions and congruences "in" see [3, 4]. The partition in a set $\mathfrak{5}$ is a family A of nonempty pairwise disjoint subsets of \mathfrak{G}. Union $\cup A$ of these subsets is called a domain of A and every element $A^{1} \in A$ is said to be a block of A and will be denoted by $A^{1}=A(x)$ provided it contains the element $x \in \mathfrak{F}$. The intersection of A and a subset $\mathfrak{B}(\emptyset \neq \mathfrak{B} \subseteq(\mathfrak{b})$ is defined as follows $\mathfrak{B} \sqcap A:=$ $:=\left\{\mathfrak{B} \cap A^{1}: A^{1} \in A, A^{1} \cap \mathfrak{B} \neq \emptyset\right\}[1]$ 2.3. Two partitions in \mathfrak{G} are said to be coupled if every block of one partition meets exactly one block of the other partition [1] 4.1. The system $P(\mathfrak{F})$ of all partitions in \mathfrak{F} is a complete lattice. This system is evidently in a 1-1-correspondence with the family of all symmetric and transitive binary relations in $\mathbf{(5}$. Hence, we need not to distinguish between these both concepts. A stable symmetric and transitive relation in an algebra (\mathfrak{G}, Ω) is called a congruence in (\mathfrak{G}, Ω). (The congruence on (\mathscr{G}, Ω) is then a special case of the above concept.) The system $\mathscr{K}(\mathscr{G}, \Omega)$ of all congruences in (\mathscr{G}, Ω) is a complete latiice. In general, \mathscr{K}-suprema do not coincide with P-suprema. Let (\mathfrak{G}, Ω) be an Ω-group. The symbol $\mathfrak{B} \triangleleft \mathfrak{F}$ or $\mathfrak{B} \subset \mid \mathfrak{G}$ means that \mathfrak{B} is an ideal or an Ω-subgroup of \mathfrak{G}, respectively. Now, let A be a binary relation in a set \mathfrak{G} and $x \in \mathfrak{G}$; then $A(x)$ denotes the set $\{y \in \mathfrak{G}: y A x\}$ and $\cup A=U\{A(x): x \in \mathfrak{G}\}$. This notation is in accord with the above introduced symbols $A(x)$ and $\cup A$ for a partition A.

Theorem. Let B and C be congruences in an Ω-group (ξ, Ω). Then
(1) $U B C=U B \cap[B(0)+U C]=B(0)+U B \cap U C$
(2) $B C(0)=U B \cap[B(0)+C(0)]=B(0)+U B \cap C(0)$ in both (1) and (2), the order of summands can be changed;
(3) $B C(0) \triangleleft U B C \subset|\boldsymbol{G}, C B(0) \triangleleft U C B \subset| \boldsymbol{G}, \cup B \cap C(0)+U C \cap B(0) \triangleleft U B \cap U C$.
(4) The partitions $D:=\cup B C / B C(0), E:=\cup C B / C B(0)$ and

$$
F:=U B \cap \cup C / \cup B \cap C(0)+U C \cap B(0)
$$

are pairwise coupled and hence

$$
\begin{equation*}
D \cong E \cong F \tag{5}
\end{equation*}
$$

Moreover, there holds

$$
\begin{equation*}
\cup C \sqcap D=\cup B \sqcap E=D \wedge E=F . \tag{6}
\end{equation*}
$$

Proof. (1) and (2) are proved in 3.5.5 [3].
(3) $U B C$ is an Ω-subgroup of $(\mathbb{G}$ since $U B \cap \cup C$ is an Ω-subgroup and $B(0)$ an ideal of the Ω-group ($\cup B, \Omega$) (e.g. [2] III 4.1). We shall show that $B C(0)$ is an ideal of the Ω-group ($\cup B C, \Omega$). Denote $U B C / B(0)=P, B C(0) / B(0)=Q$ and for $x \in \cup B C$ put $\bar{x}=P(x)$. Evidently, it suffices to show that Q is an ideal of P. The normality of Q in P follows from the stability of the relation $B C$ ([3] 3.2). For if $q \in \bar{q} \in Q$ then $q B C 0$; if $p \in \bar{p} \in P$ then $(\pm p) B C(\pm p)$. Hence $(p+q-p) B C(p+0-p), p+q-p \in$ $\in B C(0), \bar{p}+\bar{q}-\bar{p} \in Q$. We need to prove that for $\omega \in \Omega n$-ary $(n \geqq 1), \bar{q}_{i} \in Q$ and $\bar{x}_{i} \in P(i=1, \ldots, n)$ there holds $\left(\bar{q}_{1}+\bar{x}_{1}\right) \ldots\left(\bar{q}_{n}+\bar{x}_{n}\right) \omega=\bar{q}+\bar{x}_{1} \ldots \bar{x}_{n} \omega$ for a suitable $\bar{q} \in Q$. For $q_{i} \in \bar{q}_{i}$ there exist $a_{i} \in B(0)$ and $b_{i} \in \cup B \cap C(0)$ with $q_{i}=a_{i}+b_{i}$; hence $\bar{q}_{i}=\bar{a}_{i}+\bar{b}_{i}=\bar{b}_{i}$. Similarly, there exists $c_{i} \in U B \cap \cup C$ with $\bar{x}_{i}=\bar{c}_{i}$. Finally $\left(\bar{q}_{1}+\bar{x}_{1}\right) \ldots\left(\bar{q}_{n}+\bar{x}_{n}\right) \omega=\left(\bar{b}_{1}+\bar{c}_{1}\right) \ldots\left(\bar{b}_{n}+\bar{c}_{n}\right) \omega=\left(\left(b_{1}+c_{1}\right) \ldots\left(b_{n}+c_{n}\right) \omega\right)^{-}=$ $=\left(b+c_{1} \ldots c_{n} \omega\right)^{-}$for a suitable $b \in \cup B \cap C(0)$ since $\cup B \cap C(0)$ is an ideal of $\cup B \cap U C$. Thus, we have proved $\left(\bar{q}_{1}+\bar{x}_{1}\right) \ldots\left(\bar{q}_{n}+\bar{x}_{n}\right) \omega=b+\bar{c}_{1} \ldots \bar{c}_{n} \omega=$ $=\bar{b}+\bar{x}_{1} \ldots \bar{x}_{n} \omega$ with $\bar{b} \in Q$.

The assertion for $C B$ can be proved symmetrically. The last assertion in (3) is evident.
(4) First, the following evident relations resulting from (1) and (2) hold

$$
\begin{gathered}
\cup B C=B(0)+\cup B \cap \cup C=B(0)+\cup B \cap C(0)+\cup B \cap \cup C= \\
=B C(0)+\cup B \cap \cup C \supseteq \cup B \cap \cup C \\
\cup C B=C B(0)+\cup B \cap \cup C \supseteq \cup B \cap \cup C .
\end{gathered}
$$

It follows that every block of D meets a block of E, namely in an element of $U B \cap U C$. We shall show that it meets only one block of E. Let $C B(0)+x=C B(0)+y$,
$x, y \in U B \cap U C$. By (2)

$$
y-x \in C B(0) \cap(U B \cap U C)=U C \cap[C(0)+B(0)] \cap(U B \cap U C) \subseteq B C(0)
$$

Hence if blocks $B C(0)+x$ and $B C(0)+y$ of D meet some block $C B(0)+$ $+x(=C B(0)+y)$ of E, then they are equal.

The rest of (4) and (6). The domain of the partition UC $\cap D$ equals to $U B C \cap U C=$ $=(B(0)+U B \cap U C) \cap U C=U B \cap U C=U F$ since $U B \cap U C \subseteq B(0)+U B \cap$ $\cap U C \subseteq U B$. We shall show later that $(U C \cap D)(0)=F(0)$. Put $H=U B \cap C$. Then $(U C \sqcap D)(0)=B C(0) \cap U C=U C \cap[B(0)+U B \cap C(0)]=(U C \cap U B) \cap$ $\cap[B(0)+H(0)]$. Use 3.5.3 [3] for $Q=U C$. Then the last set equals to $U B \cap$ $\cap[U C \cap B(0)+U C \cap H(0)]=U B \cap[U C \cap B(0)+U B \cap C(0)]=F(0)$. The proof is complete.

From the preceding theorem Borůvka's (special) five-group theorem [1] 25.4 follows.

Corollary. Let (\mathbf{G}, Ω) be an Ω-group, $\mathfrak{B}^{\prime} \triangleleft \mathfrak{B} \subset\left|\mathfrak{F}, \mathfrak{C}^{\prime} \triangleleft \mathfrak{C} \subset\right| \boldsymbol{G}, \mathfrak{B}^{\prime} \cap \mathbb{C}+\mathfrak{C}^{\prime} \cap$ $\cap \mathfrak{B} \subseteq \mathfrak{B} \triangleleft \mathfrak{B} \cap \mathfrak{C}$. Then
(3a) $\mathfrak{B}^{\prime}+\mathfrak{B} \triangleleft \mathfrak{B}^{\prime}+\boldsymbol{B} \cap \mathbb{C} \subset\left|\boldsymbol{G}, \mathbb{C}^{\prime}+\mathfrak{B} \triangleleft \mathbb{C}^{\prime}+\mathbb{C} \cap \mathfrak{B} \subset\right| \boldsymbol{G}$.
(4a) The partitions $K:=\mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathbb{C} / \mathfrak{B}^{\prime}+\mathfrak{B}, L:=\mathfrak{C}^{\prime}+\mathbb{C} \cap \mathfrak{B} / \mathbb{C}^{\prime}+\mathfrak{B}$ and $M:=\mathfrak{B} \cap \mathbb{C} / \mathfrak{B}$ are pairwise coupled and thus

$$
\begin{equation*}
K \cong L \cong M \tag{5a}
\end{equation*}
$$

Moreover, there holds

$$
\begin{equation*}
\mathfrak{C} \cap K=\mathfrak{B} \cap L=K \wedge L=M \tag{6a}
\end{equation*}
$$

Putting $\mathfrak{B}=\mathfrak{B}^{\prime} \cap \mathfrak{C}+\mathbb{C}^{\prime} \cap \mathfrak{B}$, we obtain Zassenhaus lemma.
Proof. Put $B=\mathfrak{B} / \mathfrak{B}^{\prime}, C=\mathbb{C} / \mathbb{C}^{\prime}$. By (1) and (2), $\cup B C=\mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathbb{C}$, $B C(0)=\mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathbb{C}^{\prime} . \operatorname{By}(4)$, the partitions
(4b) $\left\{\begin{array}{l}D:=\mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathbb{C} / \mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathfrak{C}^{\prime}, \quad E:=\mathbb{C}^{\prime}+\mathbb{C} \cap \mathfrak{B} / \mathbb{C}^{\prime}+\mathbb{C} \cap \mathfrak{B}^{\prime}, \\ F:=\mathfrak{B} \cap \mathbb{C} / \mathfrak{B}^{\prime} \cap \mathfrak{C}+\mathbb{C}^{\prime} \cap \mathfrak{U} \\ \text { are pairwise coupled }\end{array}\right.$
and there holds

$$
\begin{equation*}
\mathbb{C} \cap D=\mathfrak{B} \sqcap E=D \wedge E=F . \tag{6b}
\end{equation*}
$$

Define $V=\mathfrak{B} \cap \mathbb{C} / \mathfrak{B}$. Because of $U M=U V$ and by (4b) and (6b), the partitions

$$
K:=D \vee_{P} V, L:=E \vee_{P} V \text { and } M:=F \vee_{P} V
$$

are pairwise coupled, too. We shall express the partitions K, L and M as factor Ω-groups. By [5] 2.1, there holds $D \vee_{\boldsymbol{x}} V=D \vee_{P} V$ because of $U D \supseteq U V$. By [3]
3.5.7, $\left(D \vee_{P} V\right)(0)=[D(0)+U D \cap V(0)] \cup[U V \cap D(0)+V(0)]=\left[\mathcal{B}^{\prime}+\mathfrak{B} \cap\right.$ $\left.\cap \mathbb{C}^{\prime}+\left(\mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathfrak{C}\right) \cap \mathfrak{B}\right] \cup\left[\mathfrak{B} \cap \mathbb{C} \cap\left(\mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathfrak{C}^{\prime}\right)+\mathfrak{B}\right]$. By 3.5.7 [3] again, the first member of the union is an ideal of $D(0)+(U D \cap U V)=\mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathbb{C}^{\prime}+$ $+\left(\mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathfrak{C}\right) \cap \mathfrak{B} \cap \mathfrak{C}=\mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathfrak{C}$ and evidently is equal to $\mathfrak{B}^{\prime}+\mathfrak{B}$, the other member is contained in the first one. Therefore $D \vee_{P} V=D \vee_{\mathscr{X}} V=\mathfrak{B}^{\prime}+$ $+\mathfrak{B} \cap \mathfrak{C} / \mathfrak{B}^{\prime}+\mathfrak{B}=K$. Similarly for L and M. So the assertion (4a) is proved. (6a) follows immediately.

Remark. Scheme illustrating the set-theoretic relations (4) between the partitions D, E and F.

blocks of E
blocks of F

REFERENCES

[1] O. Borůvka: Foundations of the theory of groupoids and groups. Berlin 1974, (Czech) Praha 1962, (German) Berlin 1960.
[2] A. G. Kuroš: Lekcii po obščej algebre. Moskva 1962.
[3] T. D. Mai: Partitions and congruences in algebras. Archivum Math. 10 (1974) I 111-122, II 159-172, III 173-188, IV 231-254.
[4] J. Sevectková: Compact elements of the lattice of congruences in an algebra (to appear in Casopis pěst. mat. 102 (1977)).
[5] F. Sik: Schreier-Zassenhaus theorem for sets and universal algebras. Preprint 1975.
J. Ševečková

66273 Brno, Čechyňská 16
Czechoslovakia

