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ARCH. MATH. 2, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
XIII: 89—96, 1977 

LATTICES OF COMPATIBLE RELATIONS 

IVAN CHAJDA, Pferov 
(Received October 4, 1976) 

As it is shown in [3], [4], [5] and [6], various results on congruences on algebras 
can be generalized also for other types of relations. The aim of this paper is to show 
some of common properties of lattices of relations and give mutual interrelations 
among these lattices. 

By 81 = <A, F> denote an algebra with a base set A and the set of fundamental 
operations F. A binary relation R on A (i.e. R e A xA) is called to be compatible 
on A9 if for each n-ary fe F and arbitrary ai9 bte A (i = 1,..., n) the following 
implication is true: 

<ai9bi>eR for / = 1, ...,«=> {f(al9..., an)9f(bi9..., bn)} e R. 

By Comp(8l) or ^(81) or &>(%) or ^(81) or J2\T(8l) or <2(8l) or /n(8I) or ^(81) denote 
the set of all compatible or reflexive and compatible or symmetric and compatible or 
transitive and compatible or compatible reflexive and symmetric (so called tolerance) 
or compatible reflexive and transitive (i.e. quasiorder) or compatible symmetric and 
transitive (so called quasiequivalences or congruences "/«") or congruence relations 
on 81, respectively. Further, denote by A = {Comp, 0t9 $f9 $"9 £e&~9 £9 ln9 <€} and 
agree with a convention: ^(81) for ^ e A means that ^(81) = Comp(8l) or ^(81) = 
= ^(81) etc. 

By e the so called emptj> relation on A is#denoted, i.e. <a, 6> € s for no elements 
a9 b e A] by A the diagonal is denoted, i.e. <a, 6> € A if a = b e A9 by V the Cartesian 
square is denoted, i.e. <a, b> 6 A for each a9be A. Clearly, e, A, V are compatible 
relations on every algebra 81. 

In [1] it is proved that ^(81) is an algebraic lattice for every algebra 81. This result 
is extended also to ££^(81) in [3]. Here it will be generalized also for other lattices 
of relations. 

Theorem 1. Let 81 = <A, F> be an algebra. Then for each 0>eA the set 0>(W) is 
a complete lattice with respect to the set inclusion. The greatest element in 0>(W) is 
equal to V. The least element of0>(M) is equal to Afor0>e {01\ £9", J, <€}. The meet 
in the lattice ^(81) is equal to the set intersection for all 0>€ A. 
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Proof. Clearly V e 0(%) for each 0 e A, it is compatible, i.e. it is the greatest 
element in 0i$S) with respect to the set inclusion. If Ry G #(3t) for y e F, then clearly 
also R = n{Ry\ y e F} G ^(31), thus, by Theorem 17 in [2], ^(31) is a complete 
lattice. Evidently, R is the infimum of the family {Ry; y G F}. Let 0 e {0, S£^, J, <$}, 
then A s R for each R e 0($£), A is compatible, i.e. it is the least element of ^(31) for 
other 0 G A. 

Notation. Let 0eA and Ry e 0(%) for y e F. Denote by pol 31 the set of all 
polynomials of the algebra 31 (see [1]). Introduce the following two operators c, T 

on the family {Ry; y e F}: 
<a, b> e (u{jRy; y G F})c if and only if there exist an n-ary p epol 31 and elements 
af,bf(/ = 1,..., n) horn A with a = p(ax, ...,an),b = p(bl5 ..., b„) and (at, bf> G 
Gi?y. for 7,-GF, / = 1,...,«. 

Further, 
<a, b> G (u{Ky; 7 G F})T if and only if there exist a0,x..,ane A, yx,..., yn G F 
with a0 = a, an = b and <af- x, af> G Kyf for i = 1,..., n. 

If F is a one-element set and Ry = R, abbreviate it by Kc, KT. If the index set F is 
given, abbreviate (u{Ky; y G F})c or (u{Ky;yGF})T only by (uKy)

T or (uRyf 
respectively. 

Remark. It is clear that (ujRy)
c is the least compatible relation containing uKy 

and (uRyf is the least transitive relation containing uKy, i.e. Kc or KT is the com­
patible or the transitive hull of the relation R, respectively. 

Denote by v # the lattice join in 0(W), 0 e A. 

Lemma 1. Let 31 be an algebra, 0eA and Rye0(W) for yeT. Then (uRyf g 
c Vp{Ry;yer}. 
The proof is clear. 

Theorem 2. Let 31 be an algebra and 0 e {Comp, 0, Sf, £$"}. Then 

v#{Ry; y G F} = (u{*y; y G F})c for Ry e 0(W). 

Proof. Let 0 = Comp. For p(x) = x we have Ry€(\jRyf, thus (uKy)c is the 
compatible relation containing every Ry for y e F, i.e. (u{Ry; y G F})c 2 v#{Ry; yeT}. 
The converse inclusion is given by Lemma 1. If 0 = 0, then A g R implies A g 
&(uRyf, thus (uJRy)

cG^(3l), i.e. also (ui*y)c = v#{Ry;yer}. Let 0 = ^. 
Thus i*y = Ry~

l and 
<a, b> G ( u i y c iff <b, a} G (ui*7 *)c 

implies the symetry of (uRyf9 i. e. also the assertion is proved. By the combination 
of the two previous results, we can prove the assertion also for if 5"(3l). 

Theorem 3. Let 31 be an algebra, 0e{l,<$ In} and Ry e 0(U) for yeT. Then 
Vp{Ry;y€r}~(u{Ry;yerf. 
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Proof. Clearly, Ry g ( u i ? / for each y e F. By the definition, (uRy)
T is transitive 

and the reflexivity of Ry (y e F/ implies the reflexivity of (vRy)
T. By the proof of 

Theorem 84 in [2], the reflexivity, transitivity and compatibility of Ry for y e T 
imply the compatibility of (uRy)

T. If Ry are symmetric, it is also true for (uRy)
T. 

Thus also (ui?T)Te^(S(). Now, the assertion is a direct consequence of it. 

Remark. For ^(91), 0^{^} the assertion analogous to Theorem 2 or Theo­
rem 3 cannot be stated, because v^ need not be constructed by the using of 
operators c , T in a finite number of steps. It follows from the fact that the ((uRy)

c)T 

need not be compatible (see Example 2 in [5]) and ((uKy)T)c need not be transitive. 

Notation. Denote A0 = A — {ZT, In}. 

Definition. Let 21 = <A, F> be an algebra, Q^H^AxA and 0> e A. Denote 
by Rp(H) = n{Re0>(Stl)', H s R}. For H = {<A, b>} abbreviate Rp{{<a, b>}) by 
R&(a, b) and call it the principal gP-relation generated by a, b 

Remark. Evidently, R^(H) e ^(SS) for every 0 # Hg AxA and the principal 
^-relation is a generalization of a principal congruence (see [1]) and a minimal 
tolerance (see [4]). 

Theorem 4. Let 2t = <A, F> be an algebra, a, be A and 0> e A0. Then <x, y) e 
€ K^(fl, b) if and only if 

(1) there exist n-ary pepol% and unary ttepol% (/ = 1, . . . ,«) such that x = 
= p(fll5 ...,an), y = p(bt, ...,bn), where for i = 1, ...,n 

(a) at = tt(a), bt - t{(b)for0> = Comp, 
(b) flf = 6* 0r a{ = t4(fl), bf =- tt(b)for 0> ^ M, 
(c) {flf, bt} = { t /4 *ivb)}f0r ^ = se, 
(d) fl, = bi or {ai9 bi} = {ti(a), ti(b)}for 0> = if ,T. 

(2) there exist a0, ...,ane A and unary algebraic functions (see [1]) <pl9 . . . , cpn 

such that a0 = x, an = y and for / = 1, . . . , n, 
(e) a^t = (pla), at = (pt(b)for^ = J , 
(f) {a,-!, aj = {<?>/(«), <Pi(b)}for& = ^ . 

Proof. Let ^ e {Comp, m, Sf, S£*T} and R be the relation defined by (1). For 
n = 1, r t(x) = x we obtain <A, b) e R. Let <x i? yf) e R for j = 1 , . . . , m and r e F 
be m-ary. By (1), there exist t),pj (j = l , . . . , m , / = 1, . . . ,«) such that x,- = 
= Pj(tj(a),..., tJ

nj(a)), yj = Pj(t{(b),..., tJ
nj(b)), thus 

x = r(xx, ..., x„) - r(Pi(t\(a),..., *„>)), ...,pm(t?(a), ..., CJa)% 

y « KPi(tK*),... > '.i(*)X. •., pm(tf(b),..., C(*))) 

and by (1) it implies <#> y> £ R, thus JR is compatible on 21. If S is a compatible 
relation with <fl, b) e 5, thus <tl(fl), tt(b)) e S for each unary ttepol% i.e. R & S. 
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Thus R ss= Rp(a9 b) for 9* = Comp. From (lb) we can clearly prove the reflexivity 
of JR, from (lc) the symmetry of R and from (Id) both of these properties, i.e. R = 
= Rp(a, b) for all four these 0>, 

For (2f) see Theorem 10.3 in [1], for (2e) this proof can be also used. 

Theorem 5. Let 31 = <A, F> be an algebra, 0> e A and 0 ^ H g Ax A. Then 
Rp(H) = VfiRda, b); {a, ft> e H}. 

Proof. As <a, ft> e H implies R#>(a, b) g R&>(H), we have 

v&{R&(a, b); {a, ft> e H} g K^(H). 

Further, if X g Y g i?, then evidently K^(X) g i^(Y) and Ze^(3l) implies 
Rp(Z) = Z. Then 

H g y„{R^(a, b); {a, b} e H} e 0>(W) 
implies 

RAH) £ *#( v*{/W<i, i); <a, b> e H}) = v^{i^(a, ft); <a, ft> e H}, 

which is the converse inclusion. 

Corollary. Let 31 be an algebra and 0> e A. Then 

R= v^{RAa,b);{a,b)eR} 
for each R e ^(31). 

Theorem 6. Let 31 = <A, F> be an algebra, 0 # H g ^ x A and ^ e A0. Fhe« 
<x, j> G R&(H) if and only if 

(1) there exist n-ary pepoM, unary tiEpolty and (a,-, i,-> e B with x = 
= p(xl9...9xn)9y = p(yi,...,y„) and for i = 1, ...,n 
(a) xt = ti(at), yt = tt(b^for 0> = Comp, 
(b) xt = yi 0r xt = *i(af), yi = ti(bt)for 0> = ^ , 
(c) {*„ yj = W ^ ) , /,(*«)} for 0>=<f, 
(d) x, = yi or {*,, ji} = {ti(ai), ti(bi)}for 0 = jS?/jT. 

(2) there exist a0, ,..,ane A, unary algebraic functions <pt and (x(, y(} e H 
(i = 1,..., n) such that x = a0, 7 = aH and for i = 1, ..., n 
(e) ai_! = <Pi(Xi)9ai = (pi(yt)for 0> = @ 
(f) {ai_ -.,«,} = {(Pi(*i), ^i(^i)} for 9 = <e. 

Proof. The assertion follows directly from Theorems 2, 3, 4, 5. 
An element c of the lattice L is said to be compact, if x S v { ^ ; / e 1} implies the 

existence of finite I0 g I such that c g v{xf; 1 e J0}. The lattice L is called algebraic, 
if it is complete and each its element is a join of compact elements. 

Theorem 7. Let 31 be an algebra, 0>eA0 or 0> =* In and Re0>(%). Then R is 
a compact element of^(31) ifawd only ifR= v^{jR^(ai, ftf); 1 = 1,..., JI}. 
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Proof. Let R?(a,b) g v^{i?y; y e F}. Then <a, b> e v#{Ry; y e F} and, by 
Theorem 2 or Theorem 3, there exists F0 = {y l5..., yn} g F with (a, bye 
e v<p{Ry; y e F0}, thus also K#(a, b) g v#{i*y; y e F0}, i.e. Rp(a, b) is a compact 
element in ^(91). Hence, every join of finitely many principal ^-relations is a compact 
element in ^(91). 

Let R be a compact element in ^(91). By Corollary of Theorem 5, we have R = 
= Vp{Rp(a, b); <<z, b> e K}. As R is compact, there exists a finite subset {<af, 6f>; 
/ = 1,...,«} c R such that JR = v#{K^(af, bt); i = 1, . . . ,«}, thus the converse 
statement is proved. 

Theorem 8. Let 91 be an algebra and 0* e A0 or ^ = In. Then ^(91) fa an algebraic 
lattice. 

Proof. By Theorem 1, ^(91) is complete and, by Theorem 7 and by Corollary 
of Theorem 5, every element of ^(91) is the join of compact elements. 

Theorem 9. Let 9t = <A, F> be an algebra, 0 e A0 and a, be A, a ^ b. Then 
there exists the maximal element Ka6e^(9I) with <a, b.>£ Rab. 

Proof. Let iT = {R e 0>(<H); {a, by i R}. Clearly, iT # 0, because V e # \ 
Let ^ be a chain in < ^ , g>. Then S = v^{iT; K' e 9} e &>(<&). Evidently, S = 
= u{K'; K' e 9}, hence <x, ̂ > e S is and only if <x, j> e i?' for some R' e 9. This 
implies <a, b> $ S and, by Kuratowski — Zorn lemma the assertion is obtained. 

The aim of the rest of this paper is to show for which 0,0' e A the lattice ^(91) 
is a sublattice of &'(%). 

Lemma 3. For every algebra 91, the lattice £?0~(tyL) is a sublattice of the lattices 
M(SS), 5^(90 and these lattices are sublattices of Comp(9l). 

Proof. The set inclusions &$-(%) g ^(91) g Comp(9I) and JSf^(9I) g ^(91) g 
g Comp(9l) are evident and, by Theorem 1 and 2, the join and the meet is the same 
in all of these lattices. 

Lemma 4. For every algebra 91, the lattice ̂ (91) fa a sublattice of J(9l) Jn(9I) and 
these lattices are sublattices of « "̂(9l). 

Proof. The set inclusions #(91) g <2(9l) g JT(91), ^(91) g /n(9I) g /T(9l) are 
evident and, by Theorem 1, the meet is the same in all of these lattices. By Theorem 3, 
v^ = vM, thus *(9l) is a sublattice of J(9I). Let i*y e ^(91) for y e F and R = 4 v ln = 
= v/n{Ky; y e F}. Then A c Ky cz R implies the reflexivity of R, i.e. JR is a congru­
ence on 91 containing every jRy, thus 

V f { * , ; r e r } £ vln{Ry;yer}. 

However, for every jRye^(9l) the converse inclusion is clear, hence < (̂9t) is 
a sublattice of /n(9l). Analogously, the reflexivity of Ry e J(9l) implies the reflexivity 
of vr{Ry; y e T}, hence <2(9l) is a sublattice of -T(9I). If Ry e /n(9I), i? = 
= Vy{Ry; y e F}, then {a, bye Riff <Jb, ay e v^{R; l; y e F}. As Ry = R; \ also R 
is symmetric and again Jn(9l) is a sublattice of ^"(91). 
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Lemma 5. There exists an algebra 21 such that ^(21) is not a sublattice of J.^~(2T), 
J(2t) is not a sublattice of 0t^S), ln(2I) is not a sublattice of ̂ (21) and ̂ (21) is not 
a sublattice of Compel). 

Proof. Let 21 be a distributive lattice which is not relatively complemented. 
By Corollary 2 in [7], there exists a compatible tolerance T on 21 which is not 
a congruence. By Corollary in [4], for every distributive lattice, ^(21) is a sublattice 
of S£«T(2I) if and only if ^(21) = jg?^(«), thus, for previous lattice 21, <€(%) is 
not a sublattice of if ^"(21). Hence, as ^(21) is a subset of ^^(21), there exist Ry e 
6 ^^(21) such that v^r{Ry; y e F} # v^{Ky; 7 e F}. Then for these Ky also 
Ry e M(%\\ i*y € 5 (̂21), Ky e Comp(2t) and, by Lemma 3 and Lemma 4, 

Vcmp{#y; 7 e F} = v^{i?y; y e F} = v^{Ky; y e F} = 

= v^{i?y ; y € F} # v^{Ky; y G F} = v,n{Ky; y e F} = 

= v3{i?y;yer} = v^{Ky;yeF} 

Hence, the assertion is clear. 

Notation. Let the circles on a diagram denote the lattices ^(21) for 0> e A and 
fixed 21 and the solid line joins the circle A with B (where A is situated below B) 
if and only if A is a sublattice of B. Further, if A is a subset of B and A is not a sub-
lattice of B for some algebra 21, A and B are joined by a dashed line. 

Now, we can illustrate the situation by 

c-*/i(tt; 

&W 

XШ) 

C(tt) 
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Theorem 10. Let the circles on a diagram denote the lattices ^(21) for 0> e A. Then 
the following diagram shows exactly the relationship "to be a sublattice for every 
algebra 21". 

The proof follows directly from Lemmas 3, 4, 5. 
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