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LATTICES OF COMPATIBLE RELATIONS

IVAN CHAJDA, Pferov
(Received October 4, 1976)

As it is shown in [3], [4], [5] and [6], various results on congruences on algebras
can be generalized also for other types of relations. The aim of this paper is to show
some of common properties of lattices of relations and give mutual interrelations
among these lattices.

By A = {4, F) denote an algebra with a base set A and the set of fundamental
operations F. A binary relation R on 4 (i.e. R £ A x A) is called to be compatible
on A, if for each n-ary fe F and arbitrary a;, b;e A (i = 1, ..., n) the following
implication is true:

<ai7 bi>ER fOI' i= 1, ”-,n:"<f(a1"--,an):f(bl,'--abn)>ER‘

By Comp() or Z(A) or L(A) or T (A) or LT (A) or W) or In(A) or €(A) denote
the set of all compatible or reflexive and compatible or symmetric and compatible or
transitive and compatible or compatible reflexive and symmetric (so called tolerance)
or compatible reflexive and transitive (i.e. quasiorder) or compatible symmetric and
transitive (so called quasiequivalences or congruences ‘““in”) or congruence relations
on U, respectively. Further, denote by A = {Comp, ®, &, T, T, 2, In, ¢} and
agree with a convention: 2(A) for # € A means that Z(A) = Comp(A) or 2(A) =
= Z(N) etc.

By ¢ the so called empty relation on A is denoted, i.e. {a, b) € ¢ for no elements
a, b € A; by A the diagonal is denoted, i.e. {a, by e Aif a = b e 4, by V the Cartesian
square is denoted, i.e. {a, b) € A for each a, b e A. Clearly, ¢, A, V are compatible
relations on every algebra 2.

In [1] it is proved that () is an algebraic lattice for every algebra . This result
is extended also to £J () in [3]. Here it will be generalized also for other lattices
of relations. ’

Theorem 1. Let A = (A, F) be an algebra. Then for each P € A the set P(N) is
a complete lattice with respect to the set inclusion. The greatest element in P(N) is
equal to V. The least element of P(N) is equal to A for P € {R, £T, 2, €}. The meet
in the lattice P(N) is equal to the set intersection for all P € A.
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Proof. Clearly V € () for each £ € A, it is compatible, i.e. it is the greatest
element in 2(A) with respect to the set inclusion. If R, € Z(N) for y € T, then clearly
also R = n{R,;yeI'} € ), thus, by Theorem 17 in [2], 2(A) is a complete

lattice. Evidently, R is the infimum of the family {R,;ye I'}. Let 2 € (%, ¥ T, 2, ¢},

then A = R for each R € Z(), A is compatible, i.e. it is the least element of 2(A) for
other Z € A.

Notation. Let 2 € A and R, e Z(A) for ye I'. Denote By pol A the set of all
polynomials of the algebra U (see [1]). Introduce the following two operators €, T
on the family {R,;ye I'}:

a;,b,(i=1,...,n) from A witha = p(a,,
€R, fory,eli=1,...,n

<a, by € (U{R,; y € I'})C if and only if there exist an n-ary p € pol 2 and elements
ey @), b = p(by,
Further,

AR bn) and <ai,bi> €

{a, b)e(ufRy;yeF})T if and only if there exist ag,:..,a,€ 4, 7, ..., 7, €T
with @y = a, a, = b and {a;_,,a;)eR, fori=1,...,n

If I' is a one-element set and R, = R, abbreviate it by RE, RT. If the index set I' is
given, abbreviate (U{R,;yeI'})C or (U{R,;ye I'})T only by (UR)T or (UR)T
respectively.

Remark. It is clear that (uRy)C is the least compatible relation containing UR,
and (UR,)" is the least transitive relation containing UR,, i.e. R® or R" is the com-
patible or the transitive hull of the relation R, respectively.

Denote by v, the lattice join in 2(AN), Z € A.

Lemma 1. Let U be an algebra, # € A and R, e P(N) for ye I'. Then (uRy)C c
S Va{R,;yeT}.
The proof is clear.

Theorem 2. Let A be an algebra and P € {Comp, R, &, LT }. Then
Ve{R; 7€ T} = (U{R,;ye I')°

Jfor R, e P(N).

Proof. Let # = Comp. For p(x) ="x we have R, €(UR,))S, thus (UR)C is the
compatible relation containing every R, fory e I',i.e. (U{R,;ye T e

2 Vg{R,;yel}.

2
The converse inclusion is given by Lemma 1. If # = £, then A £ R implies A &
S (UR)S, thus (UR)e Z(), i.e. also (UR)® = Va{R,;yeT}. Let # = .
Thus R, = R, ! and

(a,b)e(UR)® iff <(b,a)e(URN)S
implies the symetry of (UR,)S, i. e. also the assertion is proved. By the combination
of the two previous results, we can prove the assertion also for L7 ().

Theorem 3. Let A be an algebra, # € {2, ¥ In} and R, P(N) for ye I'. Then
Ve{R,;y€ T} = (U{R,;7e D).
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Proof. Clearly, R, & (UR,)" for each y € I'. By the definition, (uR,)T is transitive
and the reflexivity of R, (y € I) implies the reflexivity of (UR,)". By the proof of
Theorem 84 in [2], the reflexivity, transitivity and compatibility of R, for ye I'
imply the compatibility of (uRy)T. If R, are symmetric, it is also true for (uRy)T.
Thus also (UR,)" € (). Now, the assertion is a direct consequence of it.

Remark. For #(A), #{J} the assertion analogous to Theorem 2 or Theo-
rem 3 cannot be stated, because v, need not be constructed by the using of
operators €, T in a finite number of steps. It follows from the fact that the ((uRy)C)T
need not be compatible (see Example 2 in [5]) and ((UR,)")" need not be transitive.

Notation. Denote A, = A — {7, In}.

Definition. Let A = {4, F) be an algebra, @ # H < Ax A and & e A. Denote
by Ry(H) = n{Re P(N); H = R}. For H = {{a, b)} abbreviate R,({{a, b)}) by
Ry(a, b) and call it the principal P-relation generated by a, b

Remark. Evidently, Rx(H)e 2(A) for every ) # H < Ax A and the principal
P-relation is a generalization of a principal congruence (see [1]) and a minimal
tolerance (see [4]).

Theorem 4. Let A = {A, F) be an algebra, a, be A and P € A,. Then {x, y) €
€ Ry(a, b) if and only if

(1) there exist n-ary p € pol¥ and unary t;e pold (i = 1, ..., n) such that x =
= p(as,...,a,), y = pby, ..., b,), where fori = 1,...,n
(@) a; = tfa), b; = t(b) for Z = Comp,
(b) a; = b, or a; = t{a), b; = t(b) for ? = A,
(©) {a;, b} = {t(a), t(b)} for ? = &,
(d) a; = b; or {a;, bi} = {t(a), t(b)} for P = LT
(2) there exist ay, ..., a,€ A and unary algebraic functions (see [1]) ¢y, ..., @,
such that ay = x, @, = yand fori = 1,...,n,
© a1 = 0,a), 4 = 9b) for 2 = 3,
® {ai—la ai} = {(Pi(a), (Pi(b)}for'@ = 4.

Proof. Let Z € {Comp, #, &, LT} and R be the relation defined by (1). For
n =1, t;(x) = x we obtain {a,b)> € R. Let {x;,y;>eRforj=1,...,m andreF
be m-ary. By (1), there exist ¢},p; (j=1,...,m,i=1,...,n) such that x; =
= pi(tj (@), ..., 1} (@), y;i = Pi(t{(}), ..., 1} (b)), thus

X = r(xl 9 seey x,,) = t(pl(t:(a)s ey t:‘(a)), ey pm(tin(a), ceny tn",:.(a)))’
y = r(py(tL®), ...» s®))s .., Pu(ET(B), ..., t1(B)))

and by (1) it implies (X, »> € R, thus R is compatible on . If S is a compatible
relation with {a, b) € S, thus <z/(a), 1(b)> € S for each unary ¢, € pol¥, ie. R & S.
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Thus R = Ry(a, b) for 2 = Comp. From (1b) we can clearly prove the reflexivity
of R, from (1c) the symmetry of R and from (1d) both of these properties, i.e. R =
= Ry(a, b) for all four these 2.

For (2f) see Theorem 10.3 in [1], for (2¢) this proof can be also used.

Theorem 5. Let A = (A, F) be an algebra, Pe A and O # H< Ax A. Then
Ry(H) = va{Rg(a, b); {a, b € H}. .
Proof. As {a, b) € H implies Ry(a, b) = Rz(H), we have

Vo{Rg(a, b); a, by € H} S Ry(H).

Further, if X € Y £ R, then evidently R,(X) € Rx(Y) and Ze 2(A) implies
Rz(Z) = Z. Then '
, H = Vva{Rz(a, b); (a, by e H} € Z(N)
implies
Rs(H) € Ry(Va{Rs(a, b); <a,b) € H}) = Vu{Ry(a, b); <a, b) € H},
which is the converse inclusion.
Corollary. Let U be an algebra and P € A. Then

R = Vvz{Ry(a, b); {a, b) € R}
for each R € ().

Theorem 6. Let W = (A, F) be an algebra, ) # H< Ax A and P € Ay. Then
{x, y) € Rup(H) if and only if

(1) there exist n-ary pepol¥, unary t;epolW and {a;,b;y€e H with x =
=p(X1s s Xy ¥ =Py, ) and fori = 1, ...,n
@) x; = t(a), y; = t(b)) for ? = Comp,
(b) x; = y;yor x; = tfay), y; = t{b;) for ? = R,
©) {xi, 3} = {tad, t:b)} for ? = &,
(d) x; = yior {x;, y;} = {t(a), t:b)} for ? = LT
(2) there exist ay,...,a,€ A, unary algebraic functions ¢; and {(x;,y;ye H
(G=1,...,n)suchthat x = ay, y'=a,andfori =1,...,n
© ai_; = ofx), a; = ¢(y) for » = 4
() {ai-1, ai} = {@ix), 0.(y)} for ? = .
Proof. The assertion follows directly from Theorems 2, 3, 4, 5.
An element c of the lattice L is said to be compact, if x < v{x;; i € I} implies the

existence of finite J, & Isuch that ¢ < v{x;; i € I,}. The lattice L is called algebraic,
if it is complete and each its element is a join of compact elements.

Theorem 7. Let N be an algebra, # € Ay or ? = In and Re P(N). Then R is
a compact element of P(N) if and only if R = Va{Rs(a;, b);i=1,...,n}.
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Proof. Let Ry(a,b) = Va{R,;y€I'}. Then <a, b) € Vo{R,; y € I'} and, by
Theorem 2 or Theorem 3, there exists I'y = {y;,...,7,} & I' with <{a,b)€
€ Va{R,;y€ I'p}, thus also Ry(a,b) = Va{R,;y€ Iy}, i.e. Ry(a,b) is a compact
element in 2(A). Hence, every join of finitely many principal #-relations is a compact
element in ().

Let R be a compact element in (). By Corollary of Theorem 5, we have R =
= Vp{Ry(a, b); {a, b) € R}. As R is compact, there exists a finite subset {<a;, b;>;
i=1,...,n} < R such that R = Vu{Rs(a;, b); i =1, ...,n}, thus the converse
statement is proved.

Theorem 8. Let A be an algebra and P € Ay or P = In. Then P(N) is an algebraic
lattice.

Proof. By Theorem 1, 2() is complete and, by Theorem 7 and by Corollary
of Theorem 5, every element of () is the join of compact elements.

Theorem 9. Let A = {A, F) be an algebra, P € A, and a, be A, a # b. Then
there exists the maximal element R, € P(N) with {a, b.>¢ R,

Proof. Let #" = {Re P(N); <a, b) ¢ R}. Clearly, # # 0, because Ve ¥ .
Let 2 be a chain in {(#", =). Then S = V4{R’; R € 2} € Z(A). Evidently, S =
= U{R’; R € 9}, hence {x, y) € S is and only if {x, y) € R’ for some R’ € 2. This
implies {a, b) ¢ S and, by Kuratowski—Zorn lemma the assertion is obtained.

The aim of the rest of this paper is to show for which 2, 2’ € A the lattice ()
is a sublattice of 2'().

Lemma 3. For every algebra N, the lattice T (N) is a sublattice of the lattices
RAA), FL(N) and these lattices are sublattices of Comp(NW).

Proof. The set inclusions 7 (A) = Z(A) < Comp(A) and LT (W) < .?(QI) c
< Comp() are evident and, by Theorem 1 and 2, the join and the meet is the same
in all of these lattices.

Lemma 4. For every algebra U, the lattice ¥(N) is a sublattzce of 2AN) In(N) and
these lattices are sublattices of T ().

Proof. The set inclusions () € 2W) < T (W), € W) = In(AW) = T (N) are
evident and, by Theorem 1, the meet is the same in all of these latticeés. By Theorem 3,
Vg = Vg, thus () is a sublattice of 2(A). Let R, e ¥(A) forye 'andR =4 v |, =
= Vi,{R,;;y€T}. Then A < R, < R implies the reflexivity of R, i.e. R is a congru-
ence on U containing every R,, thus

Ve{R;veT} = v, {R,;ye T}

However, for every R, e %(2) the converse inclusion is clear, hence €(A) is
a sublattice of In(20). Analogously, the reflexivity of R, € 2(2) implies the reflexivity
of vs{R,; yeTI}, hence 2() is a sublattice of J(A). If R,en(A), R =
= Vg{R,;y€ I}, then<a, by € Riff <b,a)e v4{R;';7el}. As R, = R}, also R
is symmetric and again In() is a sublattice of J ().
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Lemma 5. There exists an algebra W such that €(N) is not a sublattice of LT (W),
2(N) is not a sublattice of A(), In(N) is not a sublattice of S (N) and T (N) is not
a sublattice of Comp().

Proof. Let A be a distributive lattice which is not relatively complemented.
By Corollary 2 in [7], there exists a compatible tolerance 7 on U which is not
a congruence. By Corollary in [4], for every distributive lattice, €() is a sublattice
of L7 (W) if and only if ¥(A) = LT (N), thus, for previous lattice W, €(A) is
not a sublattice of £7 (). Hence, as (A) is a subset of LT (A), there exist R, €
€ £T(N) such that vgs{R,; yeI'} # Vv {R,; yeI}. Then for these R, also
R, € ZN), R, e (N), R, € Comp(A) and, by Lemma 3 and Lemma 4,

VearpiRy3 YET} = Vo{R;; 7€ T} = Va{R,yel} =
= Vys{R;;yeTl} # Ve{R,;vel} = v, {R;yel} =
= Vo{R;vel} = vy{R;y€T}

Hence, the assertion is clear.

Notation. Let the circles on a diagram denote the lattices () for # € A and
fixed U and the solid line joins the circle 4 with B (where A4 is situated below B)
if and only if A is a sublattice of B. Further, if 4 is a subset of B and A4 is not a sub-
lattice of B for some algebra A, 4 and B are joined by a dashed line.

Now, we can illustrate the situation by

Comp (UX)
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Theorem 10. Let the circles on a diagram denote the lattices P(N) for P € A. Then
the following diagram shows exactly the relationship “‘to be a sublattice for every
algebra .

The proof follows directly from Lemmas 3, 4, 5.
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