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DISTRIBUTION OF ZEROS OF SOLUTIONS 
OF CERTAIN PERIODIC DIFFERENTIAL 

EQUATIONS 

MARIE JIROUSKOVA, Brno 
(Received April 23, 1976) 

Consider a differential equation 

(q) ?-q{f)y) 

where q is a continuous function on an interval (a, b) and periodic with period n, 
— oo ^ a < b S oo. If Floquet Theory gives for the equation (q) a real characteristic 
exponent ,0 > 0, we can find two independent solutions of the differential equation (q) 
in the form 

m «(0 = e"l>i(0. 
( ) f(0 = e-c'i>2(0> 

where pt, p2 are real periodic functions with period n having continuous derivatives 
up to and including the order 2, e.g. see [1]. In this paper we shall deal with the 
mentioned case. We shall investigate the distribution of all zeros of solutions of an 
oscillatory differential equation of the type (q), supposing we know the zeros of the 
solutions u, v on the interval <t0, to + *0-

First of all we determine the asymptotic behaviour of the first phase a correspond
ing to the pair of the independent solutions u, v. 

Then from the form of the asymptotic behaviour of the phase we derive the final 
results. 

The first phase a corresponding to the pair u, v is defined as a continuous function 
on the interval (a, b) that satisfies the relation 

(2) tana(0 = ^ -

everywhere, where v(t) # 0, see [1] 
The above defined function always exists and it has the two following properties: 

o) «xo- ZV*$,*°-
u (0 +» (0 
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where W(u, ̂  = const. & 0 denotes the Wronskian of u, v, and 

(4) aeC\a,b). 

Remark: Let u, v be two independent solutions of the equation (q) in the form (1). 
Let a00, ai0,..., ak0 be the zeros of the solution u and b00, bi0,..., bk0 be the zeros 
of the solution iv on the interval <f0, t0 + n). Let k g> 1. 

From the periodicity of the functions /^ , p2 all zeros of the solution u are ain = 
= al0 + nn and all zeros of the solution v are £ln = iJ0 + #fl, j = 0, 1,..., k, 
n = . . . , - 1 , 0 , 1 , . . . 

On each of the intervals < 0̂ + nn, t0 + (n + 1) n), n = ..., - 1 , 0, 1,..., zeros 
of the solutions u, v must fulfil one of the following inequalities: 
either 

(5) a0n < b0n < a10 < b10 < ... ak„lt„ < b*_i,-, 

or 

(6) b0n < a0n < bi0 < axo < ... bk-Un < ak.lt„ 

Without loss of generality (by a suitable choise of t0) we suppose that the inequality 
(5) holds. 

Definition: Let 

a+(*): = -signTf(u, v)n y + i + nfc , te(ain,ai+itn),i = 0,1, . . . , f c - 1, 

te(akn,a0t„+l)9 

:= —sign W(u, v) n[i + nfc], t = a^, i = 0, 1,..., k 

for n = ... — 1, 0 ,1 , . . . and 

oT(f) := -sign *F(w, v) n[i + nfc], te (b^ltn, bin) i = 1, 2 , . . . , fc 
te(bkn,b0n) 

: = -sign JV(w, t?)7t y + i + nfc , t = fcin, i = 0,1, ...,k, 

forn = . . . - 1 , 0 , 1 . . . 

Theorem 1: Let an oscillatory periodic differential equation (q) with real non-zero 
characteristic exponents be given. Letu, v denote two independent solutions of(q) in the 
form (1) with zeros a^^b^, i = 0 , 1 , . . . , k, n = ... — 1, 0 ,1 , . . . The phase a corres
ponding to the pair u, v has the following asymptotic behaviour: 

lim [a(* + nn) - a+(t + nnj] = 0, 
K') »-*co 

lim [a(* + nn) - <x~(t + nn)"] =0 , 
«-> — 00 
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Proof. Let g denote the positive characteristic exponent of (q). For th© phaseM 
we have 

(8) a(0 = arc tan ~ffi. - sign W(u9 v) %{i + nfc], 
v\t) 

forte(bi-.1,n9bin)9i= 1, 2 , . . . , fc, * e (bktH-l9 b0n) 

n u(t) n 
where - y = arc tan - ^ ~ S y 

Hence: 

(9) a(afn) = -s ign W(u9 v) n\i + nk\ 

(10) x(b.M) = -s ign W(u9 v) n y + i + nfc , 

for/ = 0, 1, . . . ,fc, « = ... - 1 , 0 , 1 , . . . 
Let W(u, v) < 0. Then 

144- > 0 for t G(ain, M- i = 0,1,..., fc, 
Mi) 

» = . . . , - 1 , 0 , 1 , ... 

^ - < 0 for te(bin> fli+i..)» i = 0 ,1 , . . . , fc - 1 
Pz(t) 

te(h«'ao,n+i) 

n = ... - 1 , 0 , 1 , . . . . 

From (2) we have: tan <x(t) = - ^ - e ^ y 

and 

lim tan «(* + nn)* J ^ e * * " * ^ — * 
n-*oo 

for te(ai09bio)> * ̂ O, 1, ...,fc 

hmtana(t + nrc) = l ^ e
 p 2 ( t) ~ °° 

for f6(6.0 ,a j + 1 (o)> i = 0, 1, . . . , f c - 1, 

and fe^koiaoi) 

For W(u, v) > 0 we have 

limtana(i- + / m ) - - o o f o r 'e(a.°>*.o)> i = 0 , l , . . . , f c 
n -> oo 

lim tan a(/ + JIB) = oo for ' 6 (*».'«.+i.o). i = 0 ,1 , . . . , fc - 1, 

a n d 'e(**o, f loi) 
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From the last four relations we obtain: 

(11) lim <x(t + nn) - sign W(u9v)nl-j + i + nkJ = 0 

for te(ai09bi0)9 i = 0,1, ...,fc 

for te(bt09ai+uo)9 i = 0, 1,..., k - 1 

for te (bk09a0tn+l) 

The relations (9), (10), (11) can be simply expressed in the form: 

lim [a(t + nn) - a+(t + nn)] = 0 

The relation (7) for n -+ — oo is thus proved. 
The proof for n ~» - oo is analogous. 

Theorem 2: Let w be a non-trivial solution of the oscillatory periodic differential 
equation (q)9 which is independent on the solution u and v. Let the assumptions of the 
Theorem I be satisfied. Denote the zeros of w by cin, n = ... - 1 , 0, 1,... such that 
Ci„^(ain9ai+Un)for i = 0, 1, 2, . . . , k - 1, and ckne(akn, a0 n+l)forn = ... - 1 , 0 , 
1,... 

If crse(ars9brs) for some r = 0, 1,... , k - 1 and s = ... - 1 , 0, 1, ..., then 
(ci„ ~ «i„) -* 0+ for n -> oo and (cin - bin) -> 0_ for n --> -co 

#*c„e(&,s,0 r+ l s) or ck„Us€(bk„Us9a0s+i)9 then (cin - ai+Un)-+0_ for n-+ OO 
and (cin - 6|B) -> 0+ for « -> - oo. 

Proof. According to Sturm Comparison Theorem the zeros of the solution w 
must be mutual separated with the zeros of the solution u and also with the zeros of 
the solution w. The points c^ can therefore be either only in the intervals (ain, bin) 
for i = 0, 1,..., k9 n — ... - 1 , 0 , 1 , . . . or only m the intervals (bin, ai+Un), i = 
= 0, \9...9k - 1, (bkn9a0tH+l)9 n « ... - 1 , 0 , 1,... 

On the interval (a9 b) Abel's equation is fulfilled 

a(<K0) = a(0 + * sign a'(0, 

where q> is the dispersion of the given differential equation, see again [2] or [3]. 
Hence 

a(<P*(0) = a (0 + kn sign a'(0> 

where <pk is the fc-th iteration of the function q>. 
The last equation can be transformed into the form: 

a(^*(t)) "• a ( 0 - kn sign W(u9 v). 
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We shall consider the case c„. e (a*, b^). Suppose W(uf v) < 0, Then the first phase 
a is increasing with respect to (3). We have 

(12) a(cjr) < ot(bir) « Cj + i + rkj n. 

Let cUr+n — aifr+n +* 0+ as n -+ oo. Then there exists an e0 such that cit r+n — aitr+n> 
> e0 for infinity many indices neN0. Hence we have 

<*(aitr+„ + B0) < <x(citr+n) for n € N0. 

Since aUr+n = aUr + nn, and cUr+n = (pnk(citr), we get 

a(al>r + nn + e0) < ct((f>nk(citr)) = a(c,tr) + nkn. 

Applying Theorem 1 for / := aitt. + e0 and n e N09 n -> oo, the last relation gives 

a(a{>r + g0 + nn) - a+(a|>r + s0 + nn) < 

< (x(cit t) + nkn — I — + i + (r + nk) J ft, or 

0 <; a(cfff) - / — + i + rk\n or f — + i + rk lie <J a(cifF), 

that is a contradiction to (12). Hence for the case Theorem 2 is proved. Other cases 
can be proved analogously. 

Note. On the basis of Theorem 1 and 2 can observe that for the studied differential 
equations there always exist two special solutions, u and v, zeros of which are distri
buted with the same density, whereas zeros of other (linearly independent on u and v) 
solutions cumulate near zeros of u and grow distant from zeros of v for t -* oo. 
Zeros of u are of some kind of attractors and zeros of v are accessors of zeros of other 
solutions for t -> oo. For t -> — oo the role of u and v is interchanged. 
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