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We consider the second order non-linear differential equation 

(1) x"+f(r,x,x')-=0, 

where/is a continuous real-valued function with domain [ — T, T~] x R2, T > 0. 
Further, we shall assume that all solutions of initial value problems for (1) extend 

to[-r, n 
Under the above assumptions we establish the following theorem 

Theorem 1. Assume 

(0 f(~t, -x,x') = -f(t,x xf) 

(ii) f(t, x, x') 

is locally Lipschitzian with respect to (x, x'), i.e. for each compact subset Q of R2
9 

there exists positive constants KandL (depending on Q) such that 

(2) \f(t, x, x') ~f(t,y,y') | £ K\x - y \ + L \x' - / |, 
-T£t£T. 

Then, there exists co0, 0 < w0 <£ T, such that for every, 0 < co ^ co0 Equation (I) 
has a unique solution x(t) satisfying the periodic boundary conditions 

'(-T)-'(T)- <-f)-'(f)-
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Proof. F1rst we consider Equation (1) with the following boundary condition 

(4) x(0) = x 
0) 

0. 

Let Af > 0, and N > 0 be given. Let Q = Max {\f(t, x, x')\: - F ^ t = T, 
x | S M> I x' | g N} and let G(r, s) be the Green's function 

(5) 

and 

G(í, s) = -
. ( f - s ) , O ^ g s š f 

co 0 < s < í < co 

G,(t, s) = ±-
co 

? - S , 0 < í < S < ^ -
2 ~ - - 2 

-s, 0 < s < t< (ú 

Let B = { 

on B by 

..c-fftî} I 0(0 | g M, | 4>'(r) I ̂  At}, and define the operator 5 

(6) 

Then 

(7) 

2 

(SФ) (í) = ľ G(ř, s) f(s, Ф(s), Ф'(s)) ds, 
0 

Oì 

~2 

(SФ1) (í) = ľ C,(í, s) f(s, Ф(s), Ф'(s)) às. 

I(S*)(0I š ^ - Q š M, |(S*')(0I = f C = N. 

Hence S maps 5 continuously into itself provided 

(8) co < Af , inf {&"*%• 
Let K and L be the Lipschitz constants for / corresponding to the compact set 

Q e R2 

Q = \(x, x'):\x\£M,\x'\^N}. 

If for «ře5, we let | | <ř || = Max11 <ř(ř)|, | <ř'(í) | : f e JO, y 11 , 
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show that S is a contraction with respect to |l • II on B provided that co is chosen so 
that 

(9) ^ - ( K + L ) < 1 , f ( K + L ) < l . 

Hence, if co satisfies both (8) and (9), then (1), (4) has a unique solution x(t) with 

I x(t) | S M9 | x'(t) \^N. 

Now, since -f(-t9 -x9x') =/(t, x, x'), so by (1) if z(t) = - x ( - t ) then z(t) 
is also a solution of (2), and since by (4) z(0) = -x(0) = x(0), z\t) = x'(-t)9 and 

z'(0) = z'(0), it follows from the uniqueness that x(t) = -x(-t) for - — ;=/:= 

< — . Therefore 
~ 2 

and 
•T-'Ť-'Í 

co \ , co 

which proves Theorem 1. 

Corollary 1. With the assumptions of Theorem 1 assume f(t9 x9 x') to be periodic 
of period co, i.e. 

f(t + co, x, x') = f(t9 x, x') 

Then Equation (1) possesses a unique periodic solution of period co. 

Proof. Define x(t) as before on the interval I — —-, 0 I by the equality x(—t) = 

= — x(t) and continuous over the whole interval (—GO, +OO) as a periodic function 
with period co. Then by (i) and (4) it is easy to show that x(t) is a periodic solution 
of Equation (1); see for example M. A. Krasnosel'skij (cf. [4], pp. 313—314). 

Let us now consider a few applications of Theorem 1. 
(At) We consider the equation 

(10) x" + g(x) = p(t). 

Let p(t) be continuous and g(x) locally Lipschitzian in x. Further, assume 

-g(-x) =g(x)9 - p ( - 0 =p (0 

for all x and t. Then there exists an coQ > 0, such that if p(t) is periodic of period 
o, U < co ̂  co0, Equation (10) has a unique periodic solution of period co. 
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Example 1. We consider 

(11) x' + x3 = sin2t 

Letf(/, x) = x3 - sin2 f, and M > 0 be given. Then Q = Max {|f(r, x)\:0 <t £n9 

I * I _§ M} = M3 + 1 and the Lipschitz constant L corresponding to the compact 
set Q = {x: | x | <; M} is equal to 3M2. Therefore from inequalities (8) and (9) 
we obtain 

2 2 

— (M3 + 1 ) ^ M and 3 — - M 2 < 1 . 

Now, the above inequalities are satisfied for many values of M, for example M = —. 

Therefore Equation (11) possesses a unique periodic solution x(t) of period n such 
that | x(t) | = M. 
(A2) We consider Equation 

(12) x" + f(x) x'n + ax = p(t), a e K, » ^ 0. 

Let p(0 be continuous and f(x) locally Lipschitzian in x. Furthermore, assume 

-/(-*)= f(x), ~p(-t)=p(t) 
for all x and t. Then there exists an co0 > 0, such that if p(l) is co-periodic, 0 < to ̂  

g co0, Equation (12) has a unique periodic solution of period co. 
(A3) We consider the forced Lienard's equation 

(13) x" + f(x, x') x' + g(x, x') = p(t). 

Letp(0 be continuous andf, g locally Lipschitzian in x and x'. Furthermore assume 

- f ( - x , x') = j (x, x'), -g(-x, x') = g(x, x% -p(-t) = p(t) 

for all x and /. Then there exists an co0 > 0, such that ifp(l) is periodic of period co, 
0 < co <£ c00, Equation (13) has a unique periodic solution of period co. 

Acknowledgement: The author wishes to thank the referee for his many valuable 
suggestions. 
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