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ARCH. MATH. 3, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
XIV: 145—154, 1978 

CHARACTERIZATIONS OF CERTAIN MONOUNARY 
ALGEBRAS 

(Part II) 

JAN CHVALINA, Brno 

(Received December 2, 1977) 

This is a continuation of the paper [5] where definitions of used notions and 
other necessary details can be found. 

3. R E D U C E D M O N O U N A R Y c-ALGEBRAS 

We shall introduce first a certain modification of the construction described 
in [11] p. 228 (Def. 2.7) which we use for the definition of a reduced monounary 
c-algebra. 

Let (A,f) be a connected monounary algebra such that R(A,f) = 1, and (B, g) 
a connected monounary algebra with A n B = 0. Let c e B®. Then (A,f) © c (B, g) 
denotes a monounary algebra (C, h) defined in this way : C = B u (A — A™2) 
and for every x e C it holds 

h(x) = 
f(x) for x є A - (Aў> u Гl (A7% 
c for xєf-^Aў^-Aў*, 
g(x) for x є B. 

3.1. Definition: A connected monounary algebra (A,f) is said to be reduced 
if it has exactly one of the following forms: 

0 / 2 =/(--e. 0 4 '/) i s idempotent), 
(ii) Either A = A?* or A = A?1 u A°f, where (Afl, £f) is a chain of the 

type co* © co0 and A°f # 0. 
(iii) (A,f) = (At ,fx) ©c (Al2 Jz), whereft is a constant mapping and (A2 f S/2) 

is a chain of the type coQ with the first element c. 

The below stated first characterization of a reduced c-algebra (Theorem 3.6) 
is given by the use of the endomorphism semigroup. We shall prove three lemmas 
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first. We say that a transformation semigroup S(A) s T(A) acts transitively on the 
set A if for every pair of elements a, be A there exists fe S(A) such that/(a) = b. 
An ideal I of a semigroup S is said to be half-prime if rad / = /• F b r / e T(A) we 
put </>' = </> _ {idx} and 5(/) = </>. <Id C(f)}. Let S be a sybsemigroup 
of T(A). In accordance with [6] we denote it by S1 if S is a monoid (i.e. if it contains 
an identity), and in the opposite case S means S u {id^}. Thus </>' = </> = 
= </>. A principal ideal of S generated by fe S is denoted by Is(f), if it is danger 
of confusion. Evidently, for a principal ideal there holds Is(f) = Sx . / . Sl (see [6] 
p. 21). 

3.2. Lemma. Let (A,f) be a monounary c-algebra, A ^ Af2. Then A = Af1 iff 
the monoid C(f) acts transitively on the set A. 

Proof. Let A = Af\ a, be A. For every n e N0 it holds Sf(f
n(a)) = Sf(f

n(b)) = 
= oo x thus by Proposition 1.4 [5] there exists an endomorphism g of the algebra 
(A>f) such that g(a) = b, i.e. the monoid C(f) acts transitively on the set A. 

Assume the last condition is satisfied. Since for each endomorphism g of (A,f) 
and xeAf

2 there holds g(x) e Af
2, (Af* = 0), we have R(A,f) = 0. Further, 

by Lemma 2 . 8 [ 1 3 ] x e A , g e C(f) implies S/x) ^ Sf(g(x)), thus A£ = 0, hence 
Sf(x) = oox for each x e A, i.e. A = A^1. 

It is easy to see that Lemma 3.2 is contained in Theorem 1 [18], part (a), but 
the proof is based on some other considerations. 

3.3. Lemma. Let (A,f) be a c-algebra with R(A,f) g 1 and such that </>' is 
an ideal of C(f). Then x, ye A, S(x, y) = 0 is followed by f(x) = f(y). 

Proof. Suppose on the contrary, there exists a pair of elements x, ye A with 
5(x,y) = 0 and/(x) = /(y). If Af

l ¥= 0, then we denote by a such an element 
of Af

l that 5(a, x) = 0 and by b an element of the set {x,y} with f(a) =f(b). 
Since Sf(f

n(a)) = oOj J> Sf(f
n(b)) for each « e N 0 , by Proposition 1.4. [5], there 

exists an endomorphism g of the algebra (A,f) with the property g(b) = a. Then 
f-g(b) = /*(£) for any keN0, thus / . g$ </>', which contradicts the inclusion 
< / > \ C ( / ) £ < / > ' . 

Let yi** = 0. Denote by a, b elements of A with properties/(a) ^ f(b),f2(a) = 
= f2(b) and <5(a, b) = 0. It is evident that such a pair exists. By the definition of 
a degree (1.16. [11]) there exist elements x0, xx e (d]f with Sf(x() = i for i = 0, 1 
and /(JC0) = Xj. Since fk(x0) <ff

k(b) whenever k ^ 2, it holds S^fixo)) ^ 
g Sf(f

n(b)) for each n e N0. By Proposition 1.4 [5] there exists a mapping h e C(f 
with the property h(x0) = 6. Then / . h(x0) =f(b) ¥" fk(x0) for any k e N0 thus 
/ . A£ </>' which contradicts the supposition that </>' is an ideal of C(f) again. 
Consequently, 5(x, y) = 0 is followed by f(x) = f(y), q.e.d. 

Notice that the converse of the above assertion is not true. The implication 
converse to that stated above (in Lemma 3.3) is true only under some additional 
conditions, e.g. R(A,f) = 1 or Af1 = 0. 
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3.4. Lemma. Let (A,f) be a c-algebra with card A ^ 2 and R(A, f) g 1. The 
following conditions are equivalent: l°(A,f) is either an idempotent c-algebra or 
(A,f) = (Ax , / i ) ®c (A2 , / 2 ) , where (A1,fi) is an idempotent c-algebra and(A2, ^ / 2 ) 
is a chain of the type o)0. 2° </>' is a half prime ideal in C(f) andf2 ¥> fimplies 
card<f>' = K 0 . 

Proof. Assume condition 1° is satisfied. If geC(f) then for arbitrary aeA 
either g(a) = /"(<*) with a suitable « e N 0 or 8(a, b) == d(g(a), b) for each be A. 
Thus for every positive integer n we have/". g = g .fne <f>', hence </>'. C(f) = 
= C(f). </>' = </>', i.e. </>' is a proper ideal of the monoid C(f) and at the 
same time radC(/) </>' = {ge C(f) : gn e </>' for some integer n) = </>', i.e. </>' 
is a half-prime ideal of C(f). I f / is not idempotent then in our case/* = / * + 1 for 
each keN0 and we have card </>' = K0. Therefore condition 2° is satisfied. 

Suppose assertion 2° holds. Since </>' is an ideal of C(f) it holds by Lemma 3.3 
that x, ye A, 5(x,y) = 0 is followed by f(x) =/(y) . Admit that simultaneously 
Af1 # 0, Af

2 = 0. The constant mapping h of A onto the cyclic element of (A,f) 
belongs to C(f) and for every pair of positive integers n, m it holds gn .fm = 
= g$ </>'• This is a contradiction, thus either Ajl = 0 or A?2 = 0. Admit that 
Af

l = 0. Let a, be Af1 be a pair of elements with/(b) = a. Since Af
2 = 0, thus 

S^OOeOrd for each xe\b)f, by Proposition 1.4 [5] there exists geC(f) with 
g(a) = b. Then/. g£ </>', which is a contradiction. Hence Af

x = 0. Now, admit 
that there exists an element q e A°f with Sf(f(a)) ;> 2. With respect to Lemma 3.3 
and the assumption we have R(A,f) = 1 iff/2 = / . Hence/2 ^ / i s followed by 
Sf(x) e Ord for each x e A. Let b e A°f n (/(a)] / be an element with Sf(f(b)) = 1 
and/(b) = /(a). Such an element b exists with respect to the definition of a degree Sf 

and Sf(f(a)) = 2. Then Sf(f
n(b)) = Sf(f

n(a)) for every H G N0 and again by 
Proposition 1.4 [5] there exists h e C(f) with h(b) = a and h(x) e [x)y for each 
x # b. Then h £ </>' but for an integer k such that/*(b) =/(a) it holds A2 = / * 
thus h e radC(/) </>' which contradicts the assumption. Consequently the algebra 
(A,f) has one of the forms described in 1°. 

Remark. If (A,f) is a c-algebra such that x,yeA, d(x, y) = 0 is followed by 
/(*) = f(y) then the monogenuous semigroup </>' is a proper ideal of the semi
group S(f). Indeed, </>' is a subsemigroup of S(f) and ge <Id C(/)>, keN 
implies fk.g~g.fk =/*. Then it holds </>'. <Id C(/)> = <Id C(/)> . </>' = 
= </>' and we have </>'. S(f) = </>' = S(f). </>'. 

3.5. Lemma. Let (A,f) be a c-algebra with Af1 =0,ge C(f). For every element 
xeAitholdsd(x,g(x))SO. 

Proof If R(A f) > 0 t h e n xeAf2 implies g(x)eA?2 by Lemma 2.8 [13]. 
Then <5(x *frfl - 0 for every xeAJ2. If we admit that there exists an element 
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for the integer n =deg(a) there holds g(fn(a))$AJ2 while fn(a) e A?\ Thus 
8(x,g(x)) ^ 0 for each xe A in this case. Let R(A,f) — 0. Admit there exists 
a e A with S(a, g(a)) > 0. If g(a) <fa then for some n there holds fn(g(a)) = a and 
by Lemma 1.19 (a) [11], Sf(a) = Sf(g(a)) 4- n > Sf(g(a)) but with respect to 
Lemma 2.8 [13] it is Sf(a) S $f(g(a)), which is a contradiction. If g(a) \\f a then 
we denote by n0, m0 the least integers having the property fno(a) =fmo(g(a)) and 
we put b =fno(a). Clearly, n0 < m0. Then we haveg(b) = g(fno(a)) =fn°(g(a)) <f 

<ffno(g(a)) = b and we get a contradiction in the same way as above. Hence 
x e A, g e C(f) is followed by S(x, g(x)) S 0. 

3.6. Lemma. Let (A,/) be a c-algebra with R(A,f) = 1. Then A = A?1 u A?, 
where (-4/1, .= /) w a chain and A°f ^ 0 iff </>' is an infinite proper ideal of S(f), 
the monoid <Id C(/)> is non-trivial and to each g e </>' there exists h e C(f) with 
g.heldC(f). 

Proof. Let A = Ap u Af, (Ap, <*f) be a chain and A? # 0. Every element 
a e ^ 1 is a fixed point of each geC(f), thus <Id C(/)> s C(f) and further 
<Id C(/)> . </>' = </>'. <Id C(/)> = </>' consequently </>'. S(f) = </>' = 
= S(f) . </>'. Since A°f # 0, there exists g e <Id C(/)> which is different from \dA. 
(E.g. g(x) = x for x 6 A]?1, g(x) = j e Af1 for xe Af and for j such that <5(x, j>) = 
= 0). Let g e < / > ' be arbitrary, neN such that g =fn. Consider an arbitrary 
element a e A and put at = a if a e Af

l and if a $ Ajl then denote by ax an element 
of Af

l satisfying the condition <5(a, at) = 0 . Further, denote by b an element of 
Af

l with fn(b) = at. Since Sf(f
k(b)) = o^ for each k e N0, by Proposition 1.4 [5] 

that there exists an endomorphism h of (A, / ) with h(a) = b. Then g(h(a)) = g(&) = 
= fn(a) = #!• With respect to the construction obtained in Definition 9 [13], for 
each xe A there holds S(x, g . h(x)) = 0. Since g .he C(f) and g(h(x)) e Af

l we 
have g.held C(f). 

Now, we shall prove the converse implication. Suppose first R(A,f) = 1, 
AT = (z/}- Admit Af1 # 0. Then/, h e Id C(f) iff h is a constant transformation 
with the value zf, thus h ^ fn for each « e N 0 which contradicts the condition 
</>' • S(f) = </>'. </> . <Id C(/)> s </>'. Thus A;1 = 0. Suppose the set 
{n e N: n = deg (x), x e Af} is unbounded. Then by Lemma 3.5 we have f. he 
e Id C(f) iffh(x) = zf for each x e A, a contradiction again. Assume on the contrary 
there exists ae Af with the property deg (x) ^ deg (a) for every x e AQ

f. Putting 
n = deg (a) we get/n + k = / w for each k e N0, hence the semigroup </>' is finite. 
This contradicts the supposition, hence R(A,f) = 0. Admit AJl = 0 . Then clearly 
for each g e Id C(f) and every xe A there holds <5(x, g(x)) = 0. Thus according to 
Lemma 3.5 we get/ , h $ Id C(f) for every h e C(f), hence 4̂J1 ^ 0. Assume there 
exists an element a € A such that for a suitable be Af1 with <5(a, 6) = 0 the equality 
fk(a) =fk(b) implies k J> 2. Denote by g an endomorphism of (A,f) satisfying 
the condition g(a) = b. Since </>'. S(f) £ </>' there exists a positive integer n 
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with the property f.g(a) = fn(a). But f. g(a) =f(b) # /*(a ) for each keN0. 
This contradiction shows that (Af\ <^f) is a chain of the type co0 © c00 and A =-
= Af1 u Af. Since Id C(f) is non-trivial, the set A°f is non-empty. 

3.7. Theorem. Let (A,f) be a monounary c-algebra having at least two elements and 
such that R(A, / ) = I. Put S(f) = </> . <Id C(/)>. The algebra (A, f) is reduced iff 
exactly one of the following conditions is satisfied: 

1 ° The monoid C(f) acts transitively on the set A. 
2° </>' is an infinite proper ideal of S(f) and either it is a half prime ideal of 

C(f), where f2^f implies card (f/ = K0, or the monoid <Id C(/)> is 
non-trivial and to each g e </>' there exists h e C(f) with g . held C(f). 

P r o o f follows from Lemmas 3.2, 3.4 and 3.6. 
Notice that if (A, / ) is a reduced c-algebra with Af / 0, i.e. the so called ordinal 

part is non-void, then the semigroup </>' is a principal ideal generated b y / i n the 
monoid S(f). Indeed, by Lemma 3.6 and the above remark we have 
</>' . <Id C(/)> = <Id C(/)> . </>' = </>'. Then IS(f)(f) = Sl(f) . / • W ) = 
= S(f)./. S(f) = </> . <Id C(/)> . / . </> . <Id C(f)> = </> . <Id C(/)> . </>' x 
x<IdC( / )> = < / > . < / / = < / > ' . 

The following theorem contains a characterization of a reduced c-algebra 
expressed in terms of groupoid using the binary operation Vf. 

3.8. Theorem. Let (A,f) be a monounary c-algebra such that R(A,f) S 1» 
card A = 2. The algebra (A,f) is reduced iff exactly one of the following conditions 
is satisfied: 

1° (A, Vf) is an ideal-simple groupoid without idempotents. 
2° (A, Vf) is a commutative groupoid containing the least proper ideal I such that 

(A\I, Vj) is a BD-groupoid and if I = 1(a), ae A then A = Iu ^Ja and 
Id (A, Vf) # 0 is followed by Id (A, Vf) = L 

Proof. Let (A,f) be a reduced c-algebra, card A = 2. Suppose first that (A,f) 
has the form (i) from Def. 3A, Af

2 = {zf}. Since x Vfzf =f(x) = zf = zf Vfx 
for every element x e A, the singleton {zf} is the least proper ideal of the groupoid 
(A, Vf) and the factor-groupoid (A/{zf}, Vf) is isomorphic to (A, Vf). Putting 
/ = {zf}, we get by Lemma 1.3. [5] that (A//, V7) is a BD-groupoid. Since xe 
e A — / implies x Vfx = f(x) = zf it holds A = y/zf = / vj sjzf. The commutat-
ivity of the operation Vf is evident in this case. Thus (A, Vf) satisfies the condition 2°. 

Suppose that the algebra (A,f) satisfies condition (ii) from Definition 3.1. If 
A = Af1 then for every element xeA it holds x Vfx = / ( x ) = x. Admit that 
(A, Vf) contains a proper ideal L For arbitrary ae A — / there exists be A, b # a 
with / ( i ) = a. Since xe I implies f(x) = x Vfx e I, i.e. / is a subalgebra of (A,f), 
and since (A,f) is connected, there exists k e N0 with/*(6) e L From the definition 
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of an ideal it follows a = f(b) = b Vff
k(b) e I, which is a contradiction. Thus the 

groupoid (A, Vf) is ideal-simple. 
Assume A = Af

l u A°f, where (Af\ Sf) is a chain (of the type cot © <*>o) a°d 
A°f # 0. Since a e A, be A, S(a, b) = 0 is followed by the alternative f(a) = f(b) 
or a = b, the groupoid (A, Vf) is commutative. For each element x e A there is 
f(x) e Af

l thus a Vfx e Af1 for every pair of elements a e Af \ x e A hence Af1 is 
an ideal of (A, Vf). Admit that there exists an ideal / of (A, Vf) with / $ Af1. Let 
ae Af1 — /. If it were fn(a) $ I for each « e N then there would exist a natural 
number k and an element bke I such thatf*(£*) = a. Let k be the least integer with 
this property. Then bh e I, f(bh) $ I and thus bk Vfa $ I, which is a contradiction. 

Assume there is an integer m0 _• 1 with fmo(a) e I. Let be A, f(b) = a. Then 
bVff

mo(a) =f(b) = a $ I, which is a contradiction again. Therefore Af1 is the 
least ideal of the groupoid (A, Vf). Clearly, Af1 contains more than only one gener
ator. Denote by (AjAf1, V) the corresponding factorgroupoid of the groupoid 
(A, Vf). Then for a suitable idempotent c-algebra (B, g) we have (AIAf\V) = 
£ (B, Vg) thus (A/A J1, V) is a BD-groupoid by Lemma 1.3 [5]. 

Suppose that (A,f) satisfies condition (iii) in Definition 3.1. Without loss of 
generality we can suppose that Ax ^ 0. It is easy to see that A2 is a principle ideal 
of (A, Vf) generated by the element c. Since A2 - {c} is not an ideal of (A, Vf) (if 
ae A — A2, be A2 then a Vfb = f(a) = c) and A2 — X, where X c. A2,c$X, 
is not any carrier set of a subgroupoid we have that A2 is the least ideal of (A, Vf). 
Further (A/A2,V)=* (Al,Vfi), where (Al9f1) is a c-algebra from (iii) def. 3.1, 
thus by Lemma 1.3 [5] (A/A2,V) is a BD-groupoid. Let be A - A2 = A°f. 
Then & Vfb =f(b) = c, i.e. A = / u ^/c where / = A2 = /(c) — the principal 
ideal generated by the element c. Therefore the condition 2° is satisfied again. If 
Id (A, Vf) # 0 then Id (A, Vr) = {zf}, where zf is the only cyclic element of the 
c-algebra (A,f). Since (A,f) is reduced, it holds f2 = f hence / = {zf}. 

Now suppose that (A,f) is a c-algebra such that R(A,f) S 1- card A = 2 and 
(A, Vf) is an ideal-simple groupoid without idempotents (i.e. 1° holds). Then 
clearly R(A,f) = 0. Admit A°f = 0. Let a e A?. Put B = A - {a}. If x e A, y e B 
are arbitrary elements then x Vfy e B, y Vfx e B for f(A) £ 5, thus B is a proper 
ideal of (A, Vf) which contradicts the assumption. Hence A = Af\ 

Suppose the groupoid (A, Vf) satisfies condition 2° where / is a principal ideal 
generated by a e A. If R(A,f) = 1 then denoting by zf the cyclic element of (A,f) 
and with respect to the minimality of /, we get / = {zf} and for each x e A it 
holds f(x) = zf Vfx = zf, thusf2 = f Hence condition (i) from Definition 3.1 is 
satisfied. 

Let R(A,f) = 0. Then Id (A, Vf) = 0. 
Suppose Af * = 0 . From the commutativity of the groupoid (A, Vf) it follows 

that for each xeA the setf_1(x) - Af contains at most one element. Indeed, 
x* y ef~ (a) — Af, x # y implies the existence of a pair of different elements xt e 
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ef \x), yler1(y) such that xA Vfyt = f(yt) = y ± x = f(xx) - yt Vfxt. 
Then for each element x e A by the definition of Sf it holds -S/x) < coQ, thus with 
respect to the connectedness of (A,f) there is aeA with 0 &f~x(a) s 4 / . 
Consider the set / = {fk(a): k = 0, 1, 2, . . .} . Since f(x) e / for every x e ̂ , / is an 
ideal of the groupoid (A, Vf). It can be easily shown, similarly as in the first part 
of this proof, that / is the least ideal of (A, Vf) and the factor-groupoid (A/1, Vx) 
is a BD-groupoid. The ideal / is a principal ideal generated by the element a, thus 
for each x e A with x ^ fn(a), neN0 from A = / u <Ja it follows/(x) = x V/X = a. 
Therefore the algebra (A,f) is of the form (iii) from Definition 3.1. 

Let A & Af
 l 7-= 0. Admit / = 1(a), where a e A. If b e A is an element with the 

property <5(a, b) > 0 then for each JC e / it holds <5(x, &) > 0 because 1(a) = 
= {/*(a): k = 0, 1, 2, . . .} , thus x Vr6 = f(b) ± f\a) for each n e N0 , i.e. x V7& £ /, 
which is a contradiction. Consequently the ideal / is not principal. Admit there 
exists an element x e Af with/(x) £ Af

 l. Then there exists yeAf1 with d(x, y) = 0, 
f(x) T* /O) consequently x Vfy = /(v) # f(x) = ,y V/X, which contradicts the 
commutativity. Hence f(Af) c Af

l. It follows also from the commutativity of 
the operation Vf that if x, y e Af \ S(x, y) = 0, then x = y. Thus A ~ Af* u Af9 

where (-4/1, g / ) is a chain, i.e. the algebra (A,f) is reduced. The proof is complete. 
We shall formulate another characterization (similar to Theorem 2.5 [5]) of 

a reduced c-algebra using notion of a weak radical in a groupoid (defined in 
§ - [5]). The following theorem is a certain modification of the preceding one. 

3.9. Theorem. Let (At,/) be a monounary algebra minimal c-algebras of that are 
singletons and card A ^ 2. Then (A,f) is a reduced c-algebra iff the grupoid (A, Vf) 
is either left ideal-simple without idempotents or it contains a proper minimal ideal I 
such that 

a) radw/ = At, 
b) each element of I which is not the only generator of I possesses the unique square 

root in (I, Vf), 
c) if I is a principal ideal generated by ae A then x e /, x # a is followed by <Jx c / 

in (A, Vf). 

Proof. Suppose (A,f) is a monounary algebra such that the groupoid (A, Vf) is 
left ideal-simple and does not contain idempotents. Since for every two components 
(Ai,fi), (A2,f2) of a monounary algebra (A,f) and for a e Al9 b e A2 there holds 
a v / * = /(*)*• b V/a = f(a) (by the assumption R(At,fi) <; 1, i = 1,2), the algebra 
(A,f) is connected. Hence condition 1° in Theorem 3.8 is satisfied. Suppose that 
(A, V/) contains a minimal proper left ideal /with radw/ = A and / is not principal. 
Since each component of (A,f) is a left ideal of (A, Vx) and the set [#"] is contained 
in the component containing a for each «eN,we get again that (A9f) is connected. 
It holds/(a) = a Vf[an~1'] e [a"] for every integer n ^ 2. Then [a*] c / for some 
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n ^ 2 is followed byf(a) e /, consequently A — / = A°f with respect to the minimal
ity of the ideal /. Since each x e I has the property card (y/x n /) = 1, by Theorem 
2.5 [5] (/,f/) is a nested subalgebra of (Al,f); it is a two-way infinite chain. Then 
A = Af u y*/1, where Af* = /, thus (A,f) is a reduced c-algebra. If moreover 
/ = 1(a) then evidently (/,f/) is a one-way infinite chain and A — / = y/a. Then 
(A,f) is of the form (iii) from Def. 3.1 thus (A,f) is reduced, too. From / ^ 
# Id (A, Vf) 7-= 0 it follows R(A,f) = 1 and for the cyclic element zf of (A,f) it 
holds card yjzf = 2, which is a contradiction. Condition 2° from Theorem 3.8 is 
satisfied, therefore (A,f) is a reduced c-algebra. 

Now suppose that (A,f) is a reduced c-algebra. If A = Af ! then the groupoid 
(A, Vy) is ideal-simple by Theorem 3.8 and since x, y e A, x ^ fy implies x Vfy = 
= y Vyx we get easily that (A, Vy) is left ideal-simple. Further Id (A, Vf) = 0. 
Assume A ^ Af^1* Then condition 2° from Theorem 3.8 is satisfied. Let / be a 
proper ideal considered in 2° Theorem 3.8. Suppose / is not principal and a e 
e A — /. Since x e /, x ^ fy is followed by y e /, there exists b e I such that a < fb. 
Then <5(a, b) < 0, a 1 fa = f(a) = a Vfb e I and [a*] c / for each integer n ^ 2. 
Then a e radw/, i.e. radw/ = A. Let a e I. Since (A, Vf) is commutative, we have 
that x,ye A, S(x, y) = 0 implies f(x) = f(y). From the minimality of / it follows 
that (/, fi) is a nested c-algebra (it is a two-way infinite chain). According to 
Theorem 2.5 [5] with respect to the fact that Id (A, V,) # 0 implies / = Id (A, Vr), 
we get that each element of / possesses the unique square root in (/, Vr). Let / = 
= 1(a), ae A. Similarly as above we get that radw I — A and x e I implies card 
(y/x n /) = 1. Moreover, from the equality A = / u y/a it follows that xe I9 

x ^ a implies y/x cz /, q.e.d. 
The author is indebted to Dr. Oldfich Kopecek, CSc, for his valuable remarks 

to the present paper. 
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