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OPERATIONS ON GRAPHS DETERMINING 
CONGRUENCES ON GRAPHS 

JUHANI NIEMINEN, Oulu 
(Received August 15, 1977) 

The purpose of this paper is to characterize by means of concepts and operations 
of graph theory partitions of the elements of a finite modular lattice H that determine 
congruence relations on H. By the aid of the characterization we construct thereafter 
a class of congruence relations on graphs. We recall first some concepts of graph 
theory and apply thereafter them to the Hasse diagram of H in order to obtain the 
characterization. 

We shall consider finite undirected and connected graphs G = (P(G), L(G)) only 
without loops and multiple lines, where P(G) is the set of points of G and L(G) 
its set of lines. SP is a mapping P(G) xP(G) -> 2P(G) defined as follows: 

SP(x, y) — {z | z e P(G) and z is on a shortest path joining x and y in G}. 

We shall call SP a binary operation on P(G), although the mapping induced by the 
operation is a one-to-many mapping, as the name operation helps us to find some 
useful analogies we shall apply. In particular, {x, y} c SP(x, j;) and SP(x, x) = {x}, 
x, ye P(G). In general, let U and W be two subsets of P(G), then SP(U, W) denotes 
the union of the sets SP(u, w), where ueU and we W; formally SP(U9 W) = 
= {z | ze SP(u, w)for some u andw,ueUand we W}. A set U c P(G) is called an 
ideal of G, if U & 0 and SP(U, U) = U. By the notation SP"(x, y) we denote the 
operation SP(SPK'1(x9y)9 SP^'fey)). Thus SP2(x,y) = SP(SP(x, y), SP(x, y)). 
As we consider finite graphs only, there is for any pair x, ye P(G) a value of n such 
that SPn(x, y) is an ideal of G. The graph of Figure 1 illuminates the case where 
SP2(x, y) is not an ideal of G but SP3(x, y) is. It is important to construct from a pair 
x, y e P(G) an ideal of G by means of sequential applying of the SP-operation and 
in order to use a brief notation, SU(x, y) denotes the ideal obtained from x, y by 
applying the SP-operation enough many times. 

Ideals of graphs and the SP-operation were introduced in [4] and briefly considered 
in [5]. These concepts are natural generalizations of corresponding concepts defined 
for trees by Nebesky in [3]. 
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In this paper we consider the Hasse diagram of a lattice H as an undirected graph 
and denote it by GH. Lemma 1 and Theorem 1 are proved in a more general form 
than we need later. A lattice H is locally finite, if its every interval is finite. 

Lemma 1. Let H be a locally finite lattice. Then SU(x, y) = [x A y, x V y] for 
any two elements x, ye H if and only if H is modular. 

Proof. If If is modular, then according to the metric properties of finite modular 
lattices, x Ay, xV yeSP(x,y) (see e.g. Draskovicova [1]). As the lengths of any 
two chains between a and b in a finite modular lattice are equivalent when a < b, 
each z e [x A y, xV y] belongs to a shortest path from x A y to x V y and so z e 
e SU(x, y). Obviously SU(x, y) £ [x A y, xV y], and thus SU(x, y) = [x A y, 
x V y). 

Let II satisfy the condition of the lemma for any pair x,yeH. If H were non-
modular, then it contains the well known non-modular sublattice (in Figure 2 the 
sublattice of elements a, b, c, d, e), where the set {a, b, c) = SU(b, c) ^ [a, e] = 
= [b A c, b V c]. This completes the proof. 

Now we are ready to prove the characterization. 

Theorem 1. Let Hbea locally finite modular lattice and £ = {Cl9..., Cm} a partition 
of its elements. £ is a congruence partition of H with respect to the operations VandA 
on H if and only if the condition (A) holds. 

(A) Ifx,yeCi and a, be Cj in £, then SU(x, a) n Ck ̂  0 holds for some k in GH 

if and only if SU(y, b)nCk*& holds, 1 = k = m. 
Proof. Assume that £ is a partition of the points P(GH) such that SU(x, a) n Ck ^ 

T* 0 if and only if SU(y, b) n Q 7-= 0. We show that I? is a latticecongruence on II, 
with the classes Ct, ...,Cm. Clearly R is reflexive, symmetric and transitive. Thus it 
remains to show the compatibility of R, i.e. to show that xRy implies x A zRy A z 
and x V zRy V z for any zeH. Moreover, if qRp oq A pRq V p, we may assume that 
x S y-

Let x < y (the case x = y is trivial), xRy and zeH. Thus x V z ^ y V z. We 
assume that in the partition £ of IIx: V z and y V z belong to different sets of £. As 
xSy^(xVz)Sy and yRx, y A (x V z) Ry holds, too. The relations y V zRy V z 
and yRx imply that (A) holds for SU(y V z, y) and SU(y V z, x). x V z e SU(y V z, x) 
and we assume that .xVzeQ.As.rVz < yV z, XV z<£ SU(y V z, y). Then accord
ing to (A), SU(y V z, y) n Ch # 0, and let t be the greatest element of the set 
SU(y V z, y) n Ch; such an element exists as SU(y V z, y) is finite and for any two 
elements of SU(y V z, y) (of C*), SU(y v z, y) (Ch) contains the join of these elements. 
But x V z V t e Ch and x V z V t = y V z, whence xV zV te SU(y V z, y). Thus we 
can assume that xV z ^ t, and as t e SU(y V z, y), t = y. But then yVxVz = 
= yv z <J t, whence yVz,xVzeCh, which is a contradiction. Hence yV z,xv ze 
€ Ck for some value k of i. The proof is similar for y A zRx A z. 

Conversely, we assume that £ generates a latticecongruence on II. Let x,yeCi9 
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a, be Cj and / / j . Accordingly, we may assume that x 2g y and a S b. As R is 
a congruence relation on H, y v bRx v a. If there is an element qe Ck, y £ q g 
£ yv b, then x £ q A(xV a) S xV a, q A(xV a) Rq and thus q A (xV a)e C}. 
By applying this technique to the intervals [y A *, y V 6] and [x V a, x A a'] we see 
that the condition (A) holds for SU(y, b) and SU(x, a). The proof is similar for 
SU(x, b) and SU(y, a). This completes the proof. 

As the example of Figure 2 shows, a partition of a non-modular lattice H satisfying 
the condition (A) need not be either a A-congruence or a V-congruence on H. 

In the next theorem we show how the condition (A) generalizes by a natural way 
the construction of compatible tolerances on graphs introduced by Zelinka in [7]. 

We call a binary, reflexive, symmetric and transitive relation R on a, graph a 
SU-compatible congruence relation on G when aRb and xRy imply SU(a, x)RSU(b,y). 
The notation SU(a, x) RSU(b, y) means that for any z e SU(a, x) there is a point 
u e SU(b, y) such that zRu, and for any w e SU(b, y) there is a point v e SU(a, x) such 
that vRw. 

Theorem 2. Let £ be a partition of the pointset P(G) of a graph G = (P(G), L(G)). 
The relation R given by £ determines a SU-compatible congruence relation on G if and 
only / / £ satisfies the condition (A). 

Proof. If £ is a partition of P(G) such that the relation R given by £ satisfies the 
condition (A), the SU-compatibility of R follows directly from (A). The converse 
proof follows similarly directly from the definition of the SU-compatibility. 

By using the terminology of Theorem 2, we can say, according to Theorem 1, 
that R is a latticecongruence on a finite modular lattice H if and only if R is 
a SU-compatible congruence relation on GH. 

We obtain also a characterization of finite modular lattices as given in the next 
theorem. 

Theorem 3. Let H be a finite lattice and(£ a partition of H determining a SU-compat
ible relation R on GH. H is modular if and only if each R defined above is a lattice-
congruence on H. 

Proof. If His modular, then the assertion follows from Theorems 1 and 2. Thus 
let each R of the theorem be a congruence relation on H. If H is non-modular, it 
contains as a sublattice the lattice of the elements a, b, c, d, e in Figure 2, where the 
subset {a, b, c} of the partition £ = {{a, b, c}, {d, e}} shows that £ does not determine 
a congruence relation on H although R is S£/-compatible on GH. 

As a model for constructing a SU-compatible congruence on G were latticecon-
gruences on a finite modular lattice H. This model is used in the following theorem 
where an analogy is presented between SU-compatible congruences on G and 
congruences on algebras. Its proof is a direct copy of the corresponding proof for 
algebras given e.g. in [6, Thm. 96 and its supplement], and hence we omit it. 
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Theorem 4. Let G be a given graph. G is a Cartesian product of two non-trivial 
graphs Gx and G2, i.e. G = GtxG29 if and only if there are two non-trivial SU~compat-
ible congruences Rl9 R2e H(G) which are permutable and complements of each other 
in H(G). H(G) is the lattice of SU-compatible congruences on G. 

Fig. 1 Fig.2 
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