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ON THE STRUCTURE OF SECOND-ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH GIVEN
CHARACTERISTIC MULTIPLIERS
IN THE GENERALIZED FLOQUET THEORY

SVATOSLAV STANEK, Olomouc
(Received October 17, 1977)

1. INTRODUCTION

In [1] and [2] established O. Bortivka the functions X that for every solution u
of the both-sided oscillatory equation (q): »” = q(t)», g€ Ca, R = (-0, ) is

u¥® a solution of the same equation (on R) again. M. Laitoch extended in [6]

VX
on the above basis the classical Floquet theory (e. g. [7]) also to equations (q),
where g is in general no periodic function. By means of the theory of phases and
dispersions there are expressed characteristic multipliers of (q) in both the classical
([2]1—[5], [8]) and the generalized ([10]) Floquet theory. In [9] there is investigated
the structure of equations (q) with = periodic carrier ¢ with given characteristic
multipliers. The aim of this paper is to investigate the structure of equations (q) with
given characteristic multipliers in the generalized Floquet theory.

2. BASIC CONCEPTS, PROPERTIES AND NOTATION

In what follows we are investigate differential equations of type

@ y" =4q(t)y, qeCq

being both-sided oscillatory on R (i.e. every nontrivial solution of (q) has infinitely
many zeros to the right and to the left of the point 7, € R). Occasionaly the function ¢
will be called the carrier of the equation (q). The trivial solution of (q) will be excluded.

Convention. Throughout this article f~! will denote the inverse function (so far
such exists) to the function f; f” will denote the function f for ¢ = 1 and the function
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f~1 for ¢ = —1. The composite functions a[ X(#)], e[«[y()]] will be written more
briefly aX (1), gay(t).

Let u, v be independent solutions of (q). Following [1] and [2] we say that a
function a : R —» R, a € C§ is a (first) phase of the (ordered) pair of solutions #, v if

tgaz(t):--—yg2 forteR——{ieR, u(t) = 0}.

o)’
If u, v are independent solutions of (q), uv’ — u'v = w, then there exists a phase
P — si _ (t
o of u, v satisfying u(t) = \/lwl jg?‘ﬂ_)_ , u(t) = \/|w] _cos) ,t€eR. We say -

Vi) NE10]
that o is a (first) phase of (q) if there exist independent solutions u, v of (q) poss-
essing a phase a.

Every phase o of (q) has the following properties:
(¢ x € Ca, a'(t)#0  forteR,a(R) =R

and if « is a phase of independent solutions u, v of (q) with the Wronskian determinant
w (=uv’ — u'v), then sign o’ = —sign w. The set of all functions « possessing the
properties of (1) form a group G with respect to composition of functions.

The set of phases of equation y” = —y is denoted by E. If « is a phase of (q),
then Ex := {ex, ¢ € E} are all phases of this equation. For every € E we have:
&t + n) = ¢e(t) + n.signg'. If for some e€E, t,€ R and an integer k : &(ty) =
=to+kn,thent + (k — )n <e(®) <t+ (k+ 1)nfor teR.

Let ¢, € R and let u be 3 solution of (q), #(¢;) = 0. Let ¢(¢,) be the first zero of u
lying on the right of #,. Then the function ¢ is defined on R and is called the basic
central dispersion (of the first kind) of (q). This function has the following properties:

peCq, o) > 1, o'() >0 for teR.

@,(t) denotes the function ¢ ... ¢(¢) and ¢_,(t) denotes the inverse function to ¢,(z);

e —

@o(t) =t for te R. There holds the Abelian relation a@,(t) = a(¢) + nn . signa’
between every phase a of (q) and the basic central dispersion ¢ of (q).

The function X € Ca, X’ # 0 is called a dispersion (of the 1st kind) of (q) if and
only if it is a solution (on R) of the differential equation

1 ” ,
(q@) NP ( _) + X2 q(X) = q(1).
. JI X! |
Let « be a phase of (q). Then X is a dispersion of (q) exactly if X = o™ 'ex for an

e € E. Therefore a™'Ea := {a~'ex, ¢ € E} is the set of all dispersions of (@). Every
uX(t)

VIX'(0)]

dispersion X maps R onto R and for every solution u of (q) is again
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a solution of this equation. The above definitions and properties are given in [1]
and [2].

Let X be a dispersion of (q) and ¢ its basic central dispersion. By the generalized
Floquet theory ([6, 10]) there exist independent solutions u, v of (q) satisfying either

X ,
) _./_";Xﬂﬁ =g u(1), —;'v ) = 0,u(1), e-1.0 = *1
vIX'(D] VIX'(D]
or
X X
(3) —/Lit)__ = Q_lu(’), ‘—*l*i‘:.gt;)‘: = u(t) + Q]U(I), Q-1 =0, = i—l
VIX'(1)] VIX'()|

(Generally complex) numbers ¢_,, @, are called the characteristic multipliers of (q)
relative to the dispersion X (see [10]).

Remark 1. Let u, v be independent solutions of (q) for which (2) holds. Let ,(¢) : =
:= —u(t) for t € R. Then u,, v are again independent solutions of (q) satisfying (2),
where we write u; instead of w. If « is a phase of u, v and a, is a phase of u,, v, then
signo’ = —signaj.

It has been proved in [10] (Theorems 1—3): Let sign X’ =1 and let for an
X'(x)

Pu(x)
are the characteristic multipliers of (q) relative to the dispersion X. The characteristic
multipliers of (q) relative to the dispersion X are complex and equal to e**™ (0 <
< a < 1) if and -only if sign X’ =1 and if

x € Rand for an integer n be X(x) = ¢,(x). Then (—1)" \/»3—’;;‘7(% and (—1)" \/
x

) aX(@) = a(t) + (a + 2n) m, (n is an integer)
for a phase a of (q). If sign X' = —1 and X(x) = x, then —v —X’(x) and N ! =
—X'(x)

are the characteristic multipliers of (q) relative to the dispersion X.

Definition 1. We say that the equation (q) relative to the dispersion X is of the
category (1, n), where n is an integer, when sign X' = 1 and X(x) = ¢,(x) for any
x € R. Let us say that (q) relative to the dispersion X is of the category (2, n) with n
being an integer when sign X’ = 1 and there exists a number a,0 < a < 1 and a phase a
of (q) for which (4) holds. Finally say that (q) relative to the dispersion X is of the
category (3,0) when sign X’ = —1,

Remark 2. Every equation (q) relative to the dispersion X is precisely of one of
the three categories given in Definition 1 as follows from [10]. The definitions of
categories (i, n), i = 1,2, are for X = t + = identical with those given in [2].

Lemma 1. Let X be a dispersion of (q) and ¢ be the basic central dispersion of (@).
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Then

a) the equation (q) has two different characteristic multipliers relative to the disper-
sion X and is of the category (1, n) if and only if sign X’ = 1 and the function X(t) —
— @,(t) changes its sign on R,

b) the equation (q) has two equal (real) characteristic multipliers reIatwe to the
dispersion X, and is of the category (1, n) and there exist independent solutions u, v
of (q) for which (3) holds precisely if sign X' = 1, X(t) % ¢@,(t) for te R and min 7.

teR
(X)) — ¢,()) =0, where t = 1,

c) the equation (q) has two equal (real) characteristic multipliers relative to the
dispersion X, and is of the category (1, n) and there exist independent solutions u, v
of (q) for which (2) holds precisely if X(t) = @,(t) for teR,

d) the equation (q) relative to the dispersion X is of the category (2, n) if and only
if either @,,(t) < X(t) < Qzn4+1(t) 0r @_2,1(t) < X(t) < @-14(t) for teR.

Proof. Lemma 1 immediately follows from Theorem 4 [10].

Definition 2. We say that (q,) and (q,) relative to the same dispersion X have the
same behaviour if 1° they have the same characteristic multipliers and 2° if they are
of the same category and 3° if (3) holds for an appropriate pair of solutions of one of the
equations, then it holds for an appropriate pair of solutions of the other equation, too
and the Wronskian determinants of both pairs have the same signs.

Remark 3. In case X = ¢ + =, the definition of the same behaviour of (q,) and (q;)
relative to the same dispersion X is identical with the definition of the same behaviour
of (q,) and (q,) given in [9].

3. THE MAIN RESULT

Lemma 2. Let X€G. Then $y: = {x€ G; aX = X*“ua} is a subgroup of the
group G.

Proof. Let a;,a,€ Py, 0, X = XV %q, o, X = X*8%y,, Then o,a,X =
= o, X" o, = Yoignarsignarly 4 g1y = Y*#0@'qT1 Hence aya, and ! are
the elements #x and &y is a subgroup of the group G.

Remark 4. Let X =t + n. Thena € ¥y if and only if a(t + #) = a(t) + = .signa'.
In this case Sy is called the subgroup of the elementary phases (see [1, 2]).

Theorem. Let X be a dispersion of (q,) and «, be its phase. The equation (qz) has
the dispersion X and (q,) and (q;) relative to the same dispersion X have the same
behaviour if and only if any (and then every) phase a, of (qz) is satisfying

0y = EdyY

for any ecE and ye x(: = {yeG; yX = Xty

238



Proof. (=) Let (q;) have the dispersion X and (q,) and (q,) relative to the same
dispersion X have the same behaviour. Let (q,) be of the category (1, n) relative to
the dispersion X and let ¢_,, 0, be its characteristic multipliers. Let (2) hold for
independent solutions u, v of (q;) and let « be a phase of the solutions #, v. Then
oX = ex, where g€ E and tge(t) = QQ;L tg ¢, sign ¢’ = 1. According to the properties

1
of 1° it holds for some independent solutions u,, v, of (q,):

u, X(t)
T =0- ”2(‘)’
Jixo)
© "ELXEL =ov,(t), teR
VIX'(t)]

Let a, be a phase of solutions #,, v, . It follows from Remark 1 that «,, v, may always
be chosen so that sign o’ = sign a5. Then a,X = gx, + kzn, where k is an integer.
Let ¢ and ¢ be the basic central dispersions of (q;) and (q;). According to the property
of 2° there exist numbers x, X;: X(x;) = @,(x,), X(x;) = @,(x2). Then aX(x,) =
= a@,(x;) = a(x) + nr.sign o’ = ga(x;), a,X(x;) = 030,(xy) = ay(x;) + nx .
. sign oy = gu,(x,) + kn and therefore ex(x,) = a(x,) + nm . sign o, eay(x;) =
= o,(x,) + (n — k . sign a,) 7 . sign «5. It follows from the first equality ¢ +
+ (n.signa’ — 1) <e(t) <t+ (n.signa’ + 1) n for ¢t € R. Then a,(x;) +
+ (n.signa’ — 1) < eoy(xy) = ay(x,) + (n — k. sign o)) m. sign af < a,(x;) +
+ (n.signa’ + 1)n. This yields —n < —kn < &, hence k¥ = 0. From aX = e,
o, X = ex, we obtain aX = oy Xo; ‘o, a” e, X = Xa~'a,. For y: = a~'a, we have
signy’ = 1, yX = Xy, consequently y € ¥y and a, = ay. Further « and «, are phases
of (q,) thus o = ea; for any € € E and we have o, = gx,y.

Let (q,) relative to the dispersion X be of the category (1, n) and let (3) hold for
independent solutions u, v of (q,). This yields for a phase « of solutions u, v: X = &ax,

where e€ E, tge(t) = —Q%_igé—t— (¢ = £1). According to the properties of 2° and 3°
there exist independent solutions u,, v, of (q,) satisfying
u, X(t
X0 _ o),
VX
’—’v“z”&— = "z(t) + sz(t)y te R:
VIX (@l

whereby the solutions #, v and u,, v, have the same signs of the Wronskian deter-
minants (i.e. sign (wv' — w'v) = sign (uv; — u3v,)). Let a, be a phase qQf the
solutions u,, v,. Then sign o’ = sign o, and o, X = ea, + kn, where k is an integer.
If we proceed in the same manner as we did in the first part of the proof, we find
that k = 0 and thus a, = &x,y for any e€ E and y € #.
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Let (q,) relative to the dispersion X be of the category (2, n)and lete**™ 0 < a < 1
be its characteristic multipliers. Then there exist a phase a of (q;) and a phase «,
of ():2X =a + (a + 2n) 7, 2, X = a, + (a + 2n) n. From this we get signa’ =
= sign a; and aXa™! = a,Xa; ', a e, X = Xa~'a,. For y: = a~'a, we obtain
signy’ = 1 and yX = Xy, hence ye ¥y and o, = ex,y for any ¢ € E.

Let (q,) relative to the dispersion X be of the category (3, 0) and let o_,, 0, be
its characteristic multipliers; ¢_, . ¢; = —1 (see [10]). Then there exist independent
solutions u, v and u,, v, of (q,) and (q,), respectively, satisfying (2) and (5). Let «
and a, be phases of the solutions u, v and u,, v,. By Remark 1 u,, v, may always
be chosen so that sign o’ = sign aj. Then aX = ex, a,X = ea, + kn with k being

an integer, e € E, tg &(t) = go:‘—tg t. Let X(x) = x be for x € R. Then a(x) = sa(x),

&1

(%) = ety (x) + kn. It follows now from the first equality: t — n < &(t) < + =
for te R. Then a,(x) — 7 < ex5(x) = 2,(x) — kn < a,(x) + 7, that we get inserting
a,(x) instead of ¢ into the last inequality. From this we get —n < —kn < 7 and
therefore k = 0. Then aX = ex, a, X = ea, and we prove in the same way as before
that «, = exa,y for any e€ E and y € ¥.

(<)Lete€E,y€ Py, 0 = signy’,a,: = ex,y bea phase of (q;) and X(= o] 'e,a,
¢, € E) be a dispersion of (q,). Then 0, X = eo;pX = e, X%y = e, X017 "¢ 1o, =
= gaa; lefoyar e e, = eefe T a, = e,a, for any ¢,(: = eje”!) € E. Thus X is
also a dispersion of (q,). Let ¢ and ¢ be the basic central dispersions of (q,) and (q).
Then o, = e, yp = ap + m.sign oy = ey + n.sign ay = e(a;y + 7. sign 5.
.sign ¢') and a;7¢ = a;y + 7mo . sign o), 4,90y~ = oy + 7o . sign a] = o,0,.
Therefore yp,y "' = ¢ and y9,,7"! = ¢,.

Let (q,) be relative to the dispersion X of the category (1, n). We have then for
any number x,: X(x;) = @,(x,) and a, X(x;) = a;9,(x;) = a;(x;) + nn . sign af.
Forx_;: = @,(x;) weget X "'(x_;) = ¢_,(x_,). Letx;: =y~ '(x,). Then a, X(x;) =
= g0y X(x;) = e, Xy(x,) = e, X°(x,) = e,0,,(%,) = €043(X,) + onn . sign ¢’ .
.sign a) = ex,y(x) + nw . sign a) = a,¢,(x,), hence X(x;) = ¢,(x,). Next we have

{Ep‘_rilg{Z_)_ = ')"1’(/)"0')’()(2) . (Pr’m‘))(xZ) . ‘y’(x2) - V—ll‘Pna(xa) . (P:la(xa) =

X,(XZ) [ X',y_l(xa) y_l’(xo) . X’y—l(xa)
_ TV 0n(X0) - 01s(%0) 7TV Pue(%0) - PanlXg) _ 7T PuolXo) - Opo(x,) _
(X7 (0)i=x, (XD =x, PX(x0) - X7 (x,)

e (CANCXEN) [q);(xl)]"
PVX(x) . (X)) LX)
and (q,) and (q;) relative to the dispersion X are of the same category and have the
same characteristic multipliers.
Now let there exist independent solutions u, v of (q;) for which (3) holds. Then
for any phase « of u, v(p = +1):
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sin a X (1) —0 _SL_Q_EC(Y_)_
JIeX@®. X0 VO]
cos aX(t) sin o(t) +o cos a(t)

JZx( . X0l ol Vido!

Putting X(¢) in place of ¢ in the last formulas and with some modifications we obtain

sin 2X (1) sin a(t)
- = = —Q —=,
VIidx 0. X" V(@]
cosaX '() _  sinx(f) cos a(t)

= - Q—_—:_—.
VX (). X V(@) Jig®ml  VILo]

Therefore
sin a X’(t) sin a(t)
c = 00— ,
Jiex . x"0) VI
cos aX’(t) — sin a(t) cos a(t)

Jex . x*0] ol VIOl
and on putting y(¢) instead of ¢t we get (X°y = yX):
sin ay X (1) — s sin ay(t)
Xl | Ol
cos ayX(t) Y sin oy(t) +e cos ay(t) .
VIlax@ll Vo0l | VI[a]|

Sna Cos o .
Let ay: = 0y, Uy: = 6 ———=2=, U1 = 3. Then u,, v, are independent solu-

EA VI
tions of (q,) having the phase o, and satisfying (3), where we write u,, v, instead
of u, v. Since sign o’ = sign o, the Wronskian determinants of «, v and u,, v,
have the same signs.

Let (q,) be relative to the dispersion X of the category (2, n). Then there exists
a phase « of (q,): oX =« + (a + 2n) n, with 0 <a < 1. From this aX~! =
=a — (a + 2n) n, hence aX’ = o + g(a + 2n) n. Since a,: = o.ay is a phase
of(q@p)andoa, X =0.apX =0.aX? =c.ay + (@ + 2n)n = o, + (a + 2n) =, the
equations (q,) and (q;) relative to the dispersion X have the same behaviour.

If (q,) relative to the dispersion X is of the category (3,0), then sign X’ = -1
and since X is also a dispersion of (q,), this equation relative to the dispersion X is
of the category (3,0) and has the same characteristic multipliers as (q,). Thus both
equations relative to the dispersion X have the same behaviour.
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Remark 5. Let X = ¢t + n. Then &y is a subgroup of the elementary phases and
from the above Theorem follows the Theorem of [9] as a special case.
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