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ON THE STRUCTURE OF SECOND-ORDER LINEAR 
DIFFERENTIAL EQUATIONS WITH GIVEN 

CHARACTERISTIC MULTIPLIERS 
IN THE GENERALIZED FLOQUET THEORY 

SVATOSLAV STANfiK, Olomouc 
(Received October 17, 1977) 

1. INTRODUCTION 

In [1] and [2] established O. Boruvka the functions Xthat for every solution u 
of the both-sided oscillatory equation (q): y" = q(t)y, qeC^, R = (—00,00) is 

———— a solution of the same equation (on R) again. M. Laitoch extended in [6] 
ViXxoi 
on the above basis the classical Floquet theory (e. g. [7]) also to equations (q), 
where q is in general no periodic function. By means of the theory of phases and 
dispersions there are expressed characteristic multipliers of (q) in both the classical 
([2] — [5], [8]) and the generalized ([10]) Floquet theory. In [9] there is investigated 
the structure of equations (q) with n periodic carrier q with given characteristic 
multipliers. The aim of this paper is to investigate the structure of equations (q) with 
given characteristic multipliers in the generalized Floquet theory. 

2. BASIC CONCEPTS, PROPERTIES AND NOTATION 

In what follows we are investigate differential equations of type 

(q) f~q(t)y>qeCl 

being both-sided oscillatory on R (i.e. every nontrivial solution of (q) has infinitely 
many zeros to the right and to the left of the point t0 e R). Occasionaly the function q 
will be called the carrier of the equation (q). The trivial solution of (q) will be excluded. 

Convention. Throughout this article f " 1 will denote the inverse function (so far 
such exists) to the functionf;f* will denote the functionffor a == 1 and the function 
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f~x for a = - 1 . The composite functions a[X(0]> «[a[y(0]] will be written more 
briefly aX(f), eay(t). 

Let u9 v be independent solutions of (q). Following [1] and [2] we say that a 
function a : R ~* R, a e C£ is a (first) phase of the (ordered) pair of solutions u, v if 

tga(t) = JjQ, for teR - {«eR, v(0 = 0}. 

If u, v are independent solutions of (q), uv' - u'v = w, then there exists a phase 
~ . n . , x / sin a(0 , . /— cos v.(i) _ ,,r 

a of w, i? satisfying w(0 = Vl>vl —•====-==, K0 = V\w\ ^ , t e R. We say 
V|a'(0l %V(0l 

that a is a (first) phase of (q) if there exist independent solutions u, v of (q) poss­
essing a phase a. 

Every phase a of (q) has the following properties: 
(1) a e C j , a'(0 ^ 0 for t e R, a(R) = R 

and if a is a phase of independent solutions u, v of (q) with the Wronskian determinant 
w (—uv' — u'v), then sign a' = —sign w. The set of all functions a possessing the 
properties of (1) form a group G with respect to composition of functions. 

The set of phases of equation y" = — y is denoted by E. If a is a phase of (q), 
then Ea : = {ea, e e E} are all phases of this equation. For every e e E we have: 
e(t + n) = e(t) -f n. signe'. If for some ee E, r0eR and an integer k : e(t0) = 
= f0 + krc, then t + (k - 1) n < e(t) < t + (k 4- 1) n for t e R. 

Let r 0eR and let u be 3 solution of (q), u(t0) = 0. Let ^p(r0) be the first zero of u 
lying on the right of t0. Then the function q> is defined on R and is called the basic 
central dispersion (of the first kind) of (q). This function has the following properties: 

<peCR, cp(t) > t, (p'(t)>0 for teR. 

<pn(t) denotes the function cp ... <p(t) and <p~n(t) denotes the inverse function to cpn(t); 
n 

(p0(t) == / for 16 R. There holds the Abelian relation a.(pn(t) = a(/) + nn . sign a' 
between every phase a of (q) and the basic central dispersion cp of (q). 

The function Xe C£, X' ^ 0 is called a dispersion (of the 1st kind) of (q) if and 
only if it is a solution (on R) of the differential equation 

(qq) VTFi f - i - Y + x>2. q(X) =««. 
1 win/ 

Let a be a phase of (q). Then X is a dispersion of (q) exactly if X = a"ieoL for an 
6 e E. Therefore a^Ea : = {a '^a, e e E} is the set of all dispersions of (q). Every 
dispersion X maps R onto R and for every solution u of (q) • . =• is again 

Vir(oi 
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a solution of this equation. The above definitions and properties are given in [1] 
and [2]. 

Let X be a dispersion of (q) and cp its basic central dispersion. By the generalized 
Floquet theory ([6, 10]) there exist independent solutions u9 v of (q) satisfying either 

,~ uX(t) ,. vX(t) 
(2) W ^ = g„lt,(T), ^M=^QlV(t)9 Q-i.Qt = ±1 

vIX 'O)! y/\X'(t)\ 
or 

( 3 ) ^ L r = ^ 1 u ( 0 , -~^== = 11(0 + QMO, Q-i~Qi = ±l 
J\X'(t)\ VI X'(t)\ 

(Generally complex) numbers 0_j, QX are called the characteristic multipliers of (q) 
relative to the dispersion X (see [10]). 

Remark 1. Let w, v be independent solutions of (q) for which (2) holds. Let ut(t) : = 
: = — u(t) for /eR. Then ut, i? are again independent solutions of (q) satisfying (2), 
where we write ux instead of u. If a is a phase of u, v and a! is a phase of ux, v, then 
sign a' = —signai. 

It has been proved in [10] (Theorems 1—3): Let signX' = 1 and let for an 

xeRandforanintegerwbeX(x) = cpn(x). Then (-1)" / j?-M. and (-1)" rE^L 
V X'(x) V cp'n(x) 

are the characteristic multipliers of (q) relative to the dispersion X The characteristic 
multipliers of (q) relative to the dispersion X are complex and equal to e±ani (0 < 
< a < 1) if and only if sign X' = 1 and if 

(4) aX(t) = a(r) + (a -f In) n9 (n is an integer) 

for a phase a of (q). If sign X' = — 1 and X(x) = x9 then — v — X'(x) and — 
V-X'(x) 

are the characteristic multipliers of (q) relative to the dispersion X. 

Definition 1. We say that the equation (q) relative to the dispersion X is of the 
category (1, n)9 where n is an integer, when signX' = 1 and X(x) = (p„(x) for any 
xeR. Let us say that (q) relative to the dispersion X is of the category (2, n) with n 
being an integer when sign X' = 1 and there exists a number a9 0 < a < 1 and a phase a 
°f (<l) for which (4) holds. Finally say that (q) relative to the dispersion X is of the 
category (3,0) when signX' = — 1. 

Remark 2. Every equation (q) relative to the dispersion X is precisely of one of 
the three categories given in Definition 1 as follows from [10]. The definitions of 
categories (/, n), i = 1, 2, are for X = t + n identical with those given in [2]. 

Lemma 1. Let X be a dispersion of (q) and q> be the basic central dispersion of (q)« 
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Then 
a) the equation (q) has two different characteristic multipliers relative to the disper­

sion X and is of the category (1, ri) if and only if sign X' = 1 and the function X(t) — 
— cpn(t) changes its sign on R, 

b) the equation (q) has two equal (real) characteristic multipliers relative to the 
dispersion X, and is of the category (I, ri) and there exist independent solutions u, v 
of (q) for which (3) holds precisely if sign X' = 1, X(t) =£ q>n(t) for teR and min x . 

reR 

. (X(t) - <pn(t)) = 0, where x = ±1 , 
c) the equation (q) has two equal (real) characteristic multipliers relative to the 

dispersion X, and is of the category (l,ri) and there exist independent solutions u, v 
of (q) for which (2) holds precisely if X(t) = (pn(t) for teR, 

d) the equation (q) relative to the dispersion X is of the category (2, ri) if and only 
if either cp2n(t) < X(t) < <p2n+1(t) or (p^-^t) < X(t) < q>-2n(t)for teR. 

Proof. Lemma 1 immediately follows from Theorem 4 [10]. 

Definition 2. We say that (qx) and (q2) relative to the same dispersion X have the 
same behaviour if 1 ° they have the same characteristic multipliers and 2° if they are 
of the same category and 3° if (3) holds for an appropriate pair of solutions of one of the 
equations, then it holds for an appropriate pair of solutions of the other equation, too 
and the Wronskian determinants of both pairs have the same signs. 

Remark 3. In case X = /•+ n, the definition of the same behaviour of (qt) and (q2) 
relative to the same dispersion Xis identical with the definition of the same behaviour 
of (qt) and (q2) given in [9]. 

3. THE MAIN RESULT 

Lemma 2, Let XeG. Then ^ : = { a e G ; a I = Xsigna'a} is a subgroup of the 
group G. 

Proof. Let a 1 , a 2 e ^ x , a 1 X = Xsigaaiax,a2X = X81*11*2^. Then a ^ X = 
= a+X*1***2'<t2 = X*hnai'-*ima2'axat.2, a~xX = X*1***1'^1. Hence a ta2 and a^1 are 
the elements Sfx and Sfx is a subgroup of the group G. 

Remark 4. Let X = t + n. Then a 6 Sfx if and only if a(t + n) = a(t) + %. sign a'. 
In this case Sfx is called the subgroup of the elementary phases (see [1, 2]). 

Theorem. Let X be a dispersion of (qt) and ax be its phase. The equation (q2) has 
the dispersion X and (qt) and (q2) relative to the same dispersion X have the same 
behaviour if and only if any (and then every) phase a2 of (q2) is satisfying 

a2 = fiajy 

for anyeeE andyeS?x(: - {yeG; yX = X8i8n% 
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Proof. (=>) Let (q2) have the dispersion Xand (qx) and (q2) relative to the same 
dispersion X have the same behaviour. Let (qx) be of the category (1, n) relative to 
the dispersion Xand let e0-i,£i be its characteristic multipliers. Let (2) hold for 
independent solutions u, v of (qx) and let a be a phase of the solutions u, v. Then 

aX = ea, where e e E and tg e(t) = ^L tg t, sign e' = 1. According to the properties 
Qx 

of 1 ° it holds for some independent solutions u2, v2 of (q2): 

u2X(0 

VpřwT 
(5) v2X{t) 

=Є-lИ2(0> 

= Qi»Ăt), t є R. 
VlX'WI 

Let a2 be a phase of solutions u2, v2. It follows from Remark 1 that u2, v2 may always 
be chosen so that sign a' = sign a 2. Then a2X = ea2 + kn, where k is an integer. 
Let cp and cp be the basic central dispersions of (qt) and (q2). According to the property 
of 2° there exist numbers xi9 x2: X(xx) = q>n(xi), X(x2) = <pn(x2). Then (xX(xL) = 
= occp^Xi) = (x(xt) + nn . sign a' = e(x(xx), (x2X(x2) = oc2(pn(x2) = (xz(x2) + nn . 
. sign a2 = ea2(x2) + kn and therefore eoc(xt) = a(xj + «7r . sign a', ea2(x2) = 
= <*2(x2) + (# — k . sign a2) 7c . sign a2. It follows from the first equality t + 
+ (n . sign a' — 1) 7i < e(t) < t + (n . sign a' + 1) 7r for t e R. Then a2(x2) + 
+ (n . sign a' — 1) n < ea2(x2) = a2(x2) + (n — k . sign a2) TC . sign a2 < a2(x2) + 
+ (n. sign a' + 1) n. This yields —n < —kn < 7t, hence k = 0. From aX = ea, 
a2X = sa2 we obtain aX = a2Xa2"

1a, a - 1 a 2 X = Xa*"1a2. For y: = a""1a2 we have 
sign y' = 1, yX = Xy, consequently y e £fx and a2 = ay. Further a and ai are phases 
°f (Qi) thus a = e ai f° r any eeE and we have a2 = e(xty. 

Let (qx) relative to the dispersion X be of the category (1, n) and let (3) hold for 
independent solutions u, v of (qt). This yields for a phase a of solutions w, v: txX = ea, 

where s e E, tg e(f) = Q g — (o, = +1). According to the properties of 2° and 3° 

there exist independent solutions w2, v2 of (q2) satisfying 

u2X(0 

Vircoi 
v2X(t) 

= Qu2(t), 

= u2(t) + gv2(t), tєR, 
ViXxoi 

whereby the solutions u, v and u2, v2 have the same signs of the Wronskian deter­
minants (i.e. sign (uvf — u'v) = sign (u2v2 — u'2v2)). Let a2 be a phase of the 
solutions u2,v2. Then sign a' = sign a2 and a2X = ea2 + kn, where k is an integer. 
If we proceed in the same manner as we did in the first part of the proof, we find 
that k = 0 and thus a2 = e<xty for any e e E and y e £fx. 
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Let (qt) relative to the dispersion Xbe of the category (2, n) and let e±an\ 0 < a < 1 
be its characteristic multipliers. Then there exist a phase a of (qt) and a phase a2 

of (q2): &X = a + (a + In) n, ot2X = a2 -F (a + 2n) n. From this we get sign a' = 
= sign a2 and aXa""1 = a2Xa2~

1, a~*a2X = Xa-1a2. For y: = a~*a2 we obtain 
sign yf = 1 and yX = Xy, hence y e Sfx and a2 = eotxy for any e e E. 

Let (qx) relative to the dispersion X be of the category (3, 0) and let Q_X , QX be 
its characteristic multipliers; Q„X . QX = - 1 (see [10]). Then there exist independent 
solutions w, v and w2, v2 of (qx) and (q2), respectively, satisfying (2) and (5). Let a 
and a2 be phases of the solutions u, v and u2,v2. By Remark 1 u2, v2 may always 
be chosen so that sign a' = sign a2. Then aX = ea, a2X = ea2 + kn with k being 

an integer, e e E, tg e(t) = — ^ tg t. Let X(x) = x be for x e R. Then a(x) = sa(x), 
Qi 

a2(x) = ea2(x) + kn. It follows now from the first equality: t — n < e(t) < t + n 
for t e H. Then a2(x) — n < ea2(x) = a2(x) — kn < a2(x) -f n, that we get inserting 
a2(x) instead of t into the last inequality. From this we get — n < — kn < n and 
therefore k = 0. Then aX = ea, a2X = ea2 and we prove in the same way as before 
that a2 = eaxy for any e e E and y e 9*x. 

(<=) Let e e E, y e S^x, a = sign y', a2: = eocxy be a phase of (q2) and X(= a^ 1e1a1, 
6j e E) be a dispersion of (qx). Then a2X = eotxyX = ^X^y = eaxX

aCLx~
1e~~1a2 = 

= g(xx(xx
1e<

x
rOLxoix

1e~1ci2 = eea
xe~1a2 = £2a2 for any e2(: = ee\e~x) e E. Thus Xis 

also a dispersion of (q2). Let q> and <p be the basic central dispersions of (qx) and (q2). 
Then a2<p = eaxycp = a2 -F n . sign a2 = eaxy + n. sign a2 = e(ocxy -F rc. sign a2. 
. sign e') and axycp = a^ F 7rcr . sign a1? a^^y"1 = ax + 7r<_r . sign ax =- a ^ . 
Therefore y^y""1 = y and 7 ^ 7 _ 1 = q>„. 

Let (qj) be relative to the dispersion X of the category (1, #). We have then for 
any number xx: X(xx) = <pn(xx) and OLXX(XX) = a i ^ ^ j ) = a ^ x j + nn . sign a j . 
Forx-x: = q>n(xx)^t%QtX~1(x_x) = <p_n(x_x). Letx2: = y " 1 ^ ) . Thena2X(x2) = 
= e<xxyX(x2) = e a ^ y f e ) = e a ^ ' C O = £«i <?„<-(**) = ea^x j 4- tmn . sign e' . 
. sign ai = eaxy(x2) H- ./m . sign a2 = a2^n(x2), hence X(x2) = (pn(x2). Next we have 

\<j>n(x2) = y"1>n<ry(*2)•<lCy(*2) • y'(*2) = y"1^,^)-^^) = 

x\x2) , , Xv1^) y-^cxj.rr1^) 

(xy-1^));.,, (r'x'wx-^ y"1 '^*,). K-'uj 

y-^X^xj.^xxor LxXxjJ 
and (qx) and (q2) relative to the dispersion X are of the same category and have the 
same characteristic multipliers. 

Now let there exist independent solutions u, v of (qx) for which (3) holds. Then 
for any phase a of u, V(Q = ± 1): 
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sin aX(0 sin a(0 
- Q 

V' |a 'X(ř).r(í)l V|«'(OI 
cosaA"(í) sina(ř) cosa(ř) 

V|a'X(0.r(0l Vl«'(OI Viaxoi' 
Putting X(t) in place of / in the last formulas and with some modifications we obtain 

sinaX" l(Q sin a(Q 

V K F 7 ^ ^ Vî xoT' 
cos aX ~ l(t) sin a(0 cos a(0 

V l a ^ - Ч O . Х ^ Ч O I V|a'(í)l V|a'(OI 

Therefore 

sin aXff(0 sin a(0 

V|a 'X"(0.r"(OI V | a ' ( 0 l ' 

cosaX^O _ sina(0 cosa(0 

s/\7F(t)7x^ Via'(oi Viaxoi 

and on putting y(t) instead of t we get (Xffy = yX): 

sin ayX(0 sin ay(0 
" — = GQ VI !>УX(0T 1 V| [ay(0T I 

cos ayX(ř) sin ay(0 cos ay(0 
-- = <т ==-.. + @ 
V|[ayX(0]' | V|[ay(0]'l V| M O T I ' 

T _. s n a3 cos a3 _,, . - , . , 
Let a3: = ay, w2: = <r——— , v2: = ——=---.. Then u2, v2 are independent solu-

Vl a3 | V| a'3 | 
tions of (q2) having the phase <xa2 and satisfying (3), where we write u2, v2 instead 
of «, v. Since sign a' = sign <ra2, the Wronskian determinants of u, v and u2, v2 

have the same signs. 
Let (qx) be relative to the dispersion X of the category (2, /*). Then there exists 

a phase a of (qt): aX = a + (a + 2w) rc, with 0 < a < 1. From this aX" 1 = 
= a — (a + 2n) n, hence aX* = a + <x(a + In) n. Since a 4: = <x. ay is a phase 
of (q2) and a4X = a . ayX = a . aX*y = a . ay + (a + 2n) n = a4 + (a + 2n) n, the 
equations (qA) and (q2) relative to the dispersion X have the same behaviour. 

If (qt) relative to the dispersion X is of the category (3,0), then sign X' = — 1 
and since X is also a dispersion of (q2), this equation relative to the dispersion Xis 
of the category (3,0) and has the same characteristic multipliers as (qt). Thus both 
equations relative to the dispersion X have the same behaviour. 
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Remark 5. Let X = t + n. Then ¥x is a subgroup of the elementary phases and 
from the above Theorem follows the Theorem of [9] as a special case. 
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