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ARCH. MATH. 1, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
XV: 47—52, 1979 

A NOTE ON THE CONVERGENCE 
OF A PAIR OF SEQUENCES OF MAPPINGS 

BY S. L. SINGH* 
(Received August 1, 1977) 

The aim of this note is to investigate conditions under which the convergence of 
a pair of sequences of mappings to two mappings S and T of a metric space into 
itself implies the convergence of the ircommon fixed points to the common fixed 
point of S and T. 

In his recent paper, G. Jungck [4] introduced the relation 

d(Sx, Sy) = k d(Tx, 7» , k e (0, 1) 

for a pair of mappings (S, T) from a metric space (X9 d) into itself and for every 
x,yeX. Mappings satisfying such a relation will be called 'Jungck mappings' and 
k as 'Jungck constant'. If S(X) = T(X) then commuting continuous Jungck mappings 
(S, T) have a unique common fixed point [4]. 

Theorem 1. Let Sn and Tn be Jungck mappings of a metric space (X9 d) into itself 
with Jungck constant k and with at least one common fixed point un for each n = 
= 1,2,.... If the sequences {Sn} and {Tn} converge respectively pointwise to 5, T: X~* 
-• X with common fixed point w, then u is the unique common fixed point of S 
and r, and the sequence {un} converges to u. 

We remark that the restriction that every pair of Jungck mappings (Sn9 Tn) has 
the same Jungck constant k is strong. We relax the restriction in the following. 

Theorem 2. Let (X, d) be a metric space, and let Sn and Tn be Jungck mappings 
of X into itself with Jungck constant kn and with at least one common fixed point uH 

for each n = 1, 2, . . . . Furthermore, if kn+l g kn for n = 1, 2,. . . , and the sequences 
{Sn} and {Tn} converge respectively pointwise to S, T : X-+ X with common fixed 
point w, then u is the unique common fixed point of Sand rand the sequence {un} 
converges to u. 

* This work is supported by the University Grants Commission, New Delhi (Code No. 7574). 
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Remark 1. If the Jungck constants are such that kn+1 ^ ktt for each n, the theorem 
is, in general, false. The following example illustrates this remark. 

Example 1. Let Sn, Tn;E
l -> E1 be defined as 

3n n2 — n + 1 - „-, M 

Snx = ——T- p H x and TBx = p + w + 1 . n2 + 2n + 1 " n + 1 

for all xel?1 = (—oo, +oo), n = 1, 2,. . . , andp > 0. 
We see that (5n, Tn) are Jungck mappings with Jungck constants kn = 

= (n2 — n + l)/(n2 + 2n + 1) and with common fixed points u„ = (n + l)p. 
Also kn+t >̂ kw, Sx = lim Snx = 3P + x and Fx = lim Trx = P + x for every 

n-*oo ii->oo 

x 6 K1. Since S and Tare translation maps, neither possesses a fixed point. Moreover, 

lim un = lim (n + 1) p = oo ^ £ \ 
w->oo n-*oo 

Theorem 3. Let (X, d) be a metric space, and let Sn and Tn be mappings of X into 
itself with at least one common fixed point un for each n = 1, 2, . . . . Suppose there are 
nonnegative real numbers a, b, c, e and / (c + e + / =t= 1) such that 

(3.1) d(Snx, Sny) S a d(Snx, Tnx) + b d(Sny, Tny) + 
+ c d(Snx, Tny) + e d(Sny, Tnx) + fd(Tnx, Tny) 

for all x, y e X and « = 1, 2, ... If the sequences {Sn} and {Tn} converge respectively 
pointwise to S, T : X -> X with common fixed point u, then u is the unique common 
fixed point of S and T, and the sequence {un} converges to w. 

We remark that if Sn and Tn are commuting continuous mappings and satisfy (3.1) 
with 

(3.2) 0 < a + 6 + c + e+/<l 

then they have a unique common fixed point in X(see [6]). But in the above theorem, 
continuity, commutativity for Sn,Tn, Sand Tand the condition (3.2) are not essential. 
It is simply required that (Sn, Tn) should have a common fixed point. It may be 
mentioned that the limiting mappings S and T may commute even if Sn and Tn are 
not commutative (see Example 2 below). 

Proof of Theorem 1 follows from Theorem 3 by setting a = 6 = c = e = 0 and 
/ = k in (3.1). Theorem 2 follows from Theorem 1 by noticing that the Jungck 
constants knTl ;£ k„ n = 1, 2,. . . , and kx = fc will serve the purpose of Jungck 
constant for every pair of Jungck mappings (Sn, Tn). 

Proof of Theorem 3. Sequences {Sn} and {Tn} converge respectively pointwise 
to S and T. Therefore for B > 0 and u e X, there is a positive integer N such that 
n 1S> iV implies 

(3.3)d(s.«,s«)<1
2-c

+7+-/e
 and d ^ T » ) < 2(7+7+7)e-
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Now for all n ^ At, 

d(u„, u) - d(Snun, Su) g 
S d(Snun, Snu) + d(Snu, Su) g 
=£ a d(Snun, Tnun) + b d(S„u, Tnu) + c d(SnUn, Tju) + 
+ ed(Snu, Tnun) + fd(Tnun, Tnu) + d(Snu, Su) £ 
g b(d(Snu, Su) + d(Tu, Tnu)) + c(d(un, u) + d(Tu, Tnu)) + 

+ e(d(S„u, Su) + d(u, «„)) + f(d(un, u) + d(Tu, 7 » ) + 
+ d(Snu, Su), (since Snun - un = TnuH and Su - u = Tu) 

- (1 + b + e) d(Snu, Su) + (b + c+f) d(Tnu, Tu) + 
+ (c + e+f)d(u„,u) 

which gives 

d(M(,( u ) _ l_
+

c_^_fd(Snu, Su) + ̂ ±l±Ljd(Tnu, Tu). 

Therefore, in view of (3.3), for n __ N, 

d(un, u) < e/2 + e/2 = e. 

Hence {un} converges to u. 
To show the uniqueness of w, let v be another common fixed point of S and T. 

Then in a way similar to the above, {un} converges to v which implies u = v. 

Remark 2. Let Tn be identity mappings. Then: 

(i) Theorem 6.11 of Singh [7] is obtained. 
(ii) If a = b and c = e = / = 0, we obtain a result due to Dube and Singh [2]. 
(iii) If a = b = f = 0, we get a result due to Collins [1], 
(iv) If c = e = 0, we get a result due to Reich [5]. 

Results (ii)—(iv) have been quoted from Singh [7], 
Example 2. Let Sn, Tn : [0, 2] -* [0,2] with usual metric be defined as 

Snx = 1 + „ , X ,v and Tnx =-—^-r-x + 
2(n + 1) " n + 1 2n + 1 

for every x e [0, 2] and n = 1,2, ... 

The common fixed point wn of Sn and jTn is given by 

un = (2/i + 2)/(2rt + 1) for each n =-= 1, 2,.. . 

Also to = lim Snx = 1 and .Tx = lim Tnx = x for all x € [0, 2], and thus w » 
n->oo n-*co 

= lim un = 1 is the unique common fixed point of S and T. 

49 



It is easily seen that Sn and Tn satisfy the condition (3A) with the proper choice 
of constants, inparticular with a--b — c = e = 0 and/ = 1/2 for all points in [0, 2]. 
This shows that Theorem 1 is applicable with-Jungck constant k -= 1/2. We note 
that Theorem 2 may be applied by taking kn = l/2/i. 

Theorem 4. Let Sn and Tn be mappings from a metric space (X, d) into itself with 
at least one common fixed point un for each n = 1,2,... Let S, T: X-> X be mappings 
with common fixed point u such-that 

(4.1) d(Sx, Sy) £ a d(Sx, £*) + b d(Sy, Ty) + 

+ c d(Sx, Ty) + e d(Sy, Tx) + /d(7X Ty) for all x, y e X, 

where a,b, c,e and/are nonnegative real numbers such that c + e +/=t= 1. If the 
sequences {Sn} and {Tn} converge uniformly to S and T respectively, then the sequence 
{uu} converges to u uniquely. 

Proof. Since {Sn} and {Tn} converge uniformly to S and T respectively, given 
e > 0 there is a positive integer N such that n ^ 1V implies 

(4.2) 

d(Snu., Sun) < ~ C ~ g ~ :/ s and d(Tnun, Tun) < ~ c ~ g ~J_ g v " " "' 2(1 + a + c) v " "' "7 2(a + e + / ) 

We have for any n, 

d(un, u) - dCSA, Su) < 
< d(Snun, Sun) + d(Su„, Su) < 
<: d(S„un, Sun) + a d(Sun, Tun) + b d(Su, Tu) + c d(Sun, Tu) + 

+ ed(Su,Tun)+fd(Tun,Tu)<: 

< d(Snun, Sun) + a(d(Sun, Snu„) + d(Tnun, Tun)) + 

+ c(d(Sun, Snu) + d(un,«)) + e(d(u, un) + d(Tnun, Tun)) + 

+ f(d(Tun,Tnun) + d(un,u)) 

(since Su = u — Tu and Snun = un — Tnun). 

This gives 

<-("-> ") ^ ll
+

c!'llfd(S»u"> SM»> + xVc'JeLf ^T^ Tu,). 

Therefore, in view of (4.2), for n ^ N, 

d(un,u) < e/2 + s/2 =- e. 

Hence {un} converges to u. Proof of uniqueness of u follows easily. 
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Remark 3. Let Tn and T be identity mappings. Then: 

(i) Theorem 6A2 of Singh [7] is obtained. 
(ii) If a = b, c = e and (3.2) holds, we obtain Theorem 2 of Iseki [3]. 
(iii) If a = b and c = e = / = 0, we obtain a theorem due to Dube and Singh [2] 

(quoted from Singh [7]). 
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