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MAILLETS DETERMINANT £,.•. 

JITKA KÚHNOVÁ, Brno 
(Received January 19, 1978) 

1. INTRODUCTION 

In Carlitz and Olson's paper [1] there is defined the so called Maillet's determinant 
Dplp is a prime | 3 , ( r , ; ) » l , r . r ' s l (modp), the symbol R(r) denotes the least 
positive residue of r(modp)9 Dp = det (R(r. s'))9 r9s « 1,2, . . . , 0 - 1) [2] and 
there is proved the relation 

D p =±P ( p - 3 ) / 2 . / .o 

where h^ denotes the first factor of the class number of the pth cyclotomic field. 
The purpose of our paper is to prove an analogical relation for determinant Dpn+i 

(i) 2)P»+« = +P("+1)(JV-1).ft; 

p is an odd prime, n 2j 0, N = pn(p — 1) [2]. The method of proving this relation 
differs from that presented in Carlitz and Olson's paper [1]. It reduces a certain 
matrix B9 for which relation 

ft; = |det£ | 

is valid, where A" denotes the first factor of the class number of the pP+lit* 
cyclotomic field. 

For n = 0 this relation was proved by Newman in [2] and by application of this 
result to a non-negative integer number n we get the above mentioned general 
relation (Skula [3]). 

2. NOTATION 

In the present paper the following symbols will be used: 
p an odd prime 
n a non-negative integer 
Z the ring of integers 
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At = f(p - D/2 
r a primitive root with respect to the modulus pn+l 

rj the integer (je Z, 0 < ry < pn+1 

rj = r/(modpn+1)for./ = 0 
rj .r~Jm\ (modpB+1) for; < 0 

K the first factor of the class number of the pn+1 cyclotomic field generated 
by pn+lth roots of unity over the rational field 

B = (bij)0gij£N-i a matrix of order At, where 

boo=Pn + 1 - 2 , 

V / = 1 -rJtl = j = A t - 1, 

bi0 = 1 - rt, \<i<, A t - 1, 

bij = l/T/^Oy; - ri+j), 1 = ij g JV - 1. 

(2) By[3]A- - - |det .» | 
Y* = {j,/^ = l, 2, ...,pn+1 - 1, (y,p) = 1}, hence Y* is a reduced set of residues 

with respect to the modulus pn+1 and card Y = cp(pn+1) = 2At 
y' the integer, where 

y.y' = (modp^^for^eY* 
R(y) the least positive residue y (modpB+x) 

Y = {y/y - 1, 2, . . . , (p»+i - i)/2, (,-,p) = i} 

(3) Dpn+l = dtt(R(x.y'))XiyeY 

(our definition of Maillet's determinant Dpn+t) 

3. MATRIX B REDUCTIONS 

Let J, / s Z , / u {0}, / u {0} is a complete set of residues with respect to the 
modulus At and card / = card / = At - 1. We denote 

(4) à(I, J) = 

..»+! - 2 . 1 -r, 

detl 
м+l 

'Іjelш* 

We can suppose that /, / s {1,2,.... 2N} - {N}. 
Now let fce J, A: = i + N, where 1 g i <; JV - 1. Matrix elements from (4) 

in the row, corresponding to index k, are determined by means of relation rf 4- ri+N = 
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(rkrj - r,+Np"+ 1 = (ri+Nrj - r(+y+N)/p"+1 = 
= Ov(pB+1 - n) - p"+i + r(+7)/p"+1 = r, - 1 - (ly,- - r.+y)/p"+1. 

Now the first row is added to that of matrix from (4), corresponding to index fc. 
We get: 

pn+i _ 2 + 1 - p " + 1 + ř | - - 1 + r, - - ( 1 - r(), 
l-Гj-l+Гj- (riГj - Г( + ,)/p"+1 = -{Гfj - rì + J)Іp' n"+l 

Matrix B is symmetric and therefore analogously the same results are obtained also 
for columns. So if we change index sets I, J then there is changed only the sign of 
det B, and thus 

(5) Ã(I,J) = |det£ř | . 

4. COMPUTATION OF £)„„,, 

It is obvious that the order of Maillet's determinant Dp„* i is card Y = N and that 

(6) Dp„,, = | det (rlW)r„,jer | = | det (r(+,-)P„r_„r1. 

Let /* = {1 = i = 2At/2 = r( = (p"+1 - l)/2} 

7* = {1 = 2At/2 = r_,. = (pB+1 - l)/2}. 

Then /*, j * contain At — 1 elements and /* u {0}, J* u {0} is a complete set of 
residues with respect to the modulus TV. 

From (4) there follows 

A(I*, J*) = det 

„»+i 

1 

- 2 l-Гj 

•• (riГj - ri+J)/p' !»+l 

i,J6l*,J* 

If we multiply all the rows except the first one by number pn+l we get 

A(l*, </*)=p-<"+1>(ІV-1> 

- 2 1 -

detl : I 
( l - r ( )p" + 1 rirJ - ri+j • 

• I l.jmf.J* 

Let 1 = u g 2iV and r„ = p " + 1 - 2. Then r_„ - (p"+1 - l)/2 and thus ueJ. 
The form of the column in the matrix presented in the last expression, correspond

ing to index u, is determined: 

1 -r„ = 1 - p " + 1 + 2 = 3:p"+ 1; 

since ri+u + 2r. =p" + 1 , we have rtru - r(+w - (p"+1 - 2)r, - />"+1 + 2r. » 
= p" + 1 (r,-l) . 
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Thus this column is of the form 

Y+l(ř, - 1)/ 
If the column, corresponding to index u, is added to the first column, then we get 

_(/»,7*)_/Г<"+1><"-1> 

Д ... 1 - r , 

<łet o | . . . rfj-n+j 

i,jeI*,J* 

If the first column is added to ( — 1) multiple of the other columns, then 

* 7*4 __ n - ( и + l ) ( N - l ) __(!*,/*)=/> 

1 ... r 

-Гfj + ri + J 

ІJєI*,J* 

If rt multiple of the first row is added to the row corresponding to index i, then 

(7) * 7*4 _ _-(l>+l)(Дł-l) _(/*, 7*) = p 

l-
det 

V 
r<+J 

' IJeľ.J* 

From (6), (7), (5) and (2) we obtain (1): 
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