Archivum Mathematicum

Jitka Kühnová
Maillet's determinant $D_{p^{n+1}}$

Archivum Mathematicum, Vol. 15 (1979), No. 4, 209--212
Persistent URL: http://dml.cz/dmlcz/107044

Terms of use:

© Masaryk University, 1979
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

MAILLET'S DETERMINANT $D_{p^{n+1}}$

JITKA KUUHNOVÁ, Brno
(Received January 19, 1978)

1. INTRODUCTION

In Carlitz and Olson's paper [1] there is defined the so called Maillet's determinant D_{p} / p is a prime $\geqq 3,(r, p)=1, r . r^{\prime} \equiv 1(\bmod p)$, the symbol $R(r)$ denotes the least positive residue of $r(\bmod p), D_{p}=\operatorname{det}\left(R\left(r . s^{\prime}\right)\right), r, s=1,2, \ldots,(p-1)$ [2] and there is proved the relation

$$
D_{p}= \pm p^{(p-3) / 2} \cdot h_{0}^{-}
$$

where h_{0}^{-}denotes the first factor of the class number of the $p^{\text {th }}$ cyclotomic field.
The purpose of our paper is to prove an analogical relation for determinant $D_{p^{n+1}}$

$$
\begin{equation*}
D_{p^{n+1}}= \pm p^{(n+1)(N-1)} \cdot h_{n}^{-} \tag{1}
\end{equation*}
$$

p is an odd prime, $n \geqq 0, N=p^{n}(p-1)$ [2]. The method of proving this relation differs from that presented in Carlitz and Olson's paper [1]. It reduces a certain matrix B, for which relation

$$
h_{n}^{-}=|\operatorname{det} B|
$$

is valid, where h_{n}^{-}denotes the first factor of the class number of the $p^{n+1 \text { th }}$ cyclotomic field.

For $n=0$ this relation was proved by Newman in [2] and by application of this result to a non-negative integer number n we get the above mentioned general relation (Skula [3]).

2. NOTATION

In the present paper the following symbols will be used:
$p \quad$ an odd prime
$n \quad$ a non-negative integer
Z the ring of integers
$N=p^{n}(p-1) / 2$
$r \quad$ a primitive root with respect to the modulus p^{n+1}
$r_{j} \quad$ the integer $\left(j \in \mathbf{Z}, 0<r_{j}<p^{n+1}\right.$
$r_{j} \equiv r^{j}\left(\bmod p^{n+1}\right)$ for $j \geqq 0$
$r_{j} . r^{-j} \equiv 1\left(\bmod p^{n+1}\right)$ for $j<0$
$h_{n}^{-} \quad$ the first factor of the class number of the p^{n+1} cyclotomic field generated by $p^{n+1 \text { th }}$ roots of unity over the rational field
$\boldsymbol{B}=\left(b_{i j}\right)_{0 \leqq i, j \leqq N-1}$ a matrix of order N, where

$$
\begin{aligned}
& b_{00}=p^{n+1}-2 \\
& b_{0 j}=1-r_{j}, 1 \leqq j \leqq N-1 \\
& b_{i 0}=1-r_{i}, 1 \leqq i \leqq N-1 \\
& b_{i j}=1 / p^{n+1}\left(r_{i} r_{j}-r_{i+j}\right), 1 \leqq i, j \leqq N-1 .
\end{aligned}
$$

(2) $\quad \operatorname{By}[3] h_{n}^{-}=|\operatorname{det} B|$
$Y^{*}=\left\{y / y=1,2, \ldots, p^{n+1}-1,(y, p)=1\right\}$, hence Y^{*} is a reduced set of residues
with respect to the modulus p^{n+1} and card $Y=\varphi\left(p^{n+1}\right)=2 N$
$y^{\prime} \quad$ the integer, where
$y \cdot y^{\prime} \equiv\left(\bmod p^{n+1}\right)$ for $y \in Y^{*}$
$\boldsymbol{R}(y) \quad$ the least positive residue $y\left(\bmod p^{n+1}\right)$

$$
\begin{equation*}
Y=\left\{y / y=1,2, \ldots,\left(p^{n+1}-1\right) / 2,(y, p)=1\right\} \tag{3}
\end{equation*}
$$

$D_{p^{n+1}}=\operatorname{det}\left(R\left(x . y^{\prime}\right)\right)_{x, y \in Y}$
(our definition of Maillet's determinant $D_{p^{n+1}}$)

3. MATRIX B REDUCTIONS

Let $I, J \subseteq \mathbf{Z}, I \cup\{0\}, J \cup\{0\}$ is a complete set of residues with respect to the modulus N and card $I=\operatorname{card} J=N-1$. We denote

$$
\Delta(I, J)=\left|\operatorname{det}\left(\begin{array}{cccc}
p^{n+1}-2 \ldots & 1-r_{j} & \ldots \tag{4}\\
\vdots & \vdots & \vdots \\
1-r_{i} & \ldots & \left(r_{i} r_{j}-r_{i+j}\right) / p^{n+1} & \ldots
\end{array}\right)_{i, j \in I_{\mathbf{j}} J}\right|
$$

We can suppose that $I, J \subseteq\{1,2, \ldots, 2 N\}-\{N\}$.
Now let $k \in I, k=i+N$, where $1 \leqq i \leqq N-1$. Matrix elements from (4) in the row, corresponding to index k, are determined by means of relation $r_{i}+r_{i+N}=$ $=p^{n+1}$:

$$
1-r_{k}=1-r_{i+N}=1-p^{n+1}+r_{i}
$$

$$
\begin{gathered}
\left(r_{k} r_{j}-r_{t+j}\right) / p^{n+1}=\left(r_{i+N} r_{j}-r_{i+j+N}\right) / p^{n+1}= \\
=\left(r_{j}\left(p^{n+1}-r_{i}\right)-p^{n+1}+r_{i+j}\right) / p^{n+1}=r_{j}-1-\left(r_{i} r_{j}-r_{i+j}\right) / p^{n+1}
\end{gathered}
$$

Now the flrst row is added to that of matrix from (4), corresponding to index k. We get:

$$
\begin{gathered}
p^{n+1}-2+1-p^{n+1}+r_{i}=-1+r_{i}=-\left(1-r_{i}\right) \\
1-r_{j}-1+r_{j}-\left(r_{i} r_{j}-r_{i+j}\right) / p^{n+1}=-\left(r_{i} r_{j}-r_{i+j}\right) / p^{n+1}
\end{gathered}
$$

Matrix B is symmetric and therefore analogously the same results are obtained also for columns. So if we change index sets I, J then there is changed only the sign of $\operatorname{det} B$, and thus

$$
\begin{equation*}
\Delta(I, J)=|\operatorname{det} B| \tag{5}
\end{equation*}
$$

4. COMPUTATION OF $D_{p^{n+1}}$

It is obvious that the order of Maillet's determinant $D_{p^{n+1}}$ is card $Y=N$ and that

$$
\begin{equation*}
D_{p^{n+1}}=\left|\operatorname{det}\left(r_{i-j}\right)_{r_{i}, r_{j} \in Y}\right|=\left|\operatorname{det}\left(r_{i+j}\right)_{r_{i}, r_{-j} \in Y}\right| . \tag{6}
\end{equation*}
$$

Let $I^{*}=\left\{1 \leqq i \leqq 2 N / 2 \leqq r_{i} \leqq\left(p^{n+1}-1\right) / 2\right\}$

$$
J^{*}=\left\{1 \leqq 2 N / 2 \leqq r_{-j} \leqq\left(p^{n+1}-1\right) / 2\right\}
$$

Then I^{*}, j^{*} contain $N-1$ elements and $I^{*} \cup\{0\}, J^{*} \cup\{0\}$ is a complete set of residues with respect to the modulus N.

From (4) there follows

$$
\Delta\left(I^{*}, J^{*}\right)=\left|\operatorname{det}\left(\begin{array}{c:ccc}
p^{n+1}-2 \ldots & 1-r_{j} & \ldots \\
\vdots & \ldots & \vdots \\
1-r_{i} & \ldots\left(r_{i} r_{j}-r_{i+j}\right) / p^{n+1} & \ldots \\
\vdots & \vdots &
\end{array}\right)_{i, j \in I^{*}, J^{*}}\right|
$$

If we multiply all the rows except the first one by number p^{n+1} we get

$$
\Delta\left(I^{*}, J^{*}\right)=p^{-(n+1)(N-1)}\left|\operatorname{det}\left(\begin{array}{c:ccc}
p^{n+1} & -2 & \ldots & 1-r_{j} \\
\vdots & \ldots & \vdots & \\
\left(1-r_{i}\right) & p^{n+1} & \ldots & r_{i} r_{j}-r_{i+j} \\
\vdots & \ldots
\end{array}\right)_{i, j \in I^{*}, J *}\right|
$$

Let $1 \leqq u \leqq 2 N$ and $r_{u}=p^{n+1}-2$. Then $r_{-u}=\left(p^{n+1}-1\right) / 2$ and thus $u \in J$.
The form of the column in the matrix presented in the last expression, corresponding to index u, is determined:

$$
1-r_{n}=1-p^{n+1}+2=3: p^{n+1}
$$

since $r_{i+u}+2 r_{i}=p^{n+1}$, we have $r_{i} r_{u}-r_{i+u}=\left(p^{n+1}-2\right) r_{i}-p^{n+1}+2 r_{i}=$ $=p^{n+1}\left(r_{i}-1\right)$.

Thus this column is of the form

$$
\left(\begin{array}{c}
3-p^{n+1} \\
\vdots \\
p^{n+1}\left(r_{i}-1\right)
\end{array}\right)
$$

If the column, corresponding to index u, is added to the first column, then we get

$$
\Delta\left(I^{*}, J^{*}\right)=p^{-(n+1)(N-1)}\left|\operatorname{det}\left(\begin{array}{c:ccc}
\vdots & \cdots & 1-r_{j} & \cdots \\
0 & \ldots & r_{i} r_{j}-r_{i+j} & \cdots \\
\vdots & & \vdots &
\end{array}\right)_{i, j \in r^{*}, \mathrm{~J}^{*}}\right|
$$

If the first column is added to (-1) multiple of the other columns, then

$$
\Delta\left(I^{*}, J^{*}\right)=p^{-(n+1)(N-1)}\left|\operatorname{det}\left(\begin{array}{c:ccc}
1 & \cdots & r_{j} & \cdots \\
\vdots & & \vdots & \\
\vdots & \ldots & -r_{i} r_{j}+r_{i+j} & \cdots
\end{array}\right)_{i, j \in I^{*}, J^{*}}\right|
$$

If r_{i} multiple of the first row is added to the row corresponding to index i, then

$$
\Delta\left(I^{*}, J^{*}\right)=p^{-(n+1)(N-1)}\left|\operatorname{det}\left(\begin{array}{cccc}
1 & \ldots & r_{j} & \ldots \tag{7}\\
\vdots & & \vdots & \\
r_{i} & \ldots & r_{i+j} & \cdots \\
\vdots & & \vdots &
\end{array}\right)_{i, j \in I^{*}, J^{*}}\right|
$$

From (6), (7), (5) and (2) we obtain (1):

$$
D_{p^{n+1}}= \pm p^{(n+1)(N-1)} \cdot h_{n}^{-}
$$

REFERENCES

[1] Carlitz, L., Olson, F. R.: Maillet's Determinant, Proceedings of the American Mathematical Society, Vol. 6, No. 2, 1955, pp. 265-269.
[2] Newman, M.: A Table of the First Factor for Prime Cyclotomic Fields, Mathematics of Computation, Vol. 24, No. 109, 1970, pp 215-219.
[3] Skula, L.: Another Proof of Iwasawa's Class Number Formula, to appear.

J. Kühnovd
66295 Brno, Janáčkovo nám. 2a
Czechoslovakia

