Archivum Mathematicum

Ivan Kiguradze; Irena Rachůnková
On a certain nonlinear problem for two-dimensional differential systems

Archivum Mathematicum, Vol. 16 (1980), No. 1, 15--37

Persistent URL: http://dml.cz/dmlcz/107052

Terms of use:

© Masaryk University, 1980
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON A CERTAIN NONLINEAR PROBLEM FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS

I. T. KIGURADZE, Tbilisi, I. RACHU゚NKOVA, Olomouc
(Received March 13, 1979)

The paper deals with the question on existence and uniqueness of a solution of the differential system

$$
\begin{equation*}
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=f_{i}\left(t, x_{1}, x_{2}\right) \quad(i=1,2) \tag{0.1}
\end{equation*}
$$

which is defined in [$0,+\infty$ [and satisfies the conditions

$$
\begin{equation*}
\varphi\left(x_{1}(0), x_{2}(0)\right)=0, x_{1}(t) \geqq 0, x_{2}(t) \geqq 0 \quad \text { for } t \geqq 0 \tag{0.2}
\end{equation*}
$$

The important special case of this problem

$$
\begin{gather*}
u^{\prime \prime}=f\left(t, u, u^{\prime}\right) \tag{0.3}\\
\varphi\left(u(0),\left|u^{\prime}(0)\right|\right)=0, u(t) \geqq 0, u^{\prime}(t) \leqq 0 \quad \text { for } t \geqq 0 \tag{0.4}
\end{gather*}
$$

is studied separately.
Concerning the history of the question it is necessary to refer to the classical paper by A. Kneser [1] who was the first to establish the existence and the uniqueness of the solution of the equation

$$
u^{\prime \prime}=f(t, u)
$$

under the conditions

$$
\begin{equation*}
u(0)=c_{0}, u(t) \geqq 0, u^{\prime}(t) \leqq 0 \quad \text { for } t \geqq 0 \tag{0.5}
\end{equation*}
$$

Later on it has been found that this problem has applications in the study of the distribution of electrons in the heavy atom [2,3]. Sufficiently general conditions of the solvability and unique solvability of the problem (0.3), (0.5) are given in $[4 ; 5$, $6,10]$. From papers, devoted to the analogous problems for differential systems we refer to $[7,8,11] .{ }^{1}$)

[^0]In this paper the new sufficient conditions of existence and uniqueness of the solution of the problems (0.1), (0.2) and (0.3), (0.4) are established and the behaviour of the solution is studied when $t \rightarrow+\infty .^{2}$)

1. STATEMENTS OF EXISTENCE THEOREMS

We shall use the following notations:

$$
R=]-\infty,+\infty\left[; R_{+}=\left[0,+\infty\left[; R^{2}=R \times R ; R_{+}^{2}=R_{+} \times R_{+} ;\right.\right.\right.
$$

$L(I)$ is the set of real functions which are summable according to Lebesgue on I. $L_{\text {loc }}(I)$ is the set of real functions which are summable according to Lebesgue on each compact interval contained in I.

In what follows it is assumed that $\varphi: R_{+}^{2} \rightarrow R$ is a continuous function and $f_{i}: R_{+} \times R_{+}^{2} \rightarrow R(i=1,2)$ satisfy the local Carathéodory conditions, i.e. $f_{i}\left(., x_{1}, x_{2}\right):$ $: R_{+} \rightarrow R(i=1,2)$ are measurable for every $\left(x_{1}, x_{2}\right) \in R_{+}^{2} ; f_{i}(t, .,):. R_{+}^{2} \rightarrow R$ ($i=1,2$) are continuous for almost every $t \in R_{+}$and

$$
\sup \left\{\left|f_{i}\left(., x_{1}, x_{2}\right)\right|: 0 \leqq x_{1} \leqq \varrho ; 0 \leqq x_{2} \leqq \varrho\right\} \in L_{1 \mathrm{loc}}\left(R_{+}\right) \quad(i=1,2)
$$

for any $\varrho \in R_{+}$.
Solutions of the problem (0.1), (0.2) (of the problem (0.3), (0.4)) are sought in the class of vector functions $\left(x_{1}, x_{2}\right): R_{+} \rightarrow R^{2}$ (in the class of functions $u: R_{+} \rightarrow R$) which are absolutely continuous (absolutely continuous with their first derivatives) on each compact interval contained in R_{+}.

The existence theorems proved below concern the cases when f_{1} and f_{2} satisfy one of the following two conditions

$$
\begin{gather*}
f_{i}(t, 0,0)=0 \quad(i=1,2), \quad f_{1}\left(t, x_{1}, x_{2}\right) \leqq 0, \quad f_{2}\left(t, x_{1}, 0\right) \leqq 0 \\
\text { for } t \geqq 0, x_{1} \geqq 0, x_{2} \geqq 0 \tag{1.1}
\end{gather*}
$$

or

$$
\begin{array}{r}
f_{i}(t, 0,0)=0, \quad f_{i}\left(t, x_{1}, x_{2}\right) \leqq 0 \quad(i=1,2) \\
\text { for } t \geqq 0, x_{1} \geqq 0, x_{2} \geqq 0
\end{array}
$$

and φ satisfies one of the following three conditions

$$
\begin{array}{lll}
\varphi(0,0)<0, & \varphi\left(x_{1}, x_{2}\right)>0 & \text { for } x_{1}>r, x_{2} \geqq 0, \\
\varphi(0,0)<0, & \varphi\left(x_{1}, x_{2}\right)>0 & \text { for } x_{1} \geqq 0, x_{2}>r \tag{1.4}
\end{array}
$$

[^1]or
\[

$$
\begin{equation*}
\varphi(0,0)<0, \quad \varphi\left(x_{1}, x_{2}\right)>0 \quad \text { for } x_{1}+x_{2}>r, x_{1} \geqq 0, x_{2} \geqq 0 \tag{1.5}
\end{equation*}
$$

\] where $r \in R_{+}$.

Theorem 1.1. Let the conditions (1.1) and (1.3) be fulfilled and let there exist reals $a_{0} \in R_{+}$and $a>a_{0}$ such that

$$
\begin{gather*}
f_{1}\left(t, x_{1}, x_{2}\right) \leqq-\delta\left(x_{2}\right) \quad \text { for } a_{0} \leqq t \leqq a, 0 \leqq x_{1} \leqq r, x_{2} \geqq 0, \tag{1.6}\\
f_{2}\left(t, x_{1}, x_{2}\right) \leqq-\left[h(t)+\left|f_{1}\left(t, x_{1}, x_{2}\right)\right|\right] \omega\left(x_{2}\right) \\
\text { for } 0 \leqq t \leqq a, 0 \leqq x_{1} \leqq r, x_{2} \leqq 0 \tag{1.7}
\end{gather*}
$$

and

$$
\begin{gather*}
f_{2}\left(t, x_{1}, x_{2}\right) \leqq\left[h(t)+\left|f_{1}\left(t, x_{1}, x_{2}\right)\right|\right] \omega\left(x_{2}\right) \\
\text { for } t \geqq a_{0}, 0 \leqq x_{1} \leqq r, x_{2} \geqq 0 \tag{1.8}
\end{gather*}
$$

where $h \in L_{\mathrm{loc}}\left(R_{+}\right), \delta: R_{+} \rightarrow R_{+}$and $\left.\omega: R_{+} \rightarrow\right] 0,+\infty[$ are continuous and satisfy the conditions

$$
\begin{align*}
& \lim _{x \rightarrow+\infty} \delta(x)=+\infty \tag{1.9}\\
& \int_{0}^{+\infty} \frac{d x}{\omega(x)}=+\infty \tag{1.10}
\end{align*}
$$

Then the problem (0.1), (0.2) is solvable.
Corollary 1. Let the conditions (1.2) and (1.3) be fulfilled and let there exist $a>0$ such that

$$
\begin{gathered}
f_{1}\left(t, x_{1}, x_{2}\right) \leqq-\delta\left(x_{2}\right) ; f_{2}\left(t, x_{1}, x_{2}\right) \leqq-l\left[h(t)+\left|f_{1}\left(t, x_{1}, x_{2}\right)\right|\right]\left(1+x_{2}\right) \\
\text { for } 0 \leqq t \leqq a, 0 \leqq x_{1} \leqq r, x_{2} \geqq 0
\end{gathered}
$$

where $l \in R_{+}, h \in L([0, a])$ and $\delta: R_{+} \rightarrow R_{+}$is a function satisfying the condition (1.9). Then the problem (0.1), (0.2) is solvable.

Remark 1. The conditions (1.6) and (1.9) may be somewhat relaxed when replaced by the condition

$$
f_{1}\left(t, x_{1}, x_{2}\right) \leqq-\delta\left(t, x_{2}\right) \quad \text { for } a_{0} \leqq t \leqq a, 0 \leqq x_{1} \leqq r ; x_{2} \leqq 0
$$

where $\delta:\left[a_{0}, a\right] \times R_{+} \rightarrow R_{+}$is nondecreasing with respect to the second argument, $\delta(., x) \in L\left(\left[a_{0}, a\right]\right)$ for any $x \in R_{+}$and

$$
\lim _{x \rightarrow+\infty} \int_{a_{0}}^{a} \delta(t, x) \mathrm{d} t>r
$$

But the above-mentioned conditions cannot be completely omitted. Indeed, the problem

$$
\begin{gathered}
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=0, \quad \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=-x_{1}-x_{2}, \\
x_{1}(0)=1, \quad x_{1}(t) \geqq 0, \quad x_{2}(t) \geqq 0 \quad \text { for } t \geqq 0
\end{gathered}
$$

is not solvable, although it fulfils all the conditions of Theorem 1.1 except (1.6) and (1.9).

Remark 2. The restriction (1.10) is essential and cannot be relaxed. As an example consider the problem

$$
\begin{align*}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=-\left(x_{1}+x_{2}\right), \quad \frac{\mathrm{d} x_{2}}{\mathrm{~d} t}=-\left(x_{1}+x_{2}\right)\left(1+x_{2}\right)^{1+\mathrm{t}}, \tag{1.11}\\
& x_{1}(0)=\frac{1}{\varepsilon}, \quad x_{1}(t) \geqq 0, \quad x_{2}(t) \geqq 0 \quad \text { for } t \geqq 0,
\end{align*}
$$

where $\varepsilon>0$ and assume that it has a solution $\left(x_{1}, x_{2}\right)$. Then

$$
x_{i}(t) \leqq x_{i}(0) \exp (-t) \rightarrow 0 \quad \text { when } t \rightarrow+\infty(i=1,2)
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[1+x_{2}(t)\right]^{-\varepsilon}=-\varepsilon \frac{\mathrm{d} x_{1}(t)}{\mathrm{d} t} \quad \text { for } t \geqq 0
$$

The integration of the last identity from 0 to $+\infty$ leads to the contradiction

$$
1-\left[1+x_{2}(0)\right]^{-\varepsilon}=1
$$

So for any $\varepsilon>0$ the problem (1.11), (1.12) is unsolvable in spite of the fact that it fulfils all the conditions of Theorem 1.1 except (1.10) instead of which we have

$$
\int_{0}^{+\infty} \frac{x^{\varepsilon}}{\omega(x)} \mathrm{d} x=\int_{0}^{+\infty} \frac{x^{\varepsilon}}{(1+x)^{1+\varepsilon}} \mathrm{d} x=+\infty
$$

If we put

$$
x_{1}(t)=u(t), \quad x_{2}(t)=-u^{\prime}(t)
$$

then the problem $(0.3),(0.4)$ turns into $(0.1),(0.2)$, where

$$
f_{1}\left(t, x_{1}, x_{2}\right)=-x_{2}, \quad f_{2}\left(t, x_{1}, x_{2}\right)=-f\left(t, x_{1},-x_{2}\right)
$$

Therefore Theorem 1.1 implies the following
Corollary 2. Let the conditions (1.3) and

$$
\begin{equation*}
f\left(t, x_{1}, 0\right) \geqq 0 \quad \text { for } t \geqq 0, x_{1} \geqq 0 \tag{1.13}
\end{equation*}
$$

be fulfilled and let there exist the reals $a_{0} \in R_{+}$and $a>a_{0}$ such that

$$
f\left(t, x_{1}, x_{2}\right) \leqq\left[h(t)+\left|x_{2}\right|\right] \omega\left(\left|x_{2}\right|\right) \quad \text { for } 0 \leqq t \leqq a, 0 \leqq x_{1} \leqq r, x_{2} \leqq 0
$$

and

$$
f\left(t, x_{1}, x_{2}\right) \geqq-\left[h(t)+\left|x_{2}\right|\right] \omega\left(\left|x_{2}\right|\right) \quad \text { for } t \geqq a_{0}, 0 \leqq x_{1} \leqq r, x_{2} \leqq 0
$$

where $\left.h \in L_{\mathrm{loc}}\left(R_{+}\right) ; \omega: R_{+} \rightarrow\right] 0,+\infty[$ is a continuous function satisfying the condition (1.10). Then the problem (0.3), (0.4) is solvable.

This statement generalizes the P. Hartman and A. Wintner theorem [6] on the solvability of the problem (0.3), (0.5).

Theorem 1.2. Let the conditions (1.1) and (1.3) be fulfilled and let there exist $a>0$ such that

$$
\begin{gather*}
f_{1}\left(t, x_{1}, x_{2}\right) \leqq-\delta x_{2}^{\mu}, \quad f_{2}\left(t, x_{1}, x_{2}\right) \leqq-h_{0}(t)\left(1+x_{2}\right)^{\lambda} \tag{1.14}\\
\text { for } 0 \leqq t \leqq a, 0 \leqq x_{1} \leqq r, x_{2} \geqq 0
\end{gather*}
$$

and

$$
\begin{gather*}
f_{2}\left(t, x_{1}, x_{2}\right) \leqq\left[h(t)+\left|f_{1}\left(t, x_{1}, x_{2}\right)\right|\right] \omega\left(x_{2}\right) \tag{1.15}\\
\text { for } t>0,0 \leqq x_{1} \leqq r, x_{2} \geqq 0
\end{gather*}
$$

where $\delta>0, \mu>0, \lambda>1, h_{0} \in L([0, a]), h_{0}(t)>0$ for $0<t<a$,

$$
\begin{equation*}
\int_{0}^{\infty}\left[\int_{0}^{t} h_{0}(\tau) \mathrm{d} \tau\right]^{\frac{\mu}{1-\lambda}} \mathrm{d} t=+\infty, \tag{1.16}
\end{equation*}
$$

$h \in L_{\mathrm{loc}}(] 0,+\infty[)$ and $\left.\omega: R_{+} \rightarrow\right] 0,+\infty[$ is a continuous function satisfying (1.10). Then the problem (0.1), (0.2) is solvable.

Corollary 1. Let the conditions (1.2) and (1.3) be fulfilled and let there exist reals $a \in] 0,1[, \delta>0, \mu>0, l>0$ and $\lambda>1$ such that

$$
\begin{gathered}
f_{1}\left(t, x_{1}, x_{2}\right) \leqq-\delta x_{2}^{\mu}, \quad f_{2}\left(t, x_{1}, x_{2}\right) \leqq-l t^{\frac{\lambda-1}{\mu}-1}|\ln t|^{\frac{\lambda-1}{\mu}}\left(1+x_{2}\right)^{\lambda} \\
\text { for } 0 \leqq t \leqq a, 0 \leqq x_{1} \leqq r, x_{2} \leqq 0 .
\end{gathered}
$$

Then the problem (0.1), (0.2) is solvable.
Corollary 2. Let the conditions (1.3) and (1.13) be fulfilled and let there exist $a>0$ such that

$$
f\left(t, x_{1}, x_{2}\right) \leqq h_{0}(t)\left(1+\left|x_{2}\right|\right)^{\lambda} \quad \text { for } 0 \leqq t \leqq a, 0 \leqq x_{1} \leqq r, x_{2} \leqq 0
$$

and

$$
f\left(t, x_{1}, x_{2}\right) \geqq-\left[h(t)+\left|x_{2}\right|\right] \omega\left(\left|x_{2}\right|\right) \quad \text { for } t>0,0 \leqq x_{1} \leqq r, x_{2} \leqq 0,
$$

where $\lambda>1, h_{0} \in L([0, a]), h_{0}(t)>0$ for $0<t<a$,

$$
\int_{0}^{\infty}\left[\int_{0}^{t} h_{0}(\tau) \mathrm{d} \tau\right]^{\frac{1}{1-\lambda}} \mathrm{d} t=+\infty
$$

$h \in L_{\mathrm{loc}} \cap 0,+\infty\left[\right.$ and $\left.\omega: R_{+} \rightarrow\right] 0,+\infty[$ is a continuous function satisfying (1.10). Then the problem (0.3), (0.4) is solvable.

Theorem 1.3. Let the conditions (1.1) and (1.4) be fulfilled and for a certain $a>0$

$$
f_{1}\left(t, x_{1}, x_{2}\right) \geqq-\left[h(t)+\left|f_{2}\left(t, x_{1}, x_{2}\right)\right|\right] \omega\left(x_{1}\right), \quad f_{2}\left(t, x_{1}, x_{2}\right) \leqq-\delta\left(x_{1}\right)
$$

$$
\begin{equation*}
\text { for } 0 \leqq t \leqq a, x_{1} \leqq 0,0 \leqq x_{2} \leqq r \text {, } \tag{1.17}
\end{equation*}
$$

where $h \in L([0, a]), \delta: R_{+} \rightarrow R_{+}$and $\left.\omega: R_{+} \rightarrow\right] 0,+\infty[$ are continuous functions satisfying (1.9) and (1.10). Suppose that for each $\varrho>0$ there exist $h_{e} \in L_{\text {loc }}([a,+\infty D$ and a continuous function $\left.\omega_{e}: R_{+} \rightarrow\right] 0,+\infty[$ such that

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{d x}{\omega_{e}(x)}=+\infty \tag{1.18}
\end{equation*}
$$

and

$$
\begin{gather*}
f_{2}\left(t, x_{1}, x_{2}\right) \leqq\left[h_{e}(t)+\left|f_{1}\left(t, x_{1}, x_{2}\right)\right|\right] \omega_{Q}\left(x_{2}\right) \tag{1.19}\\
\text { for } t \geqq a, 0 \leqq x_{1} \leqq \varrho, x_{2} \leqq 0 .
\end{gather*}
$$

Then the problem (0.1), (0.2) is solvable.
Corollary. Let the conditions (1.4) and (1.13) be fulfilled and for a certain $a>0$

$$
f\left(t, x_{1}, x_{2}\right) \geqq \delta\left(x_{1}\right) \quad \text { for } 0 \leqq t \leqq a, x_{1} \geqq 0,-r \leqq x_{2} \leqq 0,
$$

where $\delta: R_{+} \rightarrow R_{+}$is a function satisfying (1.9). Suppose that for each $\varrho>0$ there exist $h_{e} \in L_{\text {loc }}\left(\left[a,+\infty D\right.\right.$ and a continuous function $\left.\omega_{e}: R_{+} \rightarrow\right] 0,+\infty[$ satisfying (1.18) such that

$$
f\left(t, x_{1}, x_{2}\right) \geqq-\left[h_{e}(t)+\left|x_{2}\right|\right] \omega_{e}\left(\left|x_{2}\right|\right) \quad \text { for } t \geqq a, 0 \leqq x_{1} \leqq \varrho, x_{2} \leqq 0
$$

Then the problem (0.3), (0.4) is solvable.
Theorem 1.4. Let the conditions (1.1), (1.5) and

$$
\begin{gathered}
f_{2}\left(t, x_{1}, x_{2}\right) \leqq\left[h(t)+\left|f_{1}\left(t, x_{1}, x_{2}\right)\right|\right] \omega\left(x_{2}\right) \\
\text { for } t \geqq 0,0 \leqq x_{1} \leqq r, x_{2} \geqq 0
\end{gathered}
$$

be fulfilled, where $\left.h \in L_{\mathrm{loc}}\right] 0,+\infty \mathrm{D}$ and $\left.\omega: R_{+} \rightarrow\right] 0,+\infty[$ is a continuous function satisfying (1.10). Then the problem (0.1), (0.2) is solvable.

Corollary 1. If the conditions (1.2) and (1.5) are valid, then the problem (0.1), (0.2) is solvable.

Corollary 2. Let the conditions (1.5), (1.13) and

$$
f\left(t, x_{1}, x_{2}\right) \geqq-\left[h(t)+\left|x_{2}\right|\right] \omega\left(\left|x_{2}\right|\right) \quad \text { for } t \geqq 0,0 \leqq x_{1} \leqq r, x_{2} \leqq 0
$$

be fulfilled, where $h \in L_{\mathrm{loc}}\left[0,+\infty\left[\right.\right.$ and $\left.\omega: R_{+} \rightarrow\right] 0,+\infty[$ is a continuous function satisfying (1.10). Then the problem (0.3), (0.4) is solvable.

2. THE LEMMA ON A PRIORI ESTIMATES

Lemma 2.1. Let $0 \leqq a_{0}<a<+\infty, r>0, h \in L_{\text {loc }}\left(R_{+}\right), h(t) \geqq 0$ be valid for $t \geqq 0$. Suppose that $\left.\omega: R_{+} \rightarrow\right] 0,+\infty\left[\right.$ and $\delta_{0}: R_{+} \rightarrow R_{+}$are continuous functions satisfying the conditions (1.10) and

$$
\lim _{x \rightarrow+\infty} \delta_{0}(x)>\frac{r}{a-a_{0}}
$$

and $\left.\Omega: R_{+} \rightarrow\right] 0,+\infty[$ is a function defined by means of the equality

$$
\begin{equation*}
\Omega(x)=\int_{0}^{x} \frac{\mathrm{~d} s}{\omega(s)} \tag{2.1}
\end{equation*}
$$

Then there exists $r^{*}>r$ such that for any $b>a$ and for any absolutely continuous functions $x_{i}:[0, b] \rightarrow R(i=1,2)$ the inequalities

$$
\begin{gather*}
x_{1}(0) \leqq r, x_{1}(t) \geqq 0, x_{1}^{\prime}(t) \leqq 0, x_{2}(t) \geqq 0 \quad \text { for } 0 \leqq t \leqq b, \tag{2.2}\\
x_{1}^{\prime}(t) \leqq-\delta_{0}\left(x_{2}(t)\right) \quad \text { for } a_{0} \leqq t \leqq a, \tag{2.3}\\
x_{2}^{\prime}(t) \geqq-\left[h(t)-x_{1}^{\prime}(t)\right] \omega\left(x_{2}(t)\right) \quad \text { for } 0 \leqq t \leqq a \tag{2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
x_{2}^{\prime}(t) \leqq\left[h(t)-x_{1}^{\prime}(t)\right] \omega\left(x_{2}(t)\right) \quad \text { for } a_{0} \leqq t \leqq b \tag{2.5}
\end{equation*}
$$

imply the following estimate

$$
\begin{equation*}
x_{2}(t) \leqq \Omega^{-1}\left(r^{*}+\int_{0}^{t} h(\tau) \mathrm{d} \tau\right) \quad \text { for } 0 \leqq t \leqq b \tag{2.6}
\end{equation*}
$$

Proof. Choose $r_{0}>0$ such that

$$
\begin{equation*}
\delta_{0}(x)>\frac{r}{a-a_{0}} \quad \text { for } x>r_{0} \tag{2.7}
\end{equation*}
$$

According to (2.2) and (2.3) we get

$$
r \geqq x_{1}\left(a_{0}\right)-x_{1}(a) \geqq \int_{\infty_{0}}^{a} \delta_{0}\left(x_{2}(t)\right) \mathrm{d} t
$$

Hence (2.7) implies the existence of $t_{0} \in\left[a_{0}, a\right]$ such that

$$
\begin{equation*}
x_{2}\left(t_{0}\right) \leqq r_{0} \tag{2.8}
\end{equation*}
$$

Using (2.1), (2.4) and (2.5) we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Omega\left(x_{2}(t)\right) \geqq-h(t)+x_{1}^{\prime}(t) \quad \text { for } 0 \leqq t \leqq t_{0}
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Omega\left(x_{2}(t)\right) \leqq \quad h(t)-x_{1}^{\prime}(t) \quad \text { for } t_{0} \leqq t \leqq b
$$

From this inequalities by (2.2) and (2.8) it follows that

$$
\begin{aligned}
& \Omega\left(x_{2}(t)\right) \leqq \Omega\left(x_{2}\left(t_{0}\right)\right)+\int_{i}^{t_{0}} h(\tau) \mathrm{d} \tau+x_{1}(t) \leqq \\
& \leqq \Omega\left(r_{0}\right)+r+\int_{0}^{0} h(\tau) \mathrm{d} \tau \quad \text { for } 0 \leqq t \leqq t_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Omega\left(x_{2}(t)\right) \leqq \Omega\left(x_{2}\left(t_{0}\right)\right)+\int_{t_{0}}^{t} h(\tau) \mathrm{d} \tau+x_{1}\left(t_{0}\right) \leqq \\
& \leqq \Omega\left(r_{0}\right)+r+\int_{0}^{t} h(\tau) \mathrm{d} \tau \quad \text { for } t_{0} \leqq t \leqq b .
\end{aligned}
$$

Thus

$$
\Omega\left(x_{2}(t)\right) \leqq r^{*}+\int_{0}^{t} h(\tau) \mathrm{d} \tau \quad \text { for } 0 \leqq t \leqq b,
$$

where $r^{*}=\Omega\left(r_{0}\right)+r+\int_{0}^{0} h(\tau) \mathrm{d} \tau$ does not depend on b, x_{1} and x_{2}. Hence according to (1.10) the estimate (2.6) is valid. This completes the proof.

3. THE LEMMA ON THE SOLVABILITY OF A CERTAIN AUXILIARY BOUNDARY VALUE PROBLEM

Consider the auxiliary two point boundary value problem

$$
\begin{equation*}
\varphi\left(x_{1}(0), x_{2}(0)\right)=0, \quad x_{k}(b)=0 \tag{3.1}
\end{equation*}
$$

where $k \in\{1,2\}, b \in] 0,+\infty[$ for the system (0.1).

Lemma 3.1. Let there hold

$$
\begin{equation*}
\varphi(0,0)<0, \varphi\left(x_{1}, x_{2}\right)>0 \quad \text { for } x_{k} \geqq 0, x_{3-k}>r, \tag{3.2}
\end{equation*}
$$

$$
\begin{gather*}
f_{i}(t, 0,0)=0(i=1,2), f_{1}(t, 0, x) \leqq 0, f_{2}(t, x, 0) \leqq 0 \tag{3.3}\\
\text { for } 0 \leqq t \leqq b, x \leqq 0
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{2}\left|f_{i}\left(t, x_{1}, x_{2}\right)\right| \leqq f^{*}(t) \quad \text { for } 0<t<b, x_{1} \geqq 0, x_{2} \geqq 0 \tag{3.4}
\end{equation*}
$$

where $r \in] 0,+\infty\left[\right.$ and $f^{*} \in L([0, b])$. Then the problem (0.1), (3.1) has at least one solution (x_{1}, x_{2}) such that

$$
\begin{equation*}
x_{1}(t) \geqq 0, x_{2}(t) \geqq 0 \quad \text { for } 0 \leqq t \leqq b \tag{3.5}
\end{equation*}
$$

Proof. At first let us prove Lemma under the additional assumption that the right-hand sides of the system (0.1) satisfy the local Lipschitz condition, i.e. for each $\rho>0$

$$
\begin{gather*}
\sum_{i=1}^{2}\left|f_{i}\left(t, x_{1}, x_{2}\right)-f_{i}\left(t, y_{1}, y_{2}\right)\right| \leqq l_{e}(t)\left(\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|\right) \tag{3.6}\\
\text { for } 0 \leqq t \leqq b, 0 \leqq x_{j}, y_{j} \leqq Q(j=1,2)
\end{gather*}
$$

where $l_{e} \in L([0, b])$.
Let us put

$$
\begin{gather*}
\sigma(s)= \begin{cases}0 & \text { for } s<0, \\
s & \text { for } s \geqq 0,\end{cases} \\
\tilde{f}_{i}\left(t, x_{1}, x_{2}\right)=f_{i}\left(t, \sigma\left(x_{1}\right), \sigma\left(x_{2}\right)\right) \quad(i=1,2) \tag{3.7}
\end{gather*}
$$

and consider the system

$$
\begin{equation*}
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=\tilde{f}_{i}\left(t, x_{1}, x_{2}\right) \quad(i=1,2) \tag{3.8}
\end{equation*}
$$

under initial conditions

$$
\begin{equation*}
x_{k}(b)=0, x_{3-k}(b)=\alpha \tag{3.9}
\end{equation*}
$$

According to (3.4) and (3.6) for any $\alpha \in R$ the problem (3.8), (3.9) has the unique solution $\left(x_{1}(. ; \alpha), x_{2}(. ; \alpha)\right)$ which is defined on the whole segment $[0, b]$.

Put

$$
\begin{aligned}
& l_{1}(t ; \alpha)= \begin{cases}\frac{\tilde{f_{1}}\left(t, 0, x_{2}(t ; \alpha)\right)-\tilde{f}_{1}\left(t, x_{1}(t ; \alpha), x_{2}(t ; \alpha)\right)}{x_{1}(t ; \alpha)} & \text { for } x_{1}(t ; \alpha) \neq 0 \\
0 & \text { for } x_{1}(t ; \alpha)=0\end{cases} \\
& l_{2}(t ; \alpha)= \begin{cases}\frac{\tilde{f_{2}}\left(t, x_{1}(t ; \alpha), 0\right)-\tilde{f_{2}}\left(t, x_{1}(t ; \alpha), x_{2}(t ; \alpha)\right)}{x_{2}(t ; \alpha)} & \text { for } x_{2}(t ; \alpha) \neq 0, \\
0 & \text { for } x_{2}(t ; \alpha)=0\end{cases}
\end{aligned}
$$

From (3.3) and (3.7) there follows

$$
\begin{gathered}
\frac{d x_{1}(t ; \alpha)}{d t}=\tilde{f}_{1}\left(t, 0, x_{2}(t ; \alpha)-l_{1}(t ; \alpha) x_{1}(t ; \alpha) \leqq\right. \\
\leqq-l_{1}(t ; \alpha) x_{1}(t ; \alpha) \quad \text { for } 0 \leqq t \leqq b
\end{gathered}
$$

and

$$
\begin{aligned}
& \frac{\mathrm{d} x_{2}(t ; \alpha)}{\mathrm{d} t}=\tilde{f}_{2}\left(t, x_{1}(t ; \alpha) ; 0\right)-l_{2}(t ; \alpha) x_{2}(t ; \alpha) \leqq \\
& \quad \leqq-l_{2}(t ; \alpha) x_{2}(t ; \alpha) \quad \text { for } 0 \leqq t \leqq b
\end{aligned}
$$

Thus

$$
x_{k}(t ; \alpha) \geqq 0, x_{3-k}(t ; \alpha) \geqq \alpha \exp \left[\int_{t}^{b} l_{3-k}(\tau ; \alpha) d \tau\right] \geqq 0 \quad \text { for } 0 \leqq t \leqq b, \alpha \geqq 0 .
$$

Therefore $\left(x_{1}(. ; \alpha), x_{2}(. ; \alpha)\right)$ is a solution of the system (0.1) for any $\alpha \in R_{+}$.
Let us put

$$
\tilde{\varphi}(\alpha)=\varphi\left(x_{1}(0 ; \alpha), x_{2}(0 ; \alpha)\right)
$$

and

$$
\alpha^{*}=r+\int_{0}^{b} f^{*}(t) \mathrm{d} t
$$

By (3.2) and (3.4)

$$
x_{3-k}\left(0 ; \alpha^{*}\right)=\alpha^{*}-\int_{0}^{b} f_{3-k}\left(t, x_{1}\left(t ; \alpha^{*}\right), x_{2}\left(t ; \alpha^{*}\right)\right) \mathrm{d} t \geqq r
$$

and

$$
\tilde{\varphi}\left(\alpha^{*}\right) \geqq 0 .
$$

On the other hand, $\tilde{\varphi}$ is continuous on $\left[0, \alpha^{*}\right]$ and

$$
\tilde{\varphi}(0)=\varphi\left(x_{1}(0 ; 0), x_{2}(0 ; 0)\right)=\varphi(0,0)<0 .
$$

So there exists $\left.\left.\alpha_{0} \in\right] 0, \alpha^{*}\right]$ such that

$$
\tilde{\varphi}\left(\alpha_{0}\right)=0 .
$$

Obviously, $\left(x_{1}\left(\cdot ; \alpha_{0}\right), x_{2}\left(. ; \alpha_{0}\right)\right)$ is a solution of the problem (0.1), (3.1).
To complete the proof of Lemma it suffices to get rid of the additional assumption (3.6).

Let \tilde{f}_{1} and \tilde{f}_{2} be the functions given by the equalities (3.7) and let $\omega_{m}: R \rightarrow R_{+}$ ($m=1,2, \ldots$) be a sequence of continuously differeatialte fanctions such that

$$
\omega_{m}(x)=0 \quad \text { for } \quad|x| \geqq \frac{1}{m}, \int_{-\infty}^{+\infty} \omega_{m}(x) \mathrm{d} x=1 \quad(m=1,2, \ldots)
$$

Put

$$
g_{i m}\left(t, x_{1}, x_{2}\right)=\int_{-\infty}^{\infty} \omega_{m}\left(y_{1}-x_{1}\right) d y_{1} \int_{-\infty}^{\infty} \omega_{m}\left(y_{2}-x_{1}\right) \tilde{f}_{i}\left(t, y_{1}, y_{2}\right) \mathrm{d} y_{2},
$$

$$
\begin{gathered}
h_{1 m}(t, x)=\int_{-\infty}^{\infty} \omega_{m}(y-x) \tilde{f}_{1}(t, 0, y) \mathrm{d} y, \\
h_{2 m}(t, x)=\int_{-\infty}^{\infty} \omega_{m}(y-x) \tilde{f}_{2}(t, y, 0) \mathrm{d} y, \\
f_{1 m}\left(t, x_{1}, x_{2}\right)=g_{1 m}\left(t, x_{1}, x_{2}\right)-g_{1 m}\left(t, 0, x_{2}\right)-\left|h_{1 m}\left(t, x_{2}\right)-h_{1 m}(t, 0)\right|
\end{gathered}
$$

and

$$
f_{2 m}\left(t, x_{1}, x_{2}\right)=g_{2 m}\left(t, x_{1}, x_{2}\right)-g_{2 m}\left(t, x_{1}, 0\right)-\left|h_{2 m}\left(t, x_{1}\right)-h_{2 m}(t, 0)\right|
$$

From (3.3) and (3.4) it follows for each natural m

$$
\begin{gathered}
f_{i m}(t, 0,0)=0 \quad(i=1,2), \quad f_{1 m}(t, 0, x) \leqq 0, \quad f_{2 m}(t, x, 0) \leqq 0 \\
\quad \text { for } 0 \leqq t \leqq b, \quad x \in R
\end{gathered}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{2}\left|f_{i m}\left(t, x_{1}, x_{2}\right)\right| \leqq 4 f^{*}(t) \quad \text { for } 0 \leqq t \leqq b,\left(x_{1}, x_{2}\right) \in R^{2} \tag{3.10}
\end{equation*}
$$

Besides, for any $t \in[0,+\infty[$

$$
\begin{equation*}
\lim _{m \rightarrow \infty} f_{t m}\left(t, x_{1}, x_{2}\right)=\tilde{f_{i}}\left(t, x_{1}, x_{2}\right) \quad(i=1,2) \tag{3.11}
\end{equation*}
$$

uniformly on each bounded set of the space R^{2}.
From the structure of $f_{1 m}$ and $f_{2 m}$ it is obvious that these functions satisfy the local Lipschitz condition with respect to their two last arguments. Thus according to the already proved for each natural m, the system

$$
\frac{d x_{i}}{d t}=f_{t m}\left(t, x_{1}, x_{2}\right) \quad(i=1,2)
$$

has a solution ($x_{1 m}, x_{2 m}$) satisfying (3.1) and (3.5).
Using (3.2), (3.10) and (3.11) it is easy to prove that the sequence of the vector functions $\left\{\left(x_{1 m}, x_{2 m}\right)\right\}_{m=1}^{\infty}$ contains a uniformly converging on $[0, b]$ subsequence such that its limit is a solution of the problem (0.1), (3.1). This completes the proof.

4. THE PROOFS OF THE EXISTENCE THEOREMS

Proof of Theorem 1.1. Without loss of generality assume that $h(t) \geqq 0$ for $t \geqq 0$.

Choose a number $\left.r_{0} \in\right] r,+\infty[$ and a nondecreasing continuous function $\delta_{0}: R_{+} \rightarrow R_{+}$such that

$$
\delta(x) \geqq \delta_{0}(x) \quad \text { for } x \geqq 0
$$

and

$$
\delta_{0}(x)=\delta_{0}\left(r_{0}\right)>\frac{r}{a-a_{0}} \quad \text { for } x \geqq r_{0} .
$$

Suppose that Ω is the function which is defined by means of the equality (2.1), Ω^{-1} is its inverse one and r^{*} is the positive constant appearing in Lemma 2.1. Let us put

$$
\begin{gathered}
\varrho_{0}(t)=\Omega^{-1}\left(r^{*}+\int_{0}^{t} h(\tau) \mathrm{d} \tau\right), \\
\sigma_{0}(t, s)= \begin{cases}1 & \quad \text { for } 0 \leqq s \leqq \varrho_{0}(t)+r_{0}, \\
1-\frac{s-\varrho_{0}(t)}{r_{0}} & \text { for } \varrho_{0}(t)<s \leqq \varrho(t), \\
0 & \text { for } s>\varrho(t),\end{cases} \\
\sigma_{1}(s)= \begin{cases}s & \text { for } 0 \leqq s \leqq r, \\
r & \text { for } s>r, \\
\tilde{f_{1}}\left(t, x_{1}, x_{2}\right)=f_{1}\left(t, \sigma_{1}\left(x_{1}\right), \sigma_{2}\left(t, x_{2}\right)\right), \\
\tilde{f}_{2}\left(t, x_{1}, x_{2}\right)=\sigma_{0}\left(t, x_{2}\right) f_{2}\left(t, \sigma_{1}\left(x_{1}\right), x_{2}\right)\end{cases}
\end{gathered}
$$

and consider the differential system

$$
\begin{equation*}
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=\tilde{f_{i}}\left(t, x_{1}, x_{2}\right) \quad(i=1,2) \tag{4.1}
\end{equation*}
$$

From the definition of $\tilde{f_{1}}$ and $\tilde{f_{2}}$ and from the conditions (1.1) and (1.3) it follows

$$
\begin{gather*}
\tilde{f}_{i}\left(t, x_{1}, x_{2}\right)=f_{i}\left(t, x_{1}, x_{2}\right) \quad \text { for } t \geqq 0, \tag{4.2}\\
0 \leqq x_{1} \leqq r, \quad 0 \leqq x_{2} \leqq \varrho_{0}(t) \quad(i=1,2), \\
\tilde{f}_{1}\left(t, x_{1}, x_{2}\right) \leqq-\delta_{0}\left(x_{2}\right) \leqq 0 \quad \text { for } a_{0} \leqq t \leqq a, x_{1} \geqq 0, x_{2} \geqq 0, \tag{4.3}\\
\tilde{f_{2}}\left(t, x_{1}, x_{2}\right) \geqq-\left[h(t)+\left|\tilde{f_{1}}\left(t, x_{1}, x_{2}\right)\right|\right] \omega\left(x_{2}\right) \\
\text { for } 0 \leqq t \leqq a, x_{1} \geqq 0, x_{2} \geqq 0, \\
\tilde{f_{2}}\left(t, x_{1}, x_{2}\right) \leqq\left[h(t)+\left|\tilde{f_{1}}\left(t, x_{1}, x_{2}\right)\right|\right] \omega\left(x_{2}\right) \\
\text { for } t \geqq a_{0}, x_{1} \geqq 0, x_{2} \geqq 0
\end{gather*}
$$

and

$$
\sum_{i=1}^{2}\left|\tilde{f}_{i}\left(t, x_{1}, x_{2}\right)\right| \leqq f^{*}(t) \quad \text { for } t \geqq 0, x_{1} \geqq 0, x_{2} \geqq 0
$$

where
and

$$
f^{*}(t)=\max \left\{\sum_{i=1}^{2}\left|f_{i}\left(t, x_{1}, x_{2}\right)\right|: 0 \leqq x_{1} \leqq r, 0 \leqq x_{2} \leqq \varrho(t)\right\}
$$

$$
f^{*} \in L_{\mathrm{loc}}([0,+\infty \mathrm{D}
$$

According to Lemma 3.1 for each natural p the system (4.1) has a solution ($x_{1 p}, x_{2 p}$) which is defined on the segment $[0, a+p]$ and satisfies the conditions

$$
\begin{equation*}
\varphi\left(x_{1 p}(0), x_{2 p}(0)\right)=0, \quad x_{1 p}(t) \geqq 0, \quad x_{2 p}(t) \geqq 0 \quad \text { for } 0 \leqq t \leqq a+p \tag{4.6}
\end{equation*}
$$

By (1.1) and (1.3)

$$
\begin{equation*}
x_{1 p}^{\prime}(t) \leqq 0, \quad x_{1 p}(t) \leqq x_{1 p}(0) \leqq r \quad \text { for } 0 \leqq t \leqq a+p . \tag{4.7}
\end{equation*}
$$

On the other hand, since the inequalities (4.3)-(4.5) hold we have

$$
\begin{array}{ll}
x_{1 p}^{\prime}(t) \leqq-\delta_{0}\left(x_{2 p}(t)\right) \leqq 0 & \text { for } a_{0} \leqq t \leqq a \\
x_{2 p}^{\prime}(t) \leqq-\left[h(t)-x_{1 p}^{\prime}(t)\right] \omega\left(x_{2 p}(t)\right) & \text { for } 0 \leqq t \leqq a \\
x_{2 p}^{\prime}(t) \leqq\left[h(t)-x_{1 p}^{\prime}(t)\right] \omega\left(x_{2 p}(t)\right) & \text { for } a_{0} \leqq t \leqq a+p \tag{4.9}
\end{array}
$$

According to Lemma 2.1 from (4.6)-(4.9) there follows the estimate

$$
\begin{equation*}
x_{2 p}(t) \leqq \varrho_{0}(t) \quad \text { for } 0 \leqq t \leqq a+p \tag{4.10}
\end{equation*}
$$

The conditions (4.2), (4.7) and (4.10) imply that $\left(x_{1 p}, x_{2 p}\right)$ is a solution of the system (0.1) on $[0, a+p]$.

Using (4.7) and (4.10) it is easy to prove that from the sequence of vector functions $\left\{\left(x_{1 p}, x_{2 p}\right)\right\}_{p=1}^{\infty}$ we can choose a subsequence $\left\{\left(x_{1 p_{m}}, x_{2 p_{m}}\right)\right\}_{m=1}^{\infty}$ such that this subsequence uniformly converges on each segment from [0, + ∞ [, and

$$
\left(x_{1}, x_{2}\right)=\lim _{m \rightarrow+\infty}\left(x_{1 p_{m}}, x_{2 p_{m}}\right)
$$

is a solution of the system (0.1) on $[0,+\infty[$. On the other hand, from (4.6) it is obvious that $\left(x_{1}, x_{2}\right)$ satisfies the conditions (0.2). This completes the proof.

Proof of Theorem 1.2. Without any loss of generality a may be chosen so small that

$$
(\lambda-1) \int_{0}^{a} h_{0}(\tau) d \tau<1
$$

By (1.16) there exist numbers $\left.a_{0} \in\right] 0, a[$ and $\varepsilon \in] 0,1[$ such that

$$
\begin{equation*}
\varrho(t)=\left[\varepsilon+(\lambda-1) \int_{0}^{1} h_{0}(\tau) \mathrm{d} \tau\right]^{\frac{1}{1-\lambda}}-1>0 \quad \text { for } 0 \leqq t \leqq a \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \int_{\omega_{0}}^{a}[\rho(t)]^{\mu} \mathrm{d} t>r . \tag{4.12}
\end{equation*}
$$

Let us put

$$
\sigma(s)= \begin{cases}1 & \text { for } 0 \leqq s \leqq \varrho(0) \\ 2-\frac{s}{\varrho(0)} & \text { for } \varrho(0)<s \leqq 2 Q(0) \\ 0 & \text { for } s>2 \varrho(0)\end{cases}
$$

and

$$
\tilde{f}_{2}\left(t, x_{1}, x_{2}\right)= \begin{cases}\sigma\left(x_{2}\right) f_{2}\left(t, x_{1}, x_{2}\right) & \text { for } t \leqq a_{0} \\ f_{2}\left(t, x_{1}, x_{2}\right) & \text { for } t>a_{0}\end{cases}
$$

Then since (1.15) holds, we have

$$
\begin{gathered}
\tilde{f}_{2}\left(t, x_{1}, x_{2}\right) \geqq-\left[\tilde{h}(t)+\left|f_{1}\left(t, x_{1}, x_{2}\right)\right|\right] \omega\left(x_{2}\right) \\
\quad \text { for } 0 \leqq t \leqq a_{0}, 0 \leqq x_{1} \leqq r, x_{2} \geqq 0
\end{gathered}
$$

and

$$
\begin{aligned}
\tilde{f}_{2}\left(t, x_{1}, x_{2}\right) & \leqq\left[\tilde{h}(t)+\left|f_{1}\left(t, x_{1}, x_{2}\right)\right|\right] \omega\left(x_{2}\right) \\
\text { for } t & >0,0 \leqq x_{1} \leqq r, x_{2} \geqq 0
\end{aligned}
$$

where

$$
\begin{aligned}
& \tilde{h}(t)=\max \left\{\frac{1}{\omega\left(x_{2}\right)}\left|f_{2}\left(t, x_{1}, x_{2}\right)\right|: 0 \leqq x_{1} \leqq r, 0 \leqq x_{2} \leqq 2 \varrho(0)\right\} \\
& \tilde{h}(t)=h(t) \quad \text { for } 0 \leqq t \leqq a_{0},
\end{aligned}
$$

Thus Theorem 1.1 implies the existence of the solution $\left(x_{1}, x_{2}\right)$ of the differential system

$$
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=f_{1}\left(t, x_{1}, x_{2}\right), \quad \frac{\mathrm{d} x_{2}}{\mathrm{~d} t}=\hat{f}_{2}\left(t, x_{1}, x_{2}\right)
$$

under the conditions (0.2).
By (1.3) and (1.14)

$$
\begin{equation*}
r \geqq x_{1}(0) \geqq x_{1}\left(a_{0}\right)-x_{1}(a) \geqq \delta \int_{\Delta_{0}}^{\infty}\left[x_{2}(t)\right]^{\mu} \mathrm{d} t \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}^{\prime}(t) \geqq-h_{0}(t)\left[1+x_{2}(t)\right]^{\lambda} \quad \text { for } 0 \leqq t \leqq a . \tag{4.14}
\end{equation*}
$$

According to (4.11)-(4.13) we get

$$
\begin{equation*}
\varrho^{\prime}(t)=-h_{0}(t)[1+\varrho(t)]^{2} \quad \text { for } 0 \leqq t \leqq a \tag{4.15}
\end{equation*}
$$

and there exists $t_{0} \in\left[a_{0}, a\right]$ such that

$$
\begin{equation*}
x_{2}\left(t_{0}\right)<\varrho\left(t_{0}\right) \tag{4.16}
\end{equation*}
$$

But from (4.14)-(4.16) it follows that

$$
x_{2}(t)<\varrho(t) \quad \text { for } 0 \leqq t \leqq t_{0}
$$

Therefore

$$
x_{2}(t)<\varrho(0) \quad \text { for } 0 \leqq t \leqq a_{0}
$$

From the last inequality and from the definition of \tilde{f}_{2} it is obvious that $\left(x_{1}, x_{2}\right)$ is a solution of the system (0.1). This completes the proof.

In order to prove Corollary 1 of Theorem 1.2 it is sufficient to verify that the function

$$
h_{0}(t)=l t^{\frac{\lambda-1}{\mu}-1}|\ln t|^{\frac{\lambda-1}{\mu}}
$$

satisfies the condition (1.16). But this becomes obvious if we take into consideration that

$$
\lim _{t \rightarrow 0+} \frac{\int_{0}^{t} h_{0}(\tau) d \tau}{(t|\ln t|)^{\frac{\lambda-1}{\mu}}}=\frac{l \mu}{\lambda-1}
$$

Proof of Theorem 1.3. Choose the reals $r_{0}>0$ and $\varrho_{0}>r_{0}$ such that

$$
\begin{equation*}
\delta(x)>\frac{r}{a} \quad \text { for } x>r_{0} \tag{4.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega\left(\varrho_{0}\right)=\Omega\left(r_{0}\right)+\int_{0}^{a} h(t) \mathrm{d} t+r \tag{4.18}
\end{equation*}
$$

where Ω is the function defined by the equality (2.1).
Let us put

$$
\begin{align*}
& \delta_{0}(s)=\left\{\begin{array}{ll}
0 & \text { for } s \leqq \varrho_{0}, \\
s-\varrho_{0} & \text { for } s>\varrho_{0},
\end{array} \quad \tilde{\varphi}\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}, x_{2}+\delta_{0}\left(x_{1}\right)\right),\right. \\
& \sigma(s)= \begin{cases}1 & \text { for } 0 \leqq s \leqq r, \\
2-\frac{s}{r} & \text { for } r<s<2 r, \quad \delta_{1}(s)=\left\{\begin{array}{ll}
0 & \text { for } s \leqq r, \\
s-r & \text { for } s>r_{0}
\end{array}, \text { for } s \geqq 2 r,\right.\end{cases} \\
& \tilde{f}_{1}\left(t, x_{1}, x_{2}\right)= \begin{cases}f_{1}\left(t, x_{1}, x_{2}\right)-\delta_{1}\left(x_{2}\right) & \text { for } t \leqq a, \\
f_{1}\left(t, x_{1}, x_{2}\right) & \text { for } t>a,\end{cases} \\
& \tilde{f}_{2}\left(t, x_{1}, x_{2}\right)= \begin{cases}\sigma\left(x_{2}\right) f_{2}\left(t, x_{1}, x_{2}-\delta_{1}\left(x_{2}\right)\right) & \text { for } t \leqq a_{0} \\
f_{2}\left(t, x_{1}, x_{2}\right) & \text { for } t>a_{0}\end{cases} \tag{4.19}\\
& \varrho=\varrho_{0}+r, \tilde{h}(t)=\max \left\{\frac{1}{\omega_{\varrho}\left(x_{2}\right)}\left|f_{2}\left(t, x_{1}, x_{2}\right)\right|: 0 \leqq x_{1} \leqq \varrho, 0 \leqq x_{2} \leqq 2 r\right\} \\
& \text { for } 0 \leqq t \leqq a
\end{align*}
$$

and

$$
\tilde{h}(t)=h_{e}(t) \quad \text { for } t>a
$$

By (1.1), (1.4), (1.17) and (1.19) we have

$$
\begin{array}{ccc}
\tilde{\varphi}\left(x_{1}, x_{2}\right)>0 & \text { for } x_{1}>\varrho, x_{2} \geqq 0, \tag{4.20}\\
\tilde{f}_{1}(t, 0,0)=0 & (i=1,2), \quad \tilde{f}_{1}\left(t, x_{1}, x_{2}\right) \leqq 0, \quad \tilde{f}_{2}\left(t, x_{1}, 0\right) \leqq 0
\end{array}
$$

$$
\begin{equation*}
\text { for } t \geqq 0, x_{1} \geqq 0, x_{2} \geqq 0, \tag{4.21}
\end{equation*}
$$

$$
\tilde{f}_{1}\left(t, x_{1}, x_{2}\right) \leqq-\delta_{1}\left(x_{2}\right), \quad \tilde{f}_{2}\left(t, x_{1}, x_{2}\right) \geqq-\left[\tilde{h}(t)+\left|\tilde{f}_{1}\left(t, x_{1}, x_{2}\right)\right|\right] \omega_{e}\left(x_{2}\right)
$$

$$
\begin{equation*}
\text { for } 0 \leqq t \leqq a, 0 \leqq x_{1} \leqq \varrho, x_{2} \geqq 0, \tag{4.22}
\end{equation*}
$$

$\tilde{f_{2}}\left(t, x_{1}, x_{2}\right) \leqq\left[\tilde{h}(t)+\left|\tilde{f_{1}}\left(t, x_{1}, x_{2}\right)\right|\right] \omega_{e}\left(x_{2}\right)$ for $t \geqq 0,0 \leqq x_{1} \leqq \varrho, x_{2} \geqq 0$ and, on the other hand,

$$
\begin{gather*}
\tilde{\varphi}\left(x_{1}, x_{2}\right)>0 \quad \text { for } x_{1} \geqq 0, x_{2}>r \tag{4.24}\\
\tilde{f}_{1}\left(t, x_{1}, x_{2}\right) \geqq-\left[h(t)+\left|\tilde{f}_{2}\left(t, x_{1}, x_{2}\right)\right|\right] \omega\left(x_{1}\right) \\
\text { for } 0 \leqq t \leqq a, x_{1} \geqq 0,0 \leqq x_{2} \leqq r \tag{4.25}
\end{gather*}
$$

$$
\begin{equation*}
\tilde{f_{2}}\left(t, x_{1}, x_{2}\right) \leqq-\delta\left(x_{1}\right) \sigma\left(x_{2}\right) \quad \text { for } 0 \leqq t \leqq a, x_{1} \geqq 0, x_{2} \geqq 0 \tag{4.26}
\end{equation*}
$$

According to Theorem 1.1 the conditions (4.20)-(4.23) imply the existence of the solution $\left(x_{1}, x_{2}\right)$ of the system (4.1) which satisfies the conditions

$$
\tilde{\varphi}\left(x_{1}(0), x_{2}(0)\right)=0, \quad x_{1}(t) \geqq 0, \quad x_{2}(t) \geqq 0 \quad \text { for } t \geqq 0
$$

and also

$$
x_{1}^{\prime}(t) \leqq 0 \quad \text { for } t \geqq 0
$$

(4.24) and (4.26) give

$$
\begin{equation*}
x_{2}^{\prime}(t) \leqq 0, \quad x_{2}(t) \leqq x_{2}(0) \leqq r \quad \text { for } 0 \leqq t \leqq a \tag{4.27}
\end{equation*}
$$

and

$$
\int_{0}^{a} \delta\left(x_{1}(t)\right) \mathrm{d} t \leqq r
$$

From the latter inequality by (4.17) it follows that

$$
\begin{equation*}
x_{1}(a) \leqq r_{0} \tag{4.28}
\end{equation*}
$$

(4.25), (4.27) and (4.28) yield

$$
\begin{aligned}
& \Omega\left(x_{1}(t)\right) \leqq \Omega\left(r_{0}\right)+\int_{0}^{a} h(t) \mathrm{d} t+\int_{0}^{a}\left|x_{2}^{\prime}(t)\right| \mathrm{d} t \leqq \\
& \leqq \Omega\left(r_{0}\right)+\int_{0}^{\infty} h(t) \mathrm{d} t+r \quad \text { for } 0 \leqq t \leqq a .
\end{aligned}
$$

Hence using (4.18) we have

$$
\begin{equation*}
x_{1}(t) \leqq \varrho_{0} \quad \text { for } 0 \leqq t \leqq a \tag{4.29}
\end{equation*}
$$

Now taking into consideration the definition of the functions $\tilde{\varphi}, \tilde{f}_{1}, \tilde{f}_{2}$ and the estimates (4.27) and (4.29) it becomes obvious that (x_{1}, x_{2}) is a solution of the problem (0.1), (0.2). This completes the proof.

Proof of Theorem 1.4. Let us denote

$$
\begin{aligned}
& f_{2}^{*}(t)=\max \left\{\left|f_{2}\left(t, x_{1}, x_{2}\right)\right|: 0 \leqq x_{1} \leqq r, 0 \leqq x_{2} \leqq 4\right)^{\prime} \\
& \sigma(s)=\left\{\begin{array}{ll}
1 & \text { for } 0 \leqq s \leqq 2 r, \\
2-\frac{s}{2 r} & \text { for } 2 r<s<4 r, \\
0 & \text { for } s \geqq 4 r,
\end{array} \quad \delta_{1}(s)= \begin{cases}0 & \text { for } s \leqq 2 r \\
s-2 r & \text { for } s>2 r\end{cases} \right.
\end{aligned}
$$

and let $a>0$ be so small that

$$
\int_{0}^{6} f_{2}^{*}(t) \mathrm{d} t<r .
$$

Define the functions \tilde{f}_{1} and \tilde{f}_{2} by means of the equalities (4.19) and consider the differential system (4.1).

According to Theorem 1.1 the problem (4.1), (4.2) has a solution $\left(x_{1}, x_{2}\right)$.
By (1.1) and (1.5)

$$
\begin{equation*}
x_{1}(t) \leqq x_{1}(0) \leqq r \quad \text { for } t \geqq 0 ; x_{2}(0)<r \tag{4.30}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left|x_{2}(t)\right| \leqq\left|x_{2}(0)\right|+\int_{0}^{a} f_{2}^{*}(t) \mathrm{d} t<2 r \quad \text { for } 0 \leqq t \leqq a \tag{4.31}
\end{equation*}
$$

Since (4.19), (4.30) and (4.31) hold, it is obvious that $\left(x_{1}, x_{2}\right)$ is a solution of the system (0.1). This completes the proof.

5. THE UNIQUENESS THEOREM

The uniqueness theorem for the problem (0.1), (0.2) which is proved below considers the case, when the function f_{1} satisfies the local Lipschitz condition with respect to the second argument and the function f_{2} with respect to the third one, i.e. for any $\varrho \in R_{+}$there exists $l(., \varrho) \in L_{\text {loc }}\left(R_{+}\right)$such that

$$
\begin{align*}
& \left|f_{1}\left(t, x_{1}, x_{2}\right)-f_{1}\left(t, y_{1}, x_{2}\right)\right| \leqq l(t, \varrho)\left|x_{1}-y_{1}\right|, \\
& \left|f_{2}\left(t, x_{1}, x_{2}\right)-f_{2}\left(t, x_{1}, y_{2}\right)\right| \leqq l(t, \varrho)\left|x_{2}-y_{2}\right| \tag{5.1}\\
& \text { for } t \leqq 0,0 \leqq x_{i} \leqq \varrho, 0 \leqq y_{i} \leqq \varrho(i=1,2) .
\end{align*}
$$

Theorem 5.1. Let f_{1} satisfy the local Lipschitz condition with respect to the second argument and $f_{2}-$ with respect to the third one. Suppose that

$$
\begin{array}{cc}
\varphi\left(y_{1}, y_{2}\right)>\varphi\left(x_{1}, x_{2}\right) & \text { for } y_{1}>x_{1} \geqq 0, y_{2} \geqq x_{2} \geqq 0, \\
f_{1}\left(t, x_{1}, x_{2}\right) \leqq 0 & \text { for } t \geqq 0, x_{1} \geqq 0, x_{2} \geqq 0, \tag{5.3}
\end{array}
$$

$$
\begin{gather*}
f_{1}\left(t, y_{1}, y_{2}\right)-f_{1}\left(t, x_{1}, x_{2}\right) \geqq-l_{11}(t)\left(y_{1}-x_{1}\right)+l_{12}\left(t, x_{2}-y_{2}\right) \\
\text { for } t \geqq 0,0 \leqq x_{1} \leqq y_{1}, 0 \leqq y_{2} \leqq x_{2} \tag{5.4}
\end{gather*}
$$

and

$$
\begin{gather*}
f_{2}\left(t, y_{1}, y_{2}\right)-f_{2}\left(t, x_{1}, x_{2}\right) \leqq-l_{21}\left(t, y_{1}-x_{1}\right)+l_{22}(t)\left(x_{2}-y_{2}\right) \\
\text { for } t \geqq 0,0 \leqq x_{1} \leqq y_{1}, 0 \leqq y_{2} \leqq x_{2} \tag{5.5}
\end{gather*}
$$

where $l_{11} \in L\left(R_{+}\right)(i=1,2)$, the functions $l_{12}: R_{+}^{2} \rightarrow R_{+}$and $l_{21}: R_{+} \times[0, r] \rightarrow R_{+}$ satisfy the local Carathéodory conditions, and are nondecreasing with respect to the second argument; for any $c>0$ it holds

$$
\begin{equation*}
\operatorname{mes}\left\{t \in R_{+}: l_{12}(t, c)>0\right\}>0, \int_{0}^{+\infty} l_{12}\left(t, c\left[1+\int_{0}^{t} l_{21}(\tau, c) \mathrm{d} \tau\right]\right) \mathrm{d} t=+\infty . \tag{5.6}
\end{equation*}
$$

Then the problem (0.1), (0.2) has at most one solution.
Proof. Let $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ be arbitrary solutions of the problem (0.1), (0.2). According to (5.1) and (5.3) there exist $r \in] 0,+\infty\left[\right.$ and $l_{0} \in L_{\mathrm{loc}}\left(R_{+}\right)$such that

$$
\begin{equation*}
0 \leqq x_{1}(t) \leqq r, \quad 0 \leqq y_{1}(t) \leqq r \quad \text { for } t \geqq 0 \tag{5.7}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|f_{1}\left(t, y_{1}(t), y_{2}(t)\right)-f_{1}\left(t, x_{1}(t), y_{2}(t)\right)\right| \leqq l_{0}(t)\left|y_{1}(t)-x_{1}(t)\right|, \\
\left|f_{2}\left(t, y_{1}(t), y_{2}(t)\right)-f_{2}\left(t, y_{1}(t), x_{2}(t)\right)\right| \leqq l_{0}(t)\left|y_{2}(t)-x_{2}(t)\right| \tag{5.8}\\
\text { for } t \geqq 0
\end{gather*}
$$

Put

$$
u_{1}(t)=y_{1}(t)-x_{1}(t), \quad u_{2}(t)=y_{2}(t)-x_{2}(t)
$$

Then either

$$
\begin{equation*}
u_{1}\left(t_{0}\right) \neq 0 \tag{5.9}
\end{equation*}
$$

for a certain $t_{0} \in R_{+}$or

$$
\begin{equation*}
u_{1}(t)=0 \quad \text { for } t \geqq 0 \tag{5.10}
\end{equation*}
$$

First suppose that (5.9) is fulfilled. To fix an idea we shall assume that $u_{1}\left(t_{0}\right)>0$. Let us denote by] t_{*}, t^{*} [the maximal interval containing t_{0} in which

$$
\begin{equation*}
u_{1}(t)>0 . \tag{5.11}
\end{equation*}
$$

By (5.1) there occurs one of the following two cases

$$
\begin{equation*}
u_{1}\left(t_{*}\right)=0 \tag{5.12}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{*}=0, \quad u_{1}(0)>0, \quad u_{2}(0)<0 . \tag{5.13}
\end{equation*}
$$

Let (5.12) hold. If we assume that

$$
u_{2}(t) \geqq 0 \quad \text { for } t \geqq t_{*}
$$

then (5.4) and (5.8) imply

$$
\begin{gathered}
u_{1}^{\prime}(t)=\left[f_{1}\left(t, y_{1}(t), y_{2}(t)\right)-f_{1}\left(t, x_{1}(t), y_{2}(t)\right)\right]+ \\
+\left[f_{1}\left(t, x_{1}(t), y_{2}(t)\right)-f_{1}\left(t, x_{1}(t), x_{2}(t)\right)\right] \leqq l_{0}(t) u_{1}(t) \quad \text { for } t_{*}<t<t^{*}
\end{gathered}
$$

Hence from (5.12) we have

$$
u_{1}(t) \leqq 0 \quad \text { for } t_{*} \leqq t<t^{*}
$$

and this contradicts the condition (5.11).
Therefore in the both cases (5.12) and (5.13) there exists $\left.t_{1} \in\right] t_{*}, t *[$ such that

$$
\begin{equation*}
u_{2}\left(t_{1}\right)<0, \quad u_{1}(t)>0 \quad \text { for } t_{1} \leqq t<t^{*} \tag{5.14}
\end{equation*}
$$

Considering (5.4), (5.5) and (5.14) it is easy to conclude that

$$
\begin{gather*}
u_{1}(t) \geqq c_{0}+c_{0} \int_{t_{1}}^{t} l_{12}\left(\tau,\left|u_{2}(\tau)\right|\right) \mathrm{d} \tau, u_{2}(t) \leqq-c_{0}-c_{0} \int_{i_{1}}^{t} l_{21}\left(\tau, u_{1}(\tau)\right) \mathrm{d} \tau \\
\text { for } t_{1} \leqq t<t^{*}, \tag{5.15}
\end{gather*}
$$

where c_{0} is the minimum of the numbers

$$
\left|u_{i}\left(t_{1}\right)\right| \exp \left[-\int_{0}^{+\infty} l_{i i}(\tau) \mathrm{d} \tau\right] \quad \text { and } \quad \exp \left[-\int_{0}^{+\infty} l_{i i}(\tau) \mathrm{d} \tau\right] \quad(i=1,2)
$$

By the definition of t^{*} it is clear that either

$$
t^{*}<+\infty \quad \text { and } \quad u_{1}\left(t^{*}\right)=0
$$

or $t^{*}=+\infty$. According to (5.15) the first possibility may be eliminated. Thus $t^{*}=+\infty$.

Let $c \in] 0, c_{0}[$ be so small that

$$
c_{0}+c_{0} \int_{t_{1}}^{r} l_{21}\left(\tau, c_{0}\right) \mathrm{d} \tau \geqq c+c \int_{0}^{t} l_{21}(\tau, c) \mathrm{d} \tau \quad \text { for } t \geqq t_{1} .
$$

Then since (5.7) and (5.15) hold we obtain

$$
\int_{i_{1}}^{t} l_{12}\left(s, c\left[1+\int_{0}^{s} l_{21}(\tau, c) \mathrm{d} \tau\right]\right) \mathrm{d} s \leqq \frac{r}{c_{0}} \quad \text { for } t \geqq t_{1}
$$

But this contradicts the second of the conditions (5.6) and therefore (5.9) cannot be valid. Thus the condition (5.10) is fulfilled.

By (5.8) and (5.10) we have

$$
\left|u_{2}^{\prime}(t)\right| \leqq l_{0}(t)\left|u_{2}(t)\right| \quad \text { for } t \geqq 0
$$

Hence either

$$
\begin{equation*}
\left|u_{2}(t)\right| \geqq\left|u_{2}(0)\right| \exp \left[-\int_{0}^{t} l_{0}(\tau) \mathrm{d} \tau\right]>0 \quad \text { for } t \geqq 0 \tag{5.16}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{2}(t)=0 \quad \text { for } t \geqq 0 \tag{5.17}
\end{equation*}
$$

Suppose that (5.16) is observed. Then (5.4), (5.5) and (5.10) imply

$$
\left|u_{2}(t)\right| \geqq\left|u_{2}(0)\right| \exp \left[-\int_{0}^{+\infty} l_{22}(\tau) \mathrm{d} \tau\right]=c>0 \quad \text { for } t \geqq 0
$$

and

$$
l_{12}(t, c)=0 \quad \text { for } t \geqq 0
$$

This contradicts the first of the conditions (5.6) and therefore (5.17) holds.
Thus the problem (0.1), (0.2) cannot have two distinct solutions. This completes the proof.

Remark. The conditions (5.6) are essential and cannot be omitted. For example consider the systems

$$
\begin{equation*}
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=-\exp (-t) x_{2}, \quad \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=0 \tag{5.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=\sigma\left(x_{2}\right)-x_{1}, \quad \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=-x_{1} \tag{5.19}
\end{equation*}
$$

where

$$
\sigma(s)= \begin{cases}0 & \text { for } 0 \leqq s \leqq 2 \\ 2-s & \text { for } s>2\end{cases}
$$

For any $c \in[0,1]$ the vector function

$$
x_{1}(t)=1-c+c \exp (-t), \quad x_{2}(t)=c
$$

is a solution of the system (5.18) and the vector function

$$
x_{1}(t)=\exp (-t), \quad x_{2}(t)=c+\exp (-t)
$$

is a solution of the system (5.19) which satisfies the conditions

$$
\begin{equation*}
x_{1}(0)=1, \quad x_{i}(t) \geqq 0 \quad \text { for } t \geqq 0(i=1,2) . \tag{5.20}
\end{equation*}
$$

Hence the problem (5.18), (5.20) (the problem (5.19), (5.20)) has an infinite set of solutions, although all conditions of Theorem 5.1 are fulfilled except the second (first) of conditions (5.6).

Corollary. Let the condition (5.2) be fulfilled and let the function f satisfy the local Lipschitz condition with respect to the third argument. Suppose that there exists
$l \in L\left(R_{+}\right)$such that
$f\left(t, y_{1}, y_{2}\right)-f\left(t, x_{1}, x_{2}\right) \geqq-l(t)\left(y_{2}-x_{2}\right)$ for $t \geqq 0,0 \leqq x_{1} \leqq y_{1}, x_{2} \leqq y_{2} \leqq 0$.
Then the problem (0.3), (0.4) has at most one solution.

6. ON BEHAVIOUR OF SOLUTIONS

OF THE PROBLEM (0.1), (0.2) WHEN $t \rightarrow+\infty$
Theorem 6.1. Let there hold

$$
\begin{gather*}
f_{1}\left(t, x_{1}, x_{2}\right) \leqq-g_{1}\left(t, x_{2}\right), \quad f_{2}\left(t, x_{1}, x_{2}\right) \leqq-g_{2}\left(t, x_{1}\right) \\
\text { for } t \geqq 0, x_{1} \geqq 0, x_{2} \geqq 0 \tag{6.1}
\end{gather*}
$$

where the functions $g_{i}: R_{+}^{2} \rightarrow R_{+}(i=1,2)$ satisfy the local Carathéodory conditions and are nondecreasing with respect to the second argument. Suppose that either

$$
\begin{equation*}
\int_{0}^{+\infty} g_{i}(t, c) \mathrm{d} t=+\infty \quad \text { for } c>0 \quad(i=1,2) \tag{6.2}
\end{equation*}
$$

or there exists $k \in\{1,2\}$ such that

$$
\begin{equation*}
\int_{0}^{+\infty} g_{k}(t, c) \mathrm{d} t<+\infty, \int_{0}^{+\infty} g_{3-k}\left(t, \int_{t}^{+\infty} g_{k}(\tau, c) \mathrm{d} \tau\right) \mathrm{d} t=+\infty \quad \text { for } c>0 \tag{6.3}
\end{equation*}
$$

Then any solution $\left(x_{1}, x_{2}\right)$ of the problem (0.1), (0.2) satisfies the condition

$$
\lim _{t \rightarrow+\infty} x_{i}(t)=0 \quad(i=1,2)
$$

Proof. Let $\left(x_{1}, x_{2}\right)$ be an arbitrary solution of the problem (0.1), (0.2). By (6.1) the functions x_{1} and x_{2} are decreasing and

$$
\int_{0}^{t} g_{i}\left(\tau, x_{3-i}(\tau)\right) \mathrm{d} \tau \leqq x_{i}(0) \quad \text { for } t \geqq 0 \quad(i=1,2)
$$

Hence it is obvious that if (6.2) is valid then (6.4) holds.
Now assume that (6.3) is fulfilled. Then it is clear that

$$
\int_{0}^{+\infty} g_{3-k}(t, c) \mathrm{d} t=+\infty \quad \text { for } c>0
$$

Therefore

$$
\lim _{t \rightarrow+\infty} x_{k}(t)=0
$$

Hence it remains to show that

$$
\lim _{t \rightarrow+\infty} x_{3-k}(t)=0
$$

Admit the contrary, i.e. that

$$
x_{3-k}(t) \geqq c \quad \text { for } t \geqq 0,
$$

where c is a certain positive constant. Then by (6.1)

$$
x_{k}(t) \geqq \int_{i}^{+\infty} g_{k}(\tau, c) \mathrm{d} \tau \quad \text { for } t \geqq 0
$$

and

$$
\int_{0}^{t} g_{3-k}\left(t, \int_{i}^{+\infty} g_{k}(\tau, c) \mathrm{d} \tau\right) \mathrm{d} t \leqq x_{3-k}(0) \quad \text { for } t \geqq 0
$$

But the last inequality contradicts the condition (6.3). This proves the theorem.
Corollary. Let

$$
f\left(t, x_{1}, x_{2}\right) \geqq g\left(t, x_{1}\right) \quad \text { for } t \geqq 0, x_{1} \geqq 0, x_{2} \leqq 0,
$$

where $g: R_{+}^{2} \rightarrow R_{+}$satisfies the local Carathéodory conditions, is nondecreasing with respect to the second argument and

$$
\int_{0}^{+\infty} \operatorname{tg}(t, c) \mathrm{d} t=+\infty \quad \text { for } c>0
$$

Then each solution u of the problem (0.3), (0.4) satisfies the condition

$$
\lim _{t \rightarrow+\infty} u(t)=\lim _{t \rightarrow+\infty} u^{\prime}(t)=0
$$

REFERENCES

[1] Kneser A.: Untersuchung und asymptotische Darstellung der Integrale gewisser Differentialgleichungen bei grossen reellen Werthen des Arguments, I, Journ. für die reine und angew. Math., 1896, 116, 178-212.
[2] Fermi E.: Un metodo statistico per la determinazione di alcune proprieta dell' atomo, Rend. R. Acc. Naz. dei Lincei, 1927, 6, 602-607.
[3] Thomas L. H.: The calculation of atomic fields, Proc. of the Cambridge Phil. Soc., 1927, 23, 542-548.
[4] Mambriani A.: Su un teorema relativo alle equazioni differenziali ordinarie del 2° ordine, Rend. R. Acc. Naz. dei Lincei, 1929, 9, 620-622.
[5] Сансоне Дх.: Обыкновенные дифференциальные уравнения, т. ІІ, Москва, ИЛ, 1954.
[6] Hartman P., Wintner A.: On the non-increasing solutions of $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$, Amer. Journ. of Math., 1951, 73, No 2, 390-404.
[7] Hartman P., Wintner A.: On monotone solutions of systems of non-linear differential equations, Amer. Journ. of Math., 1954, 76, Ne 4, 860-866.
[8] Coffman C. V.: Non-linear differential equations on cones in Banach spaces, Pacific Journ. Math., 1964, 14, Ne 1, 9-16.
[9] Хартман Ф.: Обыкмовенные дифференчиальные уравнения, Моства, „Мпр", 1970.
[10] Kiguradze I. T.: On the non-negative non-increasing solutions of non-linear second order differential equations, Ann. di Mat. pura ed appl., 1969, 81, Ne 4, 169-192.
[11] Чантурия Т. А.: О задаче типа Кнезера для системы обыкновенных дибференщиаль ных уравнений,, Матем. заметки, 1974, 15, К6 6, 897-906.
I. T. Kiguradze

Tbilisi 43, University str. 2,
Institute of Applied Mathematics
of Tbilisi State University USSR
I. Rachünková

77146 Olomouc, Leninova 26
Czechoslovakia

[^0]: ${ }^{1}$) See also [9], pp. 591-596.

[^1]: 2) In contrast to $[7,8,11]$ the existence theorems for the problem (0.1), (0.2) which are proved in this paper include the case, when one of the functions f_{1} or f_{2} changes the sign.
