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ON A CERTAIN NONLINEAR PROBLEM
FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS

1. T. KIGURADZE, Tbilisi, . RACHUNKOVA, Olomouc
(Received March 13, 1979)

The paper deals with the question on existence and uniqueness of a solution of the
differential system
dx ,
(01) Tti' = fi(t’ xl ’ xl) (l = 1’ 2)

which is defined in [0, + oo[ and satisfies the conditions

0.2) o(x:(0), 1,0) = 0,x,() 2 0, x,() 2 0 for 1 2 0.

The important special case of this problem

0.3) u" = f(t, u, v),
0.4) @), |4 ) =0,u(t) 20, (r) =0 forr20

is studied separately.

Concerning the history of the question it is necessary to refer to the classical
paper by A. Kneser [1] who was the first to establish the existence and the uniqueness
of the solution of the equation

u" = f(t, u)

under the conditions ‘
(0.5) u(0) = co, u(t) 20,u'(t) <0 for t20.

Later on it has been found that this problem has applications in the study of the
distribution of electrons in the heavy atom [2, 3]. Sufficiently general conditions
of the solvability and unique solvability of the problem (0.3), (0.5) are given in [4, 5,
6, 10]. From papers, devoted to the analogous problems for differential systems we
refer to [7, 8, 11].9)

1) See alsa [9], pp. 591—596.
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In this paper the new sufficient conditions of existence and uniqueness of the
solution of the problems (0.1), (0.2) and (0.3), (0.4) are established and the behaviour
of the solution is studied when ¢t - + 00.%)

1. STATEMENTS OF EXISTENCE THEOREMS

We shall use the following notations:
R=]-0, +00[; Ry =[0, +o[; R = RxR; R = R, xR,;

L(D) is the set of real functions which are summable according to Lebesgue on I.

L, (D) is the set of real functions which are summable according to Lebesgue
on each compact interval contained in I.

In what follows it is assumed that ¢ : RZ — R is a continuous function and
fi: Ry xR% - R(i = 1, 2)satisfy the local Carathéodory conditions, i.e. fi(., X, X,):
R, » R (i =1,2) are measurable for every (x,, x,)e R%;f(t,.,.): R2 5> R
(i = 1, 2) are continuous for almost every te R, and

sup {lfi('sxl’xz)| : 0 é Xy < Q;O é X2 é Q} eLloc(R+) (i = 1’2)

foranypeR,.

Solutions of the problem (0.1), (0.2) (of the problem (0.3), (0.4)) are sought in the
class of vector functions (x,, x,) : R, — R? (in the class of functions u: R, — R)
which are absolutely continuous (absolutely continuous with their first derivatives)
on each compact interval contained in R, .

The existence theorems proved below concern the cases when f; and f, satisfy
one of the following two conditions

fl(" 01 0) =0 (’ = 1’ 2): .fl(t, Xy, xz) é 0’ fZ(” X1 0) é 0
(.1 for t20,x, 20,x,20

or
f(4,0,0) =0, fi(t,x;,x)<0 (i=12)
(1.2 for t20,x, 20,x, 20,

and‘q) satisfies one of the following three conditions
(1.3) ¢(0,0) < 0, ?(x;,x) >0 for x, > r,x, 20,
(1.4) ' ¢(0, 0) < 0, ¢(xl, X2) >0 for X4 g 0, X, >r

2) In contrast to [7, 8, 11] the existence theorems for the problem (0.1), (0.2) which are proved
in this paper include the case, when one of the functions f; or f2 changes the sign.
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or
(%)) 90,00 <0, (x4, x)>0 forx; +x,>rx,20x20,
wherere R, .

Theorem 1.1. Let the conditions (1.1) and (I 3) be fulﬁlled and let there exist reals
a,€ R, and a > a, such that .
(1'6) fl(t’ xuxz) é —6(x2) for aO _S_ t é aio é xl é ",.xz .2.. 0)
[3(t %1, %) = — ~[h(t) + | f1t, X1y x;) l] o(x;)
(1.7 for0st<a,0x,5rx,20
and .
£2(t, x4, x3) S [AQ) + | £1(t, x4, Xx3) |] @(x;)
(1.8) CJor tZ2ap,0sx Sx,20

where he L, (R,),6: Ry - R, and o : R, — 10, + oo are continuous and satisfy
the conditions

(1.9) ' lim 8(x) = + oo,
x=*+wo
+ o dx

Then the problem (0.1), (0.2) is solvable.

Corollary 1. Let the conditions (1.2) and (1.3) be fulfilled and let there exist
a > 0 such that .

Si(t, xq, x3) S —0(x2), - fo(t, xq, X2) = = I[A() + | f1(t, X1, x) 1] (L + %)
forogtga,ogx, §r,ng0,

where /e R,, he L([0,a]) and 6: R, — R+ is a function satlsfymg the condx-‘
tion (1.9). Then the problem (0.1), (0.2) is solvable.

Remark 1. The conditions (1.6) and (1. 9) may be somewhat relaxed when replaced
by the condition r

fx(’.xuxz)é "6(1’x2) fOf ao_S_t_S_a,0§x1 é’ingoo

where § : [a,, a] xRy = R, is nondecreasing with respect to the second argument,
(., x) e L([a,, a]) for any x € R, and

lim {5, x)dt > r.
x>+ ag
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But the above-mentioned conditions cannot be completely omitted. Indeed, the
problem

dx‘ dx2
I TR TR Rt

xl(o) = 19 xl(') g 0! x.l(t) g 0 for ¢ g 0

is not solvable, although it fulfils all the conditions of Theorem 1.1 except (1.6)
and (1.9).

Remark 2. The restriction (1.10) is essential and cannot be relaxed. As an example
consider the problem

(111 I xS o (x4 x) (X

(1.12) $O==, M0 [uM20 frtz0,

where ¢ > 0 and assume that it has a solution (x,, x,). Then

x(t) £ x(0)exp(—t)—»0 when t— +0(=1,2),
and

d -e _ _ dxl(t)
—d_t—[l + x,()]7* = e—q fort = 0.

The integration of the last identity from 0 to + co leads to the contradiction
l - [l + x:(o)]-‘ = l-

So for any ¢ > 0 the problem (1.11), (1.12) is unsolvable in spite of the fact that
it fulfils all the conditions of Theorem 1.1 except (1.10) instead of which we have

+ + o &
© U] x

j 2=dx=f —F _dx= +o.
o

(x) o (14 x)'*

If we put
x((1) = u(®), x,(t) = —u'(t),

then the problem (0.3), (0.4) turns into (0.1), (0.2), where
fl(‘: xx,xz) = —X3, Sat, xy, x3) = -f(t’ Xy, —X;).
Therefore Theorem 1.1 implies the following

Corollary 2. Let the conditions (1.3) and
(1.13) ft,%,,0020 fort20,x 20
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be fulfilled and let there exist the reals a, € R, and a > a, such that

S, x, %) STh@) + | x ]l x,) for0S¢£a,05xSrx,50
and

ft,xy,x) 2 =[ht) + | x21Jex(| x,]) fort2a,, 0% Sr,x, 50,
where he L,,(R,); @ : R, = ]0, + oo[ is a continuous function satisfying the condi-
tion (1.10). Then the problem (0.3), (0.4) is solvable.

This statement generalizes the P. Hartman and A. Wintner theorem [6] on the
solvability of the problem (0.3), (0.5).

Theorem 1.2. Let the conditions (1.1) and (1.3) be fulfilled and let there exist a > 0
such that

(114) fl(t’ X1 xz) é -—(SX‘;., fz(t, X1 x2) g. "ho(’) (1 + 'xZ)‘t
Jor0<t=a,0x,sx,20
and

(1.15) f2(t, xy, x3) £ [h(e) + | £1(t, x4, X3) |] @(x3)
for t>320,0<x, srx,20

where 6 > 0, u > 0,4 > 1, hy € L([0, a]), ho(t) > 0 for 0 < t < a,
[

he L, (J0, + o)) and w : R, = ]0, + oo[ is a continuous Junction satisfying (1.10).
Then the problem (0.1), (0.2) is solvable.

M
(1.16) ho(r)dr]1-2 dt = + o0,

Oty B
© e, v

Corollary 1. Let the conditions (1.2) and (1.3) be fulfilled and let there exist reals
a€]0,1[,6 >0, > 0,/ > 0 and A > 1 such that

A-1 o, A-s

Nt xy, %) € 56x5, St x,x) 2 =l s |Ine| 7 (1 + %)

for05t<a,0sx,5x,20.

Then the problem (0.1), (0.2) is solvable.

Corollary 2. Let the conditions (1.3) and (1.13) be fulfilled and let there exist
a > 0 such that

f(’,xl,xz) Sh®)(A + | x5 ) for05t5a,0x,5x,50
and

X, x) 2 —[h) + [ x5, [0 x,[) for t>0,0< x, Sr,% S0,
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where 4 > 1, hy € L([0, a]), ho(t) > 0 for 0 < t < a,
f[fho(t)dt]l Adt= +oo,
he Ly, (0, + o)) and @ : R, = ]0, + o[ is a continuous function satisfying (1.10).
Then the problem (0.3), (0.4) is solvable.
Theorem 1.3. Let the conditions (1.1) and (1.4) be fulfilled and for a certain a > 0
St xq, x3) 2 —[Ae) + | L0t x1, x5) (] oxx,),  folt, %y, X3) S —0(x,)
(1.17) Jor0st<a,x,200=sx,=<r,

where he L([0,a]),6: R, » R, and w: R, - 10, + o[ are continuous functions
satisfying (1.9) and (1.10). Suppose that for each ¢ > O there exist h, € Li,([a, + o)
and a continuous function w, : R, — 10, + oo such that

+® dx.
and
(1.19) oty xy, x3) S [h(2) + | £i(t, x5 x2) [] ,(x2)

fort=2a,0<x,<0,x,20.
Then the problem (0.1), (0.2) is solvable.
Corollary. Let the conditions (1.4) and (1.13) be fulfilled and for a certaina > 0
St x,x)=26(xy) for0st<a,x,20,—-r<x,50,

where 6 : R, — R, is a function satisfying (1.9). Suppose that for each ¢ > 0 there
exist A, € Lio([a, + o)) and a contmuous function w, : R, — ]0, + oo satisfying
(1.18) such that

fit,xy, x3) 2 =[hft) + | x; [Jo (I x 1) for t2a,0<x, Sg,x, 0.
Then the problem (0.3), (0.4) is solvable. o
Theorem 1.4, Let the conditions (1.1), (1.5) and

£ty x1, %) S [A() + | £t 1, X2) |] o0(x,)
. fort20,05x,5r,x,20

be fulfilled, where h € Ly, (J0, + o) and o : R, — 10, + o[ is a continuous function
satisfying (1.10). Then the problem (0.1), (0.2) is solvable.

Corollary 1. If the conditions (1.2) and (1.5) are valid, thcn the problem (0.1), (0 2)
is solvable.
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Corollary 2. Let the conditions (1.5), (1.13) and
f(t,x,,xz) g —[h(’) + |x2 l]a)(lxz D for ¢t g 0,0 § Xy § r, X, § 0

be fulfilled, where & € L,,(J0, + o) and @ : R, — ]0, + o[ is a continuous function
satisfying (1.10). Then the problem (0.3), (0.4) is solvable.

2. THE LEMMA ON A PRIORI ESTIMATES

Lemma 2.1. Let 0 S ay, <a< +o, r>0, heL, (R,), h(t) = 0 be valid for
t = 0. Suppose that w : R, = )0, + o[ and 3o : R, — R, are continuous functions
satisfying the conditions (1.10) and
r

lim 8¢(x) >
x=+a® 0 a-—ap ’

and 2: R, - J0, +oof is a function defined by means of the equality

% ds
2.1 Qx) = —=.
B s)
Then there exists r* > r such that for any b > a and for any absolutely continuous
functions x; : [0, 5] = R (i = 1, 2) the inequalities

.2 1O S rx()Z0,x()<0,x,()20 for 0t < b,
(2.3) x1(t) S =0g(xx(t)) fora, <t=a,

(2.4) x3(t) 2 —[h(t) — xi ()] w(xx()) for0St=<a
and

2.9 x3(t) S [A(t) — xi(O] o(x(1)) forap <t <b

imply the following estimate
?

(2.6) %) S Q7'* + [h(r)d)) for0st b
(1]

Proof. Choose r, > 0 such that

r
a“ao

According to (2.2) and (2.3) we get

@7 do(x) >

forx>ry.

r 2 x4(a) — x,(a) 2 J So(x2(1)) dt.
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Hence (2.7) implies the existence of #, € [@o, a] such that
2.8) X,(to) < ro-
Using (2.1), (2.4) and (2.5) we have
L amm)z -k + X0  forogtsh

and
-;t— Q(x,() < h(t) —xy(t) for t, £t b

From this inequalities by (2.2) and (2.8) it follows that
to
Q(x,(1) < 2(x,(t0)) + [ () dr + x,()
]

§Q(ro)+r+}h(r)dt for 0stst
0
and
Q(x,(1) < Q(x,(t0)) + § h(z)dt + x,(to) <

14
SQro)+r+ [h(r)dt  for ty <t < b.
0
Thus
t
Qx(1) Sr*+ [h(r)dr  for 0t S b,
0

where r* = Q(ro) + r + [ h(r) dt does not depend on b, x, and x,. Hence according
(V]

to (1.10) the estimate (2.6) is valid. This completes the proof.

3. THE LEMMA ON THE SOLVABILITY OF A CERTAIN
AUXILIARY BOUNDARY VALUE PROBLEM

Consider the auxiliary two point boundary value problem
@a.1) @(x1(0), x;0)) =0,  x(b) =0,
where & € {1, 2}, b € ]O, +oo[ for the system (0.1).
Lemma 3.1. Let there hold
(3.2) ?0,0) <0, o(x,,x) >0  for x, 20,x5_; > r,
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(3.3) f(1,0,0)=0(@ = 1,2), £,(4,0,x) S 0, f5(t, x,0) £:0
for0£tsb,x20
and

2
(€X)) YIUfltxy,x)| S X)) for0<t<b,x,20,x,20,
i=1

where r € 10, + o[ and f* € L([0, b]). Then the problem (0.1), (3.1) has at least one
solution (xy, x,) such that

3.5) x ()20, x,()) 20 for 02t <b.

Proof. At first let us prove Lemma under the additional assumption that the
right-hand sides of the system (0.1) satisfy the local Lipschitz condition, i.e. for each
e>0

2
(36) ‘_lefl(" xuxz) - fl(" }’1:)’2)| s lo(’)(‘ Xy =N I + Ixz £ D
for 0 Stsb0=x,y;8e(i=12),

where /, € L([0, b]).
Let us put .
0 for s <O,
o(s) = {s for £ 2 0,
€X) Jt xy, %) = fit, o(xy) 0(x)) (i =1,2)

and consider the system

G.8) S Jerx) (=12
under initial conditions
(3-9) x,‘(b) = 0, X3_t(b) = Q.

According to (3.4) and (3.6) for any « € R the problem (3.8), (3.9) has the unique
solution (x,(.; &), x(.; «)) which is defined on the whole segment [0, ‘b).
Put

£1(6,0, x3(t; @) — Fi(t, x,(t; @), x,(¢; @) for x,(t; a) # 0,

li(t; ) = x,(t; @) ..
0 for x,(t;a) =0,
| {f,(t, x1(60),0) = fo(6 %9, xx(68) g 0,
L(t; o) = x3(t; @)
0 for x,(t; @) = 0.
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From (3.3) and (3.7) there follows

M = fl(t 0 x;(' a) - ll(‘ a)xl(' a) §

S -L{t;a)xy(t;a) for0st<h

and
dx,(t; a - _ ‘
z‘(‘t ) = fz(t, x,(f; a), 0) = 1,(t; @) x,(t; a) S
S Lt xy(t;0) for0sr<b.
Thus

b.
xx(t;0) 2 0, x3_,(¢; @) = aexp [j' I_x(r;0)dt] 20 for0St<b,az0.

Therefore (x,(.; @), X,(.; @)) is a solution of the system (0.1) for any a € R, .
Let us put

9(2) = ¢(xx(0; a), x3(0; )

and
a*=r+ }f’(t)dt.
By (3.2) and (3.4) ’
x3-4(0; a*) = a* — }f;-,(t, xy(t; a*), x,(t; a®))dt 2 r
and o B

o(z*) 2 0.
On the other hand, ¢ is continuous on [0, «*] and
#(0) = 9(x,(0; 0), ¥,(0; 0)) = ¢(0,0) < 0.
So there exists a, € 0, a*] such that
. (‘;(ao) =
Obviously, (x;(.; #o), X2(.; ao)) isa solutlon of the problem (0.1), (3.1).
To complete the proof of Lemma it suffices to get rid of the additional assump-
tion (3.6).

Let f; and f> be the functions given by the equalities (3.7) and let w,, : R —» R,
(m =1, 2,...) be a sequence of continuously differentidbie fanctions such that

. + o
on(x) = 0 for|x|g.'17,jw.,(x)dx=1 (m=1,2..).

[

Zim(t, Xy, X2) = _f on(y; — x,)dy, S Wn(y2 = Xy) fa(" Y1 i)’z) dy,,

-
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hin(ts x) = | 0uly ~ x) fi(,0, ) dy,

hanlt3) = § @y = 0 it 7, 0O d,

flm(') X1 -"z) = glm(t’ X1, .x2) - glm(‘) 0, xz) - I hlm(t: xz) - hln(‘» 0) l
and
fz»-(t- X1 xz) = 82:1-(" X1 xz) - 82»-(‘: X1 0) - | hz»n(t’ xl) - th(t’ 0)'

From (3.3) and (3.4) it follows for each natural m

Sm1,0,00 =0 (i=12), fi.(,0,x)=0, f,(,x,050
for0 <t < b, xeR
and

2 . ‘ I:
(3.10 T Sty xy, %) | S 4% for 0 S 1S b,(xg, x;)€R
i=1 ' C ‘

Besides, for any e [0, + oo[
(3.11) lim fin(t, %y, %2) = filt x4, %)~ (1=1,2)

m-* o
uniformly on each bounded set of the space R2.
From the structure of f;,, and f,,, it is obvious that these functions satisfy the local
Lipschitz condition with respect to their two last arguments. Thus according to the
already proved for each natural m, the system

"%xt— = flm(‘n X1, xz) (i = 1’ 2)

has a solution (x,,,, X,,) satisfying (3. l) and (3.5).

Using (3.2), (3.10) and (3.11) it is easy to prove that the sequence of the vector
functions {(X;m, X2m)}m=1 contains a uniformly converging on [0, 4] subsequence
such that its limit is a solution of the problem (0.1), (3.1). This completes the proof.

4. THE PROOFS OF THE EXISTENCE THEOREMS

Proof of Theorem 1.1. Without loss of generality assume that A(t) = 0 for
t=20.

Choose a number roe]r, + o[ and a nondecreasing continuous function
b0 : R, = R, such that

8(x) 2 8o(x) for x'g 0
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apd
So(%) = Bo(ro) > —

for x 2 ry.
a — ap .

suppose that Q is the function which is defined by means of the equality (2.1),
Q-4 is its inverse one and r* is the positive constant appearing in Lemma 2.1. Let
ug put

() = Q7'(r* + (I) h(x)dr),  e(t) = eo(t) + 7o,

1 for0ss=< Qo(‘):
7o, 9) =1 = 2220 for 4409 <5 5 20
0 for s > o(?),

s for 0 = s < (),
oyt s) = {Q(g) for s > o(1),

f:(” Xy, %3) = fy(t, 01(x1), 028, X)),
fz(" Xy, X3) = ”o(’, xz)fz(‘: 6,(x,), X3)

and consider the differential system

(s) = s for0ss=sr,
%=1, for s>r,

dx;

(@.1) 4 = fxnx) (=12

From the definition of f; and f; and from the conditions (1.1) and (1.3) it follows
@2 filt, x1, %) = fit, x4, x;)  fort 20,
oéxlérv oéxz_s..QO(t) i=12),
@4.3) fx(‘v X1, X)) S —0p(x)) <0 foragyst<a x, 20, x,20,

@9 ’ f;(f, X1, %) = —[h() + |f;(’» Xy, X2) |] @(x3)
for0<t<a, x,20,x,20,
@3 f2t %1, x2) S (M) + | 18 %45 x2) [ o(x,)
fort=2ay,x;, 20, x;,20
and
2
C Y X, x) | S FH) for £20,x, 20,x, 20,
i=1
where
2
J*t) = max {} | fi(t, x;, %) |10 S %, 7,0 < x; S (1)}
| i=1
and

f*eL,,([0, + D).
26




. According to Lemma 3.1 for each natural p the system (4.1) has a solution (x, ,, x,,)
which is defined on the segment [0, a + p] and satisfies the conditions

(46) ¢(xlp(0)’ x2p<0)) = O, xlp(') g 0! pr(t) ..2- 0 for 0 § t é a+ b
By (1.1) and (1.3)

@n x1,(0) <0, x,()=x,0=r for0<tsa+p.

On the other hand, since the inequalities (4.3)—(4.5) holél we have
x1p(t) S =do(x2,(1)) < 0 fora, st <a,

4.8) x3(0) 2 =[h(®) — x1 ()] o(x,,(1)) for0Lt < a,

4.9 x35(t) S [h(t) — x1,(1)] &(x2,(1)) foray s t<a+p.

According ‘to Lemma 2.1 from (4.6) —(4.9) there follows the estimate

(4.10) X3 (t) S @o(t) for0=t=<a+p.

The conditions (4.2), (4.7) and (4.10) imply that (x, ,, xz,) is a solution of the system
(0.1) on [0, a + p].

Using (4.7) and (4.10) it is easy to prove that from the sequence of vector functions
{(x1p» X25)} ;=1 We can choose a subsequence {(x,,,,, X25,)}m=; such that this sub-
sequence uniformly converges on each segment from [0, + o[, and

(xh X2) = lim (xlp,..9 xzp...)
m= + o
is a solution of the system (0.1) on [0, + oo[. On the other hand, from (4.6) it is obvious
that (x,, x,) satisfies the conditions (0.2). This completes the proof.

Proof of Theorem 1.2. Without any loss of generality @ may be chosen so small
that

[ ]
A =1)fhy(r)dr < 1.
0
By (1.16) there exist numbers a, € 10, a[ and e € 10, 1[ such that

@.11) Q(t)=[s+(}.—l)gho(t)dt]'l{—l-—l>0 for0<t<a
and

4.12) 6 } [e(®)*dt > r.
Let us put ©
1 ~ for 0S5 < e0),
a(s) =42 - 7&867 for 0(0) < s < 20(0),
0 for s > 2¢(0)
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and
H _Jo(xa) fo(t, x4, x;)  for t < a,,
IZ(" 15 x2) . {fz(‘, X1, xl) for ¢ > ag.
Then since (1.15) holds, we have

Falt, x1, %) 2 —[h() + 1 £(t, %y, x2) 1] o(x)
for0<1<a,,0=x;,5r,x,20
and
Falt, %1, %) S [hQ@) + | 18, %y, x3) [] o(x3)
fort>0,0sx, sr,x,20
where

E(t)=max{m( )lfz(t Xy, X3)}: 0<x,5r,0$x,$29(0)}
for 0=t < a,,
) =h(t) fort> a,.

Thus Theorem 1.1 implies the existence of the solution (x,', x,) of the differential
system

dx dx ~
"a"" = f(t, x,, JCz.)’ _(Tt-z— = filt, x4, x2)»

under the conditions (0.2).
By (1.3) and (1.14)

@13) r 2 ,(0) 2 %,(a0) — x,(@) 2 3 ] [xa(0] dt
and -
4.19) x5(0) = —ho()[1 + x(1))* for0<Stsa.
According to (4.11)—(4.13) we get
4.15) W)= —=h()[1 +e(®)])* for0sSt=<a
and there exists 7, € [ao, a] such that
4.16) x3(to) < Q('o)

But from (4.14)—(4.16) it follows that

x,()<o(t) forO0=t <.
Therefore
x(t) <00 for0<t<a,.

From the last inequality and from the definition of fz it is obvious that (x,, x,) is
a solution of the system (0.1). This completes the proof.
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In order to prove Corollary 1 of Theorem 1.2 it is sufficient to verify that the

function
A~-1 A=-1

L -1 —
ho®d) =10t * |lne] *
satisfies the condition (1.16). But this becomes obvious if we take into consideration
that
[ 4
_[ ho(v)dt
lim e

t-0+ 1_1
(tllntl)

Proof of Theorem 1.3. Choose the reals r, > 0 and g, > r, such that

@4.17) 8(x) > -2- for x > rq
and
(4.18) Qo) = Q(ro) + f h(t)de + r,
0
where Q is the function defined by the equality (2.1).
Let us put
_Jo for s < 0o, ~ _
do(s) = {s —00 for s> oo, @(x1, x3) = @(xy, %2 + do(%1)),
1 for0gs<sr,
s . 0 for sS,
a(s) = 2——; for r <s < 2r, 6‘(s)={s—r for s> r,
0 for s 2 2r,
~ _ YA xg, x3) = 64(x3) for t £ a,
Jity %y, %2) = {j_’l(t, Xy, X2) for ¢t > a,
4.19) = o(x2) f1(t, X1, X3 — 84(x;)) fortSa,
Jalt %0 %) =4 g0 %0, %) for t > a,

Q=Qo+r,z(‘)=max{ c; )lfz(t xnxz)‘ 05x150o05x252’}
@y

for0gt<a
and

h(t) = hft) fort>a.
By (1.1), (1 4), (l 17) and (l 19) we have
(4.20) o(xy, X3) > 0 - forx, > g, x; z 0,
f{t,0,00=0 (=12, fitt,x,%)S0, fit,x,0S0
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4.21) fort20,x, 20,x, 20,

.i;(t’ X1 x2) = "'61(-7‘2)9 f‘;(t’ X1 xz) < —[7'(’) + |il(tt X1 xz) I] (D.(xz)
4.22) for0<t<a,0<x,50,%x,20,
(4.23) f3(t, X1, X2) S [e) + | £t X1, %) [ 0(x2) fort 20,0 < x, <@, %20

and, on the other hand,

4.29) P(x1, %) >0  forx, 20,x,>r,
fi(t, xy, x3) Z —[h(t) + | f(t, x1, %) 1] @(x,)
4.25) for0<t<a,x,200=x,=r,

(426) j;(t’ X1 x2) § —6(1'1) 0(x2) for 0 é t<a, X1 2 0’ X2 2 0.

According to Theorem 1.1 the conditions (4.20)—(4.23) imply the existence of
the solution (x,, x,) of the system (4.1) which satisfies the conditions

) a(xl(o)’ xZ(O)) = 0: xl(t) g. 09 xz(’) g 0 for ¢ g 0
and also

x (1) <0 forr20.
(4.24) and (4.26) give

4.27) x3(t) £ 0, X,(t) < x0 = r for0<t=<a
and
i 8(x () de < r.
From the latter inequality by (4.17) it follows that
(4.28) ' xy(a@) < ro.
(4.25), (4.27) and (4.28) yield

ﬁtxx(t)) S (rp) + g h(t)dt + ! | x3(f) | dt £
§9(70)+;h(t)dt+r for 0<t<a.
(V]

Hence using (4.18) we have
(4.29) x1(®) < 0o for0<t<a

Now taking into consideration the definition of the functions ? f;s f> and the
estimates (4.27) and (4. 29) it becomes obvious that (x,, x,) is a solution of the
problem (0. 1), (0.2). This completes the proof.
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Proof of Theorem 1.4. Let us denote
£70) =max {| f,(t, x,, %) | : 0 £ %1 S7,0 S x; S 4oy

1 for 0 S s 2r,
: () for sS2r
o(s) = 2_7; for 2r < s < 4», 6,(s)-{s__2r for s > 2r
0 for s 2 4r,

and let a > 0 be so small that

:& fipde<r
1]

Define the functions f; and f, by means of the equalities (4.19) and consider
the differential system (4.1).

According to Theorem 1.1 the problem (4.1), (4.2) has a solution (x,, x,).

By (1.1) and (1.5)

(4.30) x()£x,0sr fort20;,x,00<r.

Therefore o

@.31) [%(0) ] S %000 + [ f3()dt <2r for0stSa.
V]

Since (4.19), (4.30) and (4.31) hold, it is obvious that (x,, x,)is a solution of the system
(0.1). This completes the proof.

5. THE UNIQUENESS THEOREM

The uniqueness theorem for the problem (0.1), (0.2) which is proved below
considers the case, when the function f; satisfies the local Lipschitz condition with
respect to the second argument and the function f, with respect to the third one,
i.e. for any g € R, there exists I(., 0) € L,,.(R,) such that

| f1(t, x4, x2) = fi(t, y1, x2) | S U8, 0) %y =y 1,
(5'1) IfZ(tn X1, xz) "fz(t, xn)’z)' § ,(t) Q) ' X3 = yZ'
fort20,0sx,200=5y,s0e(=12).

Theorem 5.1. Let f, satisfy the local Lipschitz condition with respect to the second
argument and f, — with respect to the third one. Suppose that

(5.2 o1, ) > @(xy, X))  fory, >x, 20,9, 2 x; _2. 0,
(5:3) filt,xy,x) £0  fort 20, xx 20,x, 20,
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Sy, y) — Nl x, %) 2 =1() Oy — x1) + 1o, x2 — 2)
(5.4 Jort 20,0 x, £y,,05y, S x,
and
Lt y1, 32) = falt, x4, X3) £ ~Dy(t, v = xy) + La(1) (x2 = ¥2) .
(5.5) Jort 20,0 x, £y,,05y, S x,
where I, € L(R.) (i = 1, 2), the functions l,, : R> - R, and I, : R, x[0,r] = R,

satisfy the local Carathéodory conditions, and are nondecreasing with respect to the
second argument; for any ¢ > 0 it holds

+ t
(5.6) mes {teR, :1;;(t,c)>0} >0, [ 1;,(t, c[1 + [ 134(z, c)dr])dt = + 0.
. o Y .

Then the problem (0.1), (0.2) has at most one solution.

Proof. Let (x,, x,) and (y,, »,) be arbitrary solutions of the problem (0:1), (0.2).
According to (5.1) and (5.3) there exist r € ]0, + oo[ and I, € Ly, (R,) such that
6.7 0sx()sr, O0=y@)=r fortz0
and

l.fl(t9 yl(t)a }’z(‘)) - fl(t9 xl(‘)9 }’z(‘)) l é IO(‘) l yl(') - xl(t) I’
(5.8) |f2(t, »(®), h(t)) — fa(t, y4(®), xz(')) | £ L) y2(t) = x2(1) |

fort = 0.
Put
u (1) = y,(t) — x,(2), uy(t) = yo(t) — x,(0).
Then either
(.9) uy(to) # 0
for a certain ¢ty € R, or
(5.10) - : u,(t1)=0 fort = 0.

Fi,tst suppose that (5.9) is fulfilled. To fix an idea we shall assume that u,(to) > 0.
Let us denote by ]¢,, t*[ the maximal interval containing ¢, in which

(5.11) , . u,(t) > 0.
By (5.1) there occurs one of the following two cases

(5.12) | uy(t4) = 0
or ‘ , ‘ .
(5.13) te =0, 4,00)>0, u,0)<0.

Let (5.12) hold. If we assume that
u(t)20 fore21t,
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then (5.4) and (5.8) imply

uy(t) = [f1(t, y1(1), y2(0)) = £1(t, x,(1), y2(1))] +
+ LAt x,(0), y2(1)) = fi(t, %,(0), x2(1))] S L) uy(t) forte <t < t*,

Hence from (5.12) we have
u, (1) <0 fort, <t <t*

and this contradicts the condition (5.11).
Therefore in the both cases (5.12) and (5.13) there exists ¢, € Jt4, t*[ such that

(5.14) u(t,) <0, u(t)>0 fore St <t*
Considering (5.4), (5.5) and (5.14) it is easy to conclude that

t [ 4
u(f) Z co + ¢ 'f 112(19 | uy(t) l) dr, u(f) £ —co — ¢o j 121("’ “1(7)) dr
1 t
(5.15) fort, St <t*,

where ¢, is the minimum of the numbers

lugts) | exp [~ flu(r) dr] and  exp[- flu(r) &] (=12

By the definition of ¢* it is clear that either
t* < +© and u,(t*) =0

or t* = +o0. According to (5.15) the first possibility may be eliminated. Thus
t* = +c0.
Let c € ]0, co[ be so small that

r t
co+ o[ ly(t,co)dt 2 c+c[lyy(r,0)dt for t =2 ¢4.
[ 0
Then since (5.7) and (5.15) hold we obtain
t s
§ Lia(s, e[1 + [ 1py(z, ) de])ds < L fortz t.
1 ) Co
But this contradicts the second of the conditions (5.6) and therefore (5.9) cannot

be valid. Thus the condition (5.10) is fulfilled.
By (5.8) and (5.10) we have

[up(®) | S lo(8) | uy(t)| fore 2 0.
Hence either

(5.16) ua(®] 2 |uy(0) | exp [— oflo(t)dt] >0 for-t+ =0 |
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or
(5.17) u(t) =0  fort 0.

Suppose that (5.16) is observed. Then (5.4), (5.5) and (5.10) imply

+ o0
lu(t)| 2 1uz0) |exp [~ [ Lp(r)dt]=¢>0  for t20
o

and
112(1, C) = 0 fOl‘ t g 0.

This contradicts the first of the conditions (5.6) and therefore (5.17) holds.
Thus the problem (0.1), (0.2) cannot have two distinct solutions. This completes
the proof.

Remark. The conditions (5.6) are essential and cannot be omitted. For example
consider the systems

dx; dx;
(5.18) ol —exp (—1) x,, a =0
and

dx, dx,
(5.19) ek a(x;) — x4, Tl —X1,
where

o(s) = 0 for 0<s=<2,
T l2-s for s> 2.

For any c e [0, 1] the vector function
x(®)=1—-c+cexp(=t), x()=c
is a solution of the system (5.18) and the vector function
x(t) =exp(—1t), x,(t) =c+exp(—1)
is a solution of the system (5.19) which saiisﬁes the conditions
(5.20) x0=1 x(=0 fortz0@(=1,2).

Hence the problem (5.18), (5.20) (the problem (5.19), (5.20)) has an infinite set of
solutions, although all conditions of Theorem 5.1 are fulfilled except the second
(first) of conditions (5.6).

_ Corollary. Let the condition (5.2) be fulfilled and let the function f satisfy the local
Lipschitz condition- with respect to the third argument. Suppose that there exists
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le L(R,) such that
SO.y1,9) = flt,x, %) 2 =l{t)(y, — x;) for 120,05 x, £ y,,x, Sy, 0.
Then the problem (0.3), (0.4) has at most one solution.

6. ON BEHAVIOUR OF SOLUTIONS
OF THE PROBLEM (0.1), (0.2) WHEN ¢t— +©

Theorem 6.1. Let there hold
.fl(t’ X1 xz) = f'gl(t’ xz), fz(f: X1 xz) é —8z(fs xl)
(6'1) for t g 07 X1 g 0’ X2 g Oa

where the functions g, : R% — R, (i = 1, 2) satisfy the local Carathéodory conditions
and are nondecreasing with respect to the second argument. Suppose that either

+ o0
(6.2) [ gt,c)dt=+00 forc>0 (i=1,2),
()
or there exists k € {1, 2} such that
+ + + o0
6.3) [ gt odt<+oo, [ gyt | glr,0)dr)dt =+  for ¢ > 0.
0 0o t

Then any solution (x,, x,) of the problem (0.1), (0.2) satisfies the condition
limx(t)=0 (i=1,2).

t—+o

Proof. Let (x,, x;) be an arbitrary solution of the problem (0.1), (0.2). By (6.1)
the functions x, and x, are decreasing and

j! gt x3-(1))dr < x0) fort20 (i=1,2).
0

Hence it is obvious that if (6.2) is valid then (6.4) holds.
Now assume that (6.3) is fulfilled. Then it is clear that

+

I g3(t,0)dt = + 0 for ¢ > 0.
0

Therefore
lim x,(¢) = 0.

t—=+ o

Hence it remains to show that

lim x5_,(t) = 0.

t++o
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Admit the contrary, i.e. that
PN () = fort =0,

where c is a certain positive constant. Then by (6.1)

+

x| ar,o)dt  fort20
[ 4
and

t +
z! gt § &t 0)dr)dt < x3_40)  for t20.
t

But the last inequality contradicts the condition (6.3). This proves the theorem.
Corollary. Let
ft, xy, x;) = gt,x,) fort=20,x,20,x,=<0,

where g: R% — R, satisfies the local Carathéodory conditions, is nondecreasing
with respect to the second argument and

+ o
ftg(t,c)dt = +0  for ¢ > 0.
(]

Then each solution u of the problem (0.3), (0.4) satisfies the condition

lim u(t) = lim ¥'(t) = 0.

=+ 1+ +ow
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