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ARCH. MATH. 1, SCRIPTA FAC. SCI. NAT. UJEP BRUNENS1S 
XVI: 15—38, 1980 

ON A CERTAIN NONLINEAR PROBLEM 
FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS 

I. T. KIGURADZE. Tbilisi, I. RACHŮNKOVÁ, Olomouc 
(Received March 13,1979) 

The paper deals with the question on existence and uniqueness of a solution of the 
differential system 

(0.1) ^~ = fi(t,xl9x2) 0 = 1,2) 

which is defined in [0, -f- oo[ and satisfies the conditions 

(0.2) <K*i(0), x2(0)) = 0, xt(t) £ 0, x2{t) £ 0 for t £ 0. 

The important special case of this problem 

(0.3) u"~f(t9u,u')9 

(0.4) <p(u(0), | u'(0) I) « 0, u(t) £ 0, u'(t) ^ 0 for t £ 0 

is studied separately. 
Concerning the history of the question it is necessary to refer to the classical 

paper by A. Kneser [1] who was the first to establish the existence and the uniqueness 
of the solution of the equation 

*/=/(*,«) 
under the conditions 

(0.5) «(0) « c0, u(t) £ 0, u'(t) £ 0 for t £ 0. 

Later on it has been found that this problem has applications in the study of the 
distribution of electrons in the heavy atom [2,3]. Sufficiently general conditions 
of the solvability and unique solvability of the problem (0.3), (0.5) are given in [4f 5, 
6, 10]. From papers, devoted to the analogous problems for differential systems we 
refer to [7, 8, ll].1) 

>) See also [9], pp. 591—596. 
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In this paper the new sufficient conditions of existence and uniqueness of the 
solution of the problems (0.1), (0.2) and (0.3), (0.4) are established and the behaviour 
of the solution is studied when t -> + oo.2) 

1. STATEMENTS OF EXISTENCE THEOREMS 

We shall use the following notations: 

R = ] -oo , +ool;R+ = [0, +co[;l*2 = RxR;R2+ = JR+ xR+; 

L(t) is the set of real functions which are summable according to Lebesgue on /. 
£i©c(0 is the set of real functions which are summable according to Lebesgue 

on each compact interval contained in I. 
In what follows it is assumed that q>: R+ -> R is a continuous function and 

f : R+ xR+ -¥ R(i = 1, 2) satisfy the local Caratheodory conditions, i.e./(.,x1 ,x2): 
:R+~*R ( i = l , 2 ) are measurable for every (xl9x2)eR+;fi(t9.9.): R+-* R 
(i = 1, 2) are continuous for almost every t e R+ and 

sup {(/(., xl9 x2) | : 0 £ xt S Ql 0 = x2 S Q}eLlQ£R+) (i = 1, 2) 

for any Q e R+. 
Solutions of the problem (0.1), (0.2) (of the problem (0.3), (0.4)) are sought in the 

class of vector functions (xl9 x2) : R+ -+ R2 (in the class of functions u : R+ -+ R) 
which are absolutely continuous (absolutely continuous with their first derivatives) 
on each compact interval contained in R+. 

The existence theorems proved below concern the cases when ft and f2 satisfy 
one of the following two conditions 

/ & 0 , 0 ) = 0 (i = 1,2), f(t9xi9x2) £ 0, f2(t,xl90) S 0 

(1.1) for t ;> 0, xt ^ 0, x2 £ 0 

or 

flU 0,0) = 0, f(t9 xx 9x2)SQ (i « 1,2) 

(1.2) for t ;> 0, xt £ 0, x2 ;> 0, 

and <p satisfies one of the following three conditions 

(1.3) ^(0,0) < 0, <p(xt, x2) > 0 for xt > r9x2^ 0, 
(1.4) 9(0,0) < 0, <p(xl9 x2) > 0 for xt £ 0, x2 > r 

2) In contrast to [7, 8,11] the existence theorems for the problem (0.1). (0.2) which are proved 
in this paper include the case, when one of the functions f or f2 changes the sign. 
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or 

(1.5) <p(0>0) < 0, q>(xl9x2) > 0 for xt + x2 > r§ xt 2 09x2 2 0, 

where reR+. 

Theorem 1.1. Let the conditions (1.1) and (13) be fulfilled and let there exist reals 
a0 e JR+ and a > a0 such that < 

(1.6) ft(t9 xl9x2) £ ~<5(x2) for a0 £ t £ a9 0 £ xt £ r9x2 2 0, 

(1.7) for 0 £ t £ a9 0 £ xt £ r9 x2 2> 0 

and 
f2(t9 xt, x2) £ lh(t) + \f(t9 xt, x2) I] w(x2) 

(1.8) for t£a090 £xt £r9x2^0 

where heLi0C(R+)9 6 : R+ -+ R+ and co : 1?+ -+ ] 0, + oo[ are continuous and satisfy 
the conditions 

(1.9) lim <5(x)= +oo, 
JC-+ + CO 

+ 0° dx 
(1.10) J ^ L - ^ + o o . 

Then the problem (0.1)9 (0.2) is solvable. 

Corollary 1. Let the conditions (1.2) and (1.3) be fulfilled and let there exist 
a > 0 such that 

fxit9 xt, x2) £ -5(x2), f2(t9 xt, *2) £ - llKt) + fA(/, x l f *2) ]] (1 + x2) 

for 0 £ t £ a9 0 £ xt £ r9 x2 J> 0, 

where leR+9 heL(l09d}) and <5:1?+ -+!?+ is a ftmction satisfying the condi­
tion (1.9). Then the problem (0.1), (0.2) is solvable. 

Remark 1. The conditions (1.6) and (1.9) may be somewhat relaxed when replaced 
by the condition f 

fi(t, xl9x2) £ -&(t9 x2) for OQ £ t £ a9 0 £ xx £ r9 x% 2 0, 

where <5: [a0, a] xR+ -• J?+ is nondecreasing with respect to the second argument, 
<5(., x)eL(£a09 a]) for any x e R+ and 

lim J<5(*,x)d*>r, 
# - • + 0 0 «o 

% 
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But the above-mentioned conditions cannot be completely omitted. Indeed, the 
problem 

dxt dx2 

_ = 0, _ = - - * . - x 2 , 

JC,(0) = 1, x.(0 £ 0, x .(0 £ 0 for / £ 0 

is not solvable, although it fulfils all the conditions of Theorem 1.1 except (1.6) 
and (1.9). 

Remark 2. The restriction (1.10) is essential and cannot be relaxed. As an example 
consider the problem 

(i.n) i*j_ = _(Xl + Xl)t *£. = _(xi + X2m + X2y+*t 

(1.12) x,(0) = —, x . (0^0, x2(t)^0 for<£0, 

where e > 0 and assume that it has a solution (x., x2). Then 

x,(t) ^ x((0) exp ( - r) -> 0 when t -* + oo (i = 1,2), 
and 

^ . [ l + x a ( 0 Г - - - в І - Ä forГžO. 

The integration of the last identity from 0 to + oo leads to the contradiction 

i - [i + *2(oxr - 1 . 
So for any e > 0 the problem (1.11), (1.12) i* unsolvable in spite of the fact that 

it fulfils all the conditions of Theorem 1.1 except (1.10) instead of which we have 

+ 00 t +00 t 

| —rr-d* « 1 rr-dx — +oo. 
0 a>(x) J ( l+x) 1 + i 

If we put 
*i(0 - <*), x2(t) « -«'(*), 

then the problem (0.3), (0.4) turns into (0.1), (0.2), where 

ft(t9 xt9x£** -x29 f2(t9 xt, x2) « -f(t9 xt, -x2). 

Therefore Theorem 1.1 implies the following 

Corollary 2* Let the conditions (1.3) and 

(1.13) f(t,xt90) £ 0 for / fc 0,xt £ 0 
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be fulfilled and let there exist the reals a0 e R+ and a > a0 such that 

/(*, xx, x2) £ [A(f) + | x2 |] co(l x2 |) for 0 £ I £ a, 0 £ xt g r, x2 .£ 0 

and 

f(t, xi9x2) 2J ~[A(f) + | x2 |] o>(| x2 |) for t £ a0 ,0'£ xt £ r, x2 £ 0, 

where A e Lioc(R+); © : .R+ -> ]0, + oo[ is a continuous function satisfying the condi­
tion (1.10). Then the problem (0.3), (0.4) is solvable. 

This statement generalizes the P. Hartman and A. Wintner theorem [6] on the 
solvability of the problem (0.3), (0.5). 

Theorem 1.2. Let the conditions (1.1) and (1.3) be fulfilled and lei there exist a > 0 
such that 

(1.14) ft(t, xt, x2) £ - fa*, f2(t, xx, x2) £ ~/io(0 (1 + *i)A 

/or 0 <; t £ a, 0 jg xt £ r, x2 £ 0 
and 

(1.15) /2(t, *i, x2) £ [h(t) + \ft(t, xx, *2) |] co(x2) 

for t > 0,0 <; xt £ r, x2 J; 0 

w>Am? 4 > 0, ;* > 0, A > 1, A0 e£([0, a]), A0(t) > 0/or 0 < f < a, 

(1.16) J [ J h0(t)dxj^dt - +oo, 
o o 

AeilacQ0, +00P aw/ a>: 1?+ -+ ]0, +oo[ is a continuous function satisfying (1.10). 
Then the problem (0.1), (0.2) is solvable. 

Corollary 1. Let the conditions (1.2) and (1.3) be fulfilled and let there exist reals 
<* e ]0,1[» S > 0, fi > 0, / > 0 and A > 1 such that 

A - l A - l 

/ i( '»xi,x2)£-?*<» /2( '>*i ,*2)£-*' * ~ MttM * (l + **)A 

for 0 £ t £ a, 0 £ xt «£ r, x2 2> 0. 

Then the problem (0.1), (0.2) is solvable. 

<>roliary 2. Let the conditions (1.3) and (1.13) be fulfilled and let there exist 
a > 0 such that 

f(f>xux2) £ h0(t)(l + | x2 \)x for 0 £ t & a90 £ x%£rfx2£0 
and 

A** *i>x2) £ -\h(t) + | x2 |] co(| x2 |) for t > 0,0 £ xt £ r, x2 £ 0, 
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where X > 1, A0 e £([0, a]), A0(0 > 0 for 0 < t < a, 

/ [ J f c o W d ^ I ^ d ^ + o o , 
O 0 

A eLfocQO, 4-ooQ and <a : _R+ -• ]0, -F oo[ is a continuous function satisfying (1.10). 
Then the problem (0.3), (0.4) is solvable. 

Theorem 1.3. Let the conditions (1.1) and (I A) be fulfilled and for a certain a > 0 

fi(f. xi9 x2) fc ~[A(f) + \f2(t9xl9x2) |] co(Xl)9 f2(t9xi9x2) <, -8(xt) 

(1.17) for 0 £ t £ a, xt £ 0,0 £ x2 g r, 

wAere A e L([0, a]), 5 : R+ -+ J?+ and co : R+ -» ]0, 4- oo[ are continuous functions 
satisfying (1.9) a«d (1.10). Suppose that for each Q > 0 there exist hQ € Lloc([a9 4- ooQ 
and a continuous function (o9: R+ -> ]0, 4-oo[ swcA fAaf 

+ c0 d* i 

and 

(1.19) f2(t9 xx, x2) S {hQ(t) 4- |/i(r, *t, x2) |] a>f(*2) 

for t g£ a, 0 £ xt £ #, x2 § 0. 

Then the problem (0J)9 (0.2) is solvable. 

Corollary. Let the conditions (1.4) and (LI3) be fulfilled and for a certain a > 0 

f(t9 xi9x2) £ 5(xt) for 0 £ t £ a ,x t £ 0, - r ^ x2 g 0, 

where £ : JS+ -• .R+ is a function satisfying (1.9). Suppose that for each Q > 0 there 
exist Af €L\<J\a9 4-ooQ and a continuous function mQ: R+ -+ ]0, 4-oo[ satisfying 
(1.18) such that 

f(t9 xi9x2) £ ~[Af(t) 4- I x2 |] of(| x2 |) for t ^ a, 0 g xt £ a, x2 g 0. 

Then the problem (0.3), (0.4) is solvable. 

Theorem 1.4. Let the conditions (1.1), (1.5) and 

fi(?9 *i> x2) £ [A(0 + l/ift *i f x2) |] o>(x2) 
/or t £ 0,0 £ %i £ r, x2 £ 0 

be fulfilled, where he LyJjO, 4-ooQ and co : R+ -> ]0, 4-oo[ is a continuous function 
satisfying (1.10). Then the problem (0.1), (0.2) is solvable. 

Corollary 1. If the conditions (1.2) and (1.5) are valid, then the problem (0.1), (0.2) 
is solvable. 
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Corollary 2. Let the conditions (1.5), (1.13) and 

f(t,xt,x2)^ ~[A(0+ I x2 1]co(\x2 I) for t£0,0£xt g r , x 2 ^ 0 

be fulfilled, where h e L^QO, + oo[) and CD : J?+ -• ]0, + oo[ is a continuous function 
satisfying (1.10). Then the problem (0.3), (0.4) is solvable. 

2. THE LEMMA ON A PRIORI ESTIMATES 

Lemma 2.1. Let 0 £ a0 < a < +ao, r > 0, h€LioG(R+)9h(t) £0 be valid for 
f ^ 0. Suppose that to : R+ -* ]0, -f oo[ a«rf 50 : i?+ -+ ,R+ are continuous functions 
satisfying the conditions (1.10) anrf 

r 
lim 50(x) > , 

and Q : i?+ -> ]0, -f oo[ is a function defined by means of the equality 

(2.D fl(*)-J ds 
0 « ( * ) ' 

Then there exists r * > r such that for any b > a and for any absolutely continuous 
functions xt: [0, ft] -• J? (/ » 1,2) the inequalities 

(2.2) xt(0) £ r, xt(t) £ 0, xi(f) £ 0, x2(t) £ 0 for 0 £ t £ ft, 

(2.3) xi(0 £ ~<50(*2(0) f o r *o £ ' £ *» 

(2.4) xi(0 £ ~[A(0 - xi(0] o>(x2(0) for 0 £ * £ a 

and 

(2.5) x # ) £ [A(0 - *i(0] G>(X2(0) for a0 g f £ ft 

imply the following estimate 

(2.6) x2(t) £ 0~ V + J A(t) dt) for 0 £ t& ft. 
o 

Proof. Choose r0 > 0 si.ich that 

(2.7) 5 0 ( x ) > — - — f o r x > r 0 . 
<* - a0 

According to (2.2) and (2.3) we get 

r £ x.(a0) - *,(«) £ J a0(x2(.))d,. 
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Hence (2.7) implies the existence of t0 e [a0, a] such that 

(2.8) *2(/0) £ r0. 

Using (2.1), (2.4) and (2.5) we have 

d 
dř 

and 
_d_ 
át 

Q(x2(t)) ŽŠ -h(t) + x[(t) for 0 ѓ ' ѓ t0 

Q(x2(t)) й Ңt) - x[(t) foг í0 й t й b. 

From this inequalities by (2.2) and (2.8) it follows that 

to 

O(x2(0) £ O(x2(r0)) + J A(T)dT + xt(t) £ 
t 

a 

£ O(r0) + r + J A(T)dr for 0 _g tS t0 

and 

Й(x2(0) й ß(*20o)) + J *(t)dт + xt(t0) й 
to 

t 

^ ß(r0) + r + J A(т)dт for ř0 g t S b. 

Thus 
o 

t 

ß(x2(0) ^ r* + J Л(т) dт foг 0 _Ş t % b, 

where r* =» O(r0) + r + J A(T) dT does not depend on b, xt and x2. Hence according 
o 

to (1.10) the estimate (2.6) is valid. This completes the proof. 

3. THE LEMMA ON THE SOLVABILITY OF A CERTAIN 
AUXILIARY BOUNDARY VALUE PROBLEM 

Consider the auxiliary two point boundary value problem 

(3.1) <Kx.(0), *i(0)) - 0, xk(b) « 0, 

where k e {1,2}, b e ]0, +oo[ for the system (0.1). 

Lemma 3.1. Let there hold 

(3.2) <p(0> 0) < 0, <p(xt, x2) > 0 for xk ^ 0, x3 _k > r, 
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(3.3) 

and 

(3.4) 

f,(t, 0,0) = 0 (i = 1, 2), /,(<, 0, x) < 0, f2(t, x, 0) < 0 

for 0 g t <L Ь, x >. 0 

£ I W , x., x2) | й Г(t) for 0 < < < Ь, x. è 0, x2 ž 0, 
І=I 

w êre r e ]0, 4- oo[ aw//* 6 JL([0, ft]). JAe/i the problem (0.1), (3.1) few at least one 
solution (xx, x2) such that 

(3.5) xt(t) = 0, x2(<) = 0 forOŚtśk 

Proof. At first let us prove Lemma under the additional assumption that the 
right-hand sides of the system (0.1) satisfy the local Lipschitz condition, i.e. for each 
Q > 0 

(3.6) £ | Mt, xt, x2) - fiu yi, y2) I -S V0(l *i - .Vi I + I *a - y* i) 
( = i 

for 0 g < g b, 0 < xy, >>y £ Q (j ш 1,2), 

where/,eL([0,*]). 
Let us put 

, . [0 for s < 0, 
*a)-\s for* = 0, 

(3.7) /»<<, x., x2) = /(<, o(xt), o(x2)) (i - 1, 2) 

and consider the system 

d*. (3.8) 

under initial conditions 

(3.9) 

d< 
f£t,xt,x2) ( I - 1 , 2 ) 

xk(6) - 0, Xj.^б) - a. 

According to (3.4) and (3.6) for any a e K the problem (3.8), (3.9) has the unique 
solution (x t(.; a), x 2 (.! a ) ) which is defined on the whole segment [0, b"\. 

Put 

f /i(<,0, x2(<; a)) - /.(<, x.(<; a), x2(<; a)) 

i.(í;a) = ̂  *i(<; a) 
0 

for x.(<; a) ф 0, 

foг Xt(<; a) ш 0, 

h{u xt(t; a), 0) - /2(t, xt(r;«), x2(r; a)) fof ^ # ^ 

/2(í; a) « <{ x2(í; a) 
0 for x2(í; a) » 0. 
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Prom (3.3) and (3.7) there follows 

^ f f i * 0 » fx(U 0, x2(r; a) - lt(t; a) xt(t; a) * 

£ ~~h(t; a) xt(t; a) for 0 & t £ b 
and 

dX2%;*} - /a(*. *k(ft a), 0) - l2(i; a) x2(r; a) <> 

$ -/2(t; a) x2(f; a) for 0 g f ^ d. 
Thus 

**(*» a) £ 0, x3 ..*(*; a) J; a exp [J J3-*(T; a)dt] £ 0 for 0 g I £ b, a £ 0. 

Therefore (Xi(.; a), x2(.; a)) is a solution of the system (0.1) for any a e R+. 
Let us put 

9(a) « ^(x^O; a), x2(0; a)) 
and 

b 

a*-=r + $f*(t)dt. 
o 

By (3.2) and (3.4) 

x3_k(0; a*) - a* - J /3^(f, xt(t; a*), x2(t; a*))d* £ r 
o 

and 

£(a*) £ 0. 

On the other hand, q> is continuous on [0, a*] and 

9(0) = 9(^(0; 0), x2(0; 0)) - q>(0,0) < 0. 

So there exists a0 € ]0, a*] such that 
£(a0) = 0. 

Obviously, (x4(.; Oo), x2(.; a0)) is a solution of the problem (0.1), (3.1). 
To complete the proof of Lemma it suffices to get rid of the additional assump­

tion (3.6). 
Let ft and f2 be the functions given by the equalities (3.7) and let wm: R-* R+ 

(m =- 1,2,...) be a sequence of continuously diffcretftkiWe functions such that 

<om(x)~0 f o r l x l ^ - 1 - , fwm(x)dx**l (to**l,2,...). 
m -oo 

Put 
m oo 

tdt**u*d - J °>wbi - *i)a>i J a>m(y2 - xjfit, ylt y2)dy2, 
— 00 —00 
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Һtm(t, X) m f Q)я(y - x)/.(<, 0, y)dy, 

00 

him(t, x) m J <»,,,(>> - x) f2(t, y, 0) d>>, 

AJff xt, x2) « gim(t9 xt, x2) - glm(t, 0, x2) - I Alm(f, x2) - him(t9 0) I 

and 
/2»(', xj, x2) » g2m(t, xj, x2) - g2m(r, xt, 0) - | h2m(t9 xt) - A2m(f, 0) |. 

From (3.3) and (3.4) it follows for each natural m 

fim(t9 0,0) * 0 (i - 1,2), / l m(t, 0, x) £ 0, /2m(r, x, 0) S 0 

for 0 g t <; 6, x e 1? 

and 

(3.10) £ i /jm(l, xt 9x2)\S 4f*(0 for 0 <£ r g 6, (x4, x2) € R2. 

Besides, for any t e [0, *f oo[ 

(3.11) lim/ta(l tx l 9x2)-i>S(l fx l fx2)" ( i » l , 2 ) 
i n - * oo 

uniformly on each bounded set of the space R2. § 

From the structure offim and/2m it is obvious that these functions satisfy the local 
Lipschitz condition with respect to their two last arguments. Thus according to the 
already proved for each natural m, the system 

*r- /ta(f»*i .*a) 0 - 1 . 2 ) dr 

has a solution (xlm, x2m) satisfying (3.1) and (3.5). 
Using (3.2), (3.10) and (3.11) it is easy to prove that the sequence of the vector 

functions {(xlm,x2m)}m!Bl contains a uniformly converging on [0, d] subsequence 
such that its limit is a solution of the problem (0.1), (3.1). This completes the proof. 

4. THE PROOFS OF THE EXISTENCE THEOREMS 

Proof of Theorem 1.1. Without loss of generality assume that h(t) ^ 0 for 
t£0. 

Choose a number r0 e ]r, + oo[ and a nondecreasing continuous function 
50 : JR+ -> R+ such that 

S(x) 2 <*o(x) for x ^ 0 
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and 
à0(x) = å0(r0) > ~ for x ^ ro-

guppose that iQ is the function which is defined by means of the equality (2.1), 
Q~t is its inverse one and r* is the positive constant appearing in Lemma 2.1. Let 

us pot 
* t 

Q0(t) = Q~ V + J MO dt), Q(t) = Qo(t) + r0, 
o 

il for 0 £ s £ Q0(t), 

1 _ s "" g o ( 0 for Co(0 < ^ £ Q(t), 
ro 

0 for s > e(f), 
, . fs for 0 £ s £ r, / x is foxO£s£ Q(t)9 

" l ( s ) = \r for s > r, ^ s ) = |<K0 for s > 6(t), 

A(t> xt, x2) « /i(t , o-iCr.), <r2(t, x2)), 

/ 2 ( t , X j , X2) - (X0(t, X 2 ) / 2 ( t , <Ti(^i), X2) 

and consider the differential system 
(4.1) - ^ « / f o . * i . * a ) 0 - 1 , 2 ) . 

From the definition of fx and f2 and from the conditions (1.1) and (1.3) it follows 

(4-2) /,(/, xt, x2) = /,(/, xt, x2) for t £ 0r 

0 jg XJ £ r, 0 £ x2 £ Q0(t) (i * 1, 2), 

(4-3) /i&t *i. *2) £ "-<$0(x2) ^ 0 for a0 £ t £ a, xt £ 0, x2 £ 0, 

(4-4) / > , Xi, x2) £ - W O + |/i(r, xi, x2) |] o>(x2) 

for 0 £ t £ a, xt £ 0, x2 £ 0, 

C4-5) / > , * i , x2) £ [A(r) + | / > , Xi, x2) |] co(x2) 
for I £; a0, x t ^ 05 x2 ^ 0 

and 

whete 

an<ł 

26 
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I I Л k * l f x a ) | Š / * ( 0 for ř ^ 0 , x i ^ 0 , x 2 è 0 , 
i » i 

/*(0 - max { £ |Яř,Xi,x2)| :0 á x ^ r , 0 ^ x 2 < <>(0} 
i i * l 

ťєLьДO, + ooџ. 



. According to Lemma 3.1 for each natural/* the system (4.1) has a solution (xip, x2p) 
which is defined on the segment [0, a + p\ and satisfies the conditions 

(4.6) <p(xip(0), x2p(0)) = 0, *„(0 2 0, x2p(t) £0 for0£t£a + p. 

By (1.1) and (1.3) 

(4.7) x'ip(t)£0, xip(t) £ xip(0) £ r for0£t£a+p. 

On the other hand, since the inequalities (4.3)-(4.5) hold we have 

x\P(t) _g S0(x2p(t)) ^ 0 for a0 g t £ a, 

(4.8) x'2p(t) > - ih(t) - x\p(t)1 <o(x2p(t)) for 0 £ t g a, 

(4.9) x'2p(t) £ \h(t) - x'ip(ty] co(x2p(t)) for a0 £ t£ a + p. 

According to Lemma 2.1 from (4.6)—(4.9) there follows the estimate 

(4.10) x2p(t) g Co(0 for 0 £ * £ a + p. 

The conditions (4.2), (4.7) and (4.10) imply that (xip, x2p) is a solution of the system 
(0.1) on [0, « + />]. 

Using (4.7) and (4.10) it is easy to prove that from the sequence of vector functions 
{(*.-» *2p)},?..i we can choose a subsequence {(xiPm, x2pm)}*mi such that this sub­
sequence uniformly converges on each segment from [0, +oo[, and 

(x . ,x 2 )= lim (xipm,x2pJ 

is a solution of the system (0.1) on [0, + oo[. On the other hand, from (4.6) it is obvious 
that (xi, x2) satisfies the conditions (0.2). This completes the proof. 

Proof of Theorem 1.2. Without any loss of generality a may be chosen so small 
that 

(*~l)]h0(t)dx<L 
o 

By (1.16) there exist numbers a0 € ]0, a[ and e e ]0,1[ such that 

< I 

(4.11) g(t) = [€ + (A - 1) f /t0(T)dT]i-A - 1 > 0 for 0 £ t & a 
o 

and 

(4.12) »]iQ(t)fdt>r. 
«0 

Let us put 
f 1 for 0 £ s & <?(0), 

Ф)- 2~ш forc(0)*sš^* 
0 for s > 2<?(0) 

27 



and 
tli v - ^ - faX2)f2(t> * 1 . *2) 

for # > a0. 
//# v .^ J«(*-)/a(».*i.*a) for .•£<.<>, 

Then since (1.15) holds, we have 

f2(t>Xl>X2) 2 -[A(0 + l/l(t,*l>*2)l]G**2) 
for 0 £ t <; a0, 0 £ xt < r, x2 £ 0 

and 
f2(t9 xt, x2) £ [A(r) + |/t(r, x t , x2) |] o(x2) 

for t > 0, 0 ^ *! <J r, x2 £ 0 
where 

A(0 « max | - J ~ | / 2 ( r f x l f xa) | :0 g xt g r,0 £ x2 g 2 (̂0)J 

for 0 g * S flo» 
J ( 0 » * ( 0 for r > a 0 . 

Thus Theorem 1.1 implies the existence of the solution (x l f x2) of the differential 
system 

-g~- « /i(*> *i»*2). - g p = h(U xt , x2) 

under the conditions (0.2). 
By (1.3) and (1.14) 

(4.13) r £ x,(0) fc x^flo) - x4(a) £ 5 J [x2(0? dl 
«0 

and 

(4.14) x2(0 £ ~K(t) [1 + *2(0]A for 0 ^ f £ a. 

According to (4.11) -(4.13) we get 

(4.15) q'(t) » ~h0(t) [1 + <>(0]A for 0 £ t £ a 

and there exists t0 € [a0, a] such that 

(4.16) x2(t0) < Q(t0). 

But from (4.14)-(4.16) it follows that 

*2(t) < #(0 forOSt£t0. 
Therefore 

*2(0 < Q(°) forOStS a0. 

From the last inequality and from the definition of f2 it is obvious that (xx, x2) is 
a solution of the system (0.1). This completes the proof. 
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In order to prove Corollary 1 of Theorem 1.2 it is sufficient to verify that the 
function 

A-1 - 1 
Â - i 

h0(t)**lt M \lnt\ * 

satisfies the condition (1.16). But this becomes obvious if we take into consideration 
that 

J*o(t)dt 
lim —5 — » 

C-»0+ - - - - - A — i 
џ 

((|lnM) * 

Proof of Theorem 1.3. Choose the reals r0 > 0 and Q0 > r0 such that 

(4.17) 

and 

(4.18) 

õ(x) > — foг X > г0 a 

Q(Qo)**Q(r0) + ]h(t)dt + r$ 

where Q is the function defined by the equality (2.1) 
Let us put 

for s 5_e 0 , 

Q0 for s> Q0t 

[1 for 0 sS 5 _» rf 

« * ) í° Ä " l . » l ) =- <K*1. *2 + <5Q(*І)). 

(Г(S) 2 for r < s < 
r 

0 foг s _ 2r, 

л(t.x1,x2)_{^;^1' 
(JlM» * i» 

2r, *.<-)-{Ј_ г 
for s _ã r, 
for s > r, 

x2) - ôt(x2) for I 5_ a» 
x2) for t> a9 

; , , v ^ _ fo<*2)/2('»x l tx2- Mxj)) for I _ a, 
f2{t'XlfX2)~\f2(t,xl,x2) íott>a. 

{ _T^-) •/><*' xi»x2> 1 :0 _ «i - <?. 0 - «2 _ 2ri 

(4.19) 

<? - Qo + *% A(0 - max 

and 
for 0 í_ t _. a 

A(0 = hJJ) for f > a. 

By (1.1), (1.4), (1.17) and (1.19) we have 

(4.20) <p(xt,x2) > 0 for xt > Q, X2 _ 0, 

fit, 0,0) - 0 (i - 1,2), / . (/, *. , x2) _ 0, f2(t, xt, 0) _ 0 
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(4.21) for t £ 0, xt ^ 0, x2 £ 0, 

7i(t, *i, *2) g ~<*i(*2), /2(t, *i, *2) £ ~[A(0 + l/ift *i, *2) I] a>,(*2) 
(4.22) for 0 ^ t ^ a, 0 ^ x4 ^ e, x2 ^ 0, 

(4.23) /2(f, x t , x2) s; [A(0 + |/ t(r, Xj, x2) |] mQ(x2) for r fc 0,0 § Xl S Q>x2 £ 0 

and, on the other hand, 

(4.24) (p(xt, x2) > 0 for Xj <> 0, x2 > r, 

/i('»*i> *i) ^ - W 0 + l/2('>*i, *2) I]«*Xi) 

(4.25) for 0 £ t S a, *i £ 0, 0 g x2 <S r, 

(4.26) j^(f, x t , x2) £ -5(xl) c(x2) for 0 £ t <; a, Xj 2j 0, x2 j> 0. 

According to Theorem 1.1 the conditions (4.20)-(4.23) imply the existence of 
the solution (xl9 x2) of the system (4.1) which satisfies the conditions 

£(*i(0), x2(0)) =-= 0, xt(t) £ 0, x2(0 ^ 0 for t £ 0 

and also 

xi(0 £ 0 for t ^ 0. 
(4.24) and (4.26) give 

(4.27) x2(t) g 0, x2(r) ^ x2(0) £ r for 0 ^ t £ a 

and 

J*(*.(0)dtgr. 
0 

From the latter inequality by (4.17) it follows that 

(4.28) *.(«) £ r0. 

(4.25), (4.27) and (4.28) yield 

flfaW) rg O(r0) + /*(«) dt + J | x'2(t) | d* £ 
O 0 

m 

S Q(r0) + f h(t)dt + r for 0 £ t£ a. 
o 

Hence using (4.18) we have 

(4.29) xt(f) SQo for0£t £a. 

Now taking into consideration the definition of the functions >̂ / i > f% and the 
estimates (4.27) and (4.29) it becomes obvious that (xt, x2) is a solution of the 
problem (0.1), (0.2). This completes the proof. 
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Proof of Theorem 1.4. Let us denote 

/2*(0 = max {|/2(r, x., x2) 1:0 £ xt g r, 0 £ x2 £ 4*^ 

f 1 for 0 g s £ 2r, 

<*»)« 
« * <* л c м 0 for s £ 2ř 

2 - - = - for 2r < s < 4r, ÖДS) =. -{ -
2r (s - 2r for s > 2r 

0 for s 2ï 4r, 
and let a > 0 be so small that 

}/*(Od.<r. 
0 

Define the functions ft and f2 by means of the equalities (4.19) and consider 
the differential system (4.1). 

According to Theorem 1.1 the problem (4.1), (4.2) has a solution (xi9 x2). 
By (1.1) and (1.5) 

(4.30) xt(t) S xt(0) £ r for t £ 0; x2(0) < r. 

Therefore 

(4.31) | x2(0 i £ | x2(0) I 4- } f*2(t) dt<2r for 0 £ I £ a. 
o 

Since (4.19), (4.30) and (4.31) hold, it is obvious that (xt, JC2) is a solution of the system 
(0.1). This completes the proof. 

5. THE UNIQUENESS THEOREM 

The uniqueness theorem for the problem (0.1)f (0.2) which is proved below 
considers the case, when the function ft satisfies the local Lipschitz condition with 
respect to the second argument and the function f2 with respect to the third one, 
i.e. for any Q e R+ there exists /(., Q) e Lloe(R+) such that 

\ft(t9xt9x2) -ft(t,yt9x2)| S l(t9Q)\xt- yt |, 

(5.1) !/2(t, xt, x2) - f2(t9 xt>y2)\g t(t, Q) \X2 - y2 \ 

for t £ 0, 0 £ xt sS Q9 0 & yi £ Q (i * 1,2). 

Theorem 5.1. Let ft satisfy the local Lipschitz condition with respect to the second 
argument andf2 — with respect to the third one. Suppose that 

(5-2) <f>(yt>y2) > <p(xt9x2) foryt > xt £ 09y2 £ x2 2 0, 

(5.3) ft(tf xt , x 2 ) P for t£09xt%09x2£ 0, 
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/ i ( f . )Wa) -fi(t,xi9x2) £ - / 1 1 (00' i - *i) + hiO**! - eVa) 
(5.4) for * £ 0, 0 £ Xj $ y l f 0 £ ya J x , 

/a(*. ^ i . Ĵ a) - /atf. * i , *a) £ - 'aifo -Vt - * i ) + 'aaW (*a - -Va) 
(5.5) /or t £ 0, 0 <; xt S J>i, 0 g y% g x2 

wAere lHeL(R+) (i = 1, 2), the functions li2 : R2+ -* R+ and l2i : JR+ X [0, r] -> !*+ 
-?art^ ^^ '<>#*' Caratheodory conditions, and are nondecreasing with respect to the 
second argument', for any c > 0 it holds 

+ 00 t 

(5.6) mes {t e R+ : li2(t9 c) > 0} > 0, J /12(f, c[l + f *21(t, c) dr]) df = + oo. 
o o 

TAen the problem (0.1), (0.2) Aas a* most o/ie solution. 
Proof. Let (xt, x2) and (yx, >>2) be arbitrary solutions of the problem (0*1), (0.2). 

According to (5.1) and (5.3) there exist re]0, +oo[ and l0€Lioc(R+) such that 

(5.7) 0 g xt(t) £r, 0 g yt(t) g r for t • £ 0 

and 
l/i(',>>i(0,J>a(0) - fi{U *i(0,y2(t)) | £ /0(t) | *(f) - *,(*) I, 

(5.8) |/2(t, * ( 0 , y2(0) - /a(#, 7i(0, *a(0) | S /0(01 ya(0 - *a(01 

for r ̂  0. 
Put 

«i(0 - J>i(0 - *i(0, u2(t) » >>2(0 - x2(t). 
Then either 

(5.9) ufa) + 0 

for a certain t0 BR+ or 
(5.10) ut(t) - 0 for t £ 0. 

First suppose that (5.9) is fulfilled. To fix an idea we shall assume that ut(t0) > 0. 
Let us denote by ]** , **[ the maximal interval containing f0 in which 

(5.H) . « i ( 0 > 0 . 

By (5.1) there occurs one of the following two cases 

(5.12) ufa) - 0 

or 

(5.13) t* = 0, 11,(0) > 0 , u2(0)<9. 

Let (5.12) hold. If we assume that 

«a(0 ŝ  0 for t £ ** 

32 



then (5.4) and (5.8) imply 

«i(0 - [/(t^iOXMO) - / i fr*i(0. *a(0)] + 
+ [fi(t, *i(t), J>a(0) - /i(r, xt(t), x2(f))] £ /0(0 ut(t) for U < t < t*. 

Hence from (5.12) we have 

Ui(0 gO for t* <* t < t* 

and this contradicts the condition (5.11). 

Therefore in the both cases (5.12) and (5.13) there exists tt e ]**, t*[ such that 

(5.14) u2(tt) < 0, ut(t) > 0 for tt <J t < t*. 

Considering (5.4), (5.5) and (5.14) it is easy to conclude that 
t t 

Ut(t) £ C0 + C0 J f12(T, | W2(T) |)dT, u2(r) g - c 0 - c0 J J21(f, tit(T))dT 

(5A5) f o r t 1 g r < f * , 

where c0 is the minimum of the numbers 
+ 00 +ao 

I Ui(h) I exp [- J lu(x)dT] and exp [~ j lH(t) d<] (i - 1,2). 
o 0 

By the definition of t* it is clear that either 

t* < +QO and ut(t*) =- 0 

or t* -= +oo. According to (5.15) the first possibility may be eliminated. Thus 
t* -= +oo. 

Let c e ]0, c0[ be so small that 
r t 

co + co J *2i(T> c0) dr ^ c + c J Z21(T, C) dT for t J> ^. 
*i 0 

Then since (5.7) and (5.15) hold we obtain 

' * r 
J ll2(s9 c[l + J J21(T, C) dr]) ds g —- for tZ tt. 
f t o c o 

But this contradicts the second of the conditions (5.6) and therefore (5.9) cannot 
be valid. Thus the condition (5.10) is fulfilled. 

By (5.8) and (5.10) we have 

\u'2(t)\ g MO 1*2(01 for* £ 0 . 
Hence either 

t 

(5.16) | K2(0 | £ | «2(0) | exp [- J Z0(T) dr] > 0 for t £ 0 
o 
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or 
(5.17) u2(t) = 0 for t = 0. 

Suppose that (5.16) is observed. Then (5.4), (5.5) and (5.10) imply 

| u2(t) | = | u2(0) | exp [- f / 2 2 ( T ) dt] = c> 0 for f £ 0 
o 

and 
'laC* 0 = 0 for f ^ 0. 

This contradicts the first of the conditions (5.6) and therefore (5.17) holds. 
Thus the problem (0.1), (0.2) cannot have two distinct solutions. This completes 

the proof. 

Remark. The conditions (5.6) are essential and cannot be omitted. For example 
consider the systems 

(5.18) ^ L = _ e x p ( - 0 x 2 > ^ . - 0 

and 

(5.19) ^ L = ff(X2)_Xl, - ^ = - x . , 

where 

•«-{.- for 0 ś s = 2, 
for 5 > 2. 

For any c e [0,1] the vector function 

xt(t) = 1 - c + eexp(- t), x2(t) = c 

is a solution of the system (5.18) and the vector function 

xt(t) =* exp (~t)9 x2(t) = c + exp (-/) 

is a solution of the system (5.19) which satisfies the conditions 

(5.20) *i(0) « 1, xfc) £ 0 for t = 0 (i = 1,2). 

Hence the problem (5.18), (5.20) (the problem (5.19), (5.20)) has an infinite set of 
solutions, although all conditions of Theorem 5.1 are fulfilled except the second 
(first) of conditions (5.6). 

Corollary. Let the condition (5.2) be fulfilled and let the function/satisfy the local 
Lipschitz condition with respect to the third argument. Suppose that there exists 
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leL(R+) such that 

f(t,yi,y2)-f(t,xi9x2)^ -l(t)(y2 - x 2 ) for t = 0, 0 ^ ^ £yt,x2£y2 £ 0. 

Then the problem (0.3), (0.4) has at most one solution. 

6. ON BEHAVIOUR OF SOLUTIONS 
OF THE PROBLEM (0.1), (0.2) WHEN t-> +oo 

Theorem 6.1. Let there hold 

A(t, xt, x2) g ~gx(t, x2), f2(t, xt, x2) £ -g2(f, xx) 
(6.1) for t^ 0, xt ^ 0, x2 ^ 0, 

where the functions gt: R2+ -+ R+ (i = 1, 2) satisfy the local Caratheodory conditions 
and are nondecreasing with respect to the second argument. Suppose that either 

(6.2) j gt(t, c) At = + oo for c>0 (i = 1,2), 
o 

or there exists k e {1, 2} such fhat 

+ 00 +00 +00 

(6.3) J gk(U c) dt < + oo, J g3„k(t, J" g*(r, c) dT) d* = + oo for c > 0. 
0 0 f 

Then any solution (xi9 x2) of the problem (0.1), (0.2) satisfies the condition 

lim xt(t) = 0 (i = 1,2). 
f-> + ao 

Proof. Let (JC19, x2) be an arbitrary solution of the problem (0.1), (0.2). By (6.1) 
the functions xx and x2 are decreasing and 

f gi(T, x3-I(T)) dT £ x<(0) for t = 0 (i = 1, 2). 
o 

Hence it is obvious that if (6.2) is valid then (6.4) holds. 
Now assume that (6.3) is fulfilled. Then it is clear that 

+ oo 

J g3-*(*> c)dr = + oo for c > 0. 
o 

Therefore 

Hence it remains to show that 

lim xk(t) = 0. 
*-> + oo 

lim x3-*(0 - 0. 
f-> + 00 
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Admit the contrary, i.e. that 

*3~k(0 ^c for f ^ 0, 

where c is a certain positive constant. Then by (6.1) 

+ 00 

**(0£ J gk(*>c)dx for r ^ O 
t 

and 
I +00 

J g3 -*(', J g*(f, c) dt) At £ x3 _»(0) for t £ 0. 
0 f 

But the last inequality contradicts the condition (6.3). This proves the theorem. 

Corollary. Let 

f(U xt, x2) £ g(t9 xt) for t £ 0, xx £ 0, x2 £ 0, 

where g : R\ -+ J£+ satisfies the local Caratheodory conditions, is nondecreasing 
with respect to the second argument and 

+ 00 

J tg(t, c) At = + oo for c> 0. 
0 

Then each solution u of the problem (0.3), (0.4) satisfies the condition 

lim u(t) » lim u'(t) = 0. 
*-> + oo l-> + oo 
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