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INTRODUCTION

Let S # 0 be a set. Then a mapping ~: exp S — exp S with properties _

LASS=>A4Ac 4,
I. AABc S, Ac B=>A4< B,

is usually called a closure operator. A set A < S such that 4 = 4 is a closed set.
A system 2 < exp S is a closure system if to every set 4 & S one closed set 4 € Q
co-ordinates. A set S with a closure system £ is called a closure space (S, 2). We shall
denote by § = {5}, for se S.

Let (S, .) be a grupoid. Then a closure operator ~: exp S — exp .S with properties

LA S=>S.Aud.Sc 4,
IV.ALBsS=>A.BUA.Bg A.B,

is called an ideal operator. A set A < S such that 4 = 4 is an ideal. A system
Q < exp S is an ideal system for an ideal operator ~ on S, if to every setA & S
one ideal 4 € Q co-ordinates. A set S with an ideal system  is called an ideal space
@, ., Q).

This conception of ideals is taken over [1]. Associativity and commutatjvity of
operation . on S, that are usually supposed, are not necessary in this paper. The
ideals defined above are a generalization of many systems of ideals in algebraic
structures, for example ideals in rings, semigroups, distributive lattices, normal
subgroups in groups, convex subgroups in lattice-ordered groups.

Of course, it depends on a suitable choise of operation . on corresponding algebraic
structures.

The following problem is investigated in the paper: Let 2 be a closurg system
on a non-empty set S. What conditions has an operation . on S to fulfil so that 2
is an ideal system on a grupoid (S, .)?
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Results of the paper are concerned with that problem and special cases of ideals

fulfilling condition a. a.b=anb (a b=a.b, resp.), for a,be S, so called ideals
of intersection (product, resp.) type.

In § 1. there are some conditions equivalent to III. and IV. from definition of ideal
system. § 2. contains results about ideals of intersection and product types. Most
results are concerned with ideals of intersection type —for instance uniqueness of
operation ., distributivity of Q.

§ 1. IDEAL SYSTEMS

Proposition 1.1, Let (S, .) be a grupoid and ~: exp S — exp S be a closure operator
on S. Then the following assertions are equivalent:

LA S=>8S.A4VvA.5c 4,
2.a,beS=>(;._b-g&n5,
3.4,BcS=>A.BcAnB,
4A,BcS=>A.BuAd.Bc AnB,
5A,BsS=>A.BcAnB.
Proposition 1.2. Let (S, .) be a grupoid and ~: exp S — exp S be a closure operator
on S. Then the following assertions are equivalent:
1.A,BS S=>A.BUA.BS A.B
2.4,Bc S=>A.B< A.B,
3B S=>A.B= J B=A.B,
4AB;S=>Z B= A 1:B.

Further, if we denote

5.a,b,ceS=>a.bg n, a.bué)ca.bua.c, then 1. implies 5. In the
closure system Q defined by a closure operator ~ is a closure system of finite character,
then also 5. implies 1.

Remark. A closure system of finite character is in the sense of [2],ie., 4 & S =
=>A=U{N:Ng 4,card N < No}.

Proof of 1.2. Implications 1.=>2.= 3. =4. = 1. are clear. The implication
1.=> 5. follows from [1], Th.1., A<sC:4.B<c A.B<>A.(BVC)S A.BV
V A.C, where AV B = A u B. That equivalence can be proved by the method of
Aubert’s proof without associativity and commutativity of the operation ..
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If Q is a closure system of finite character, then fory = {N g B:card N < N,}
we deduce from 5.:

A.B=A.U{N:NE'/’} =’U{a.U{n1N,...,nm}:N=
= {nyn, ...}, NeY,aed} s U{a.({{np}v...u{my}) :N=
= {5, ..My}, NeY,ae A} g U {@. (fiyyu...Ufy) N =

= {nln,..-,n“v},New,aEA} g U{&.ﬁwu...uﬁ.ﬁm}:N=

= {nyn, ... iy}, NeY,acdy g U{a. myuv..va.my}:N=
= {nyn, ..oy}, NeY,ae A} = U {a.ny, ...,a.my}: N=
= {tyny s My}, NeW,ae A} = U {a. {nyn, oo, n}} : N =
= {nyn, o, My}, NeW,ac A} =U{d . N:Ney} s 4.B.

Corollary 1.3. If Q is a closure system of finite character defined by a closure
operator ~ on a grupoid (S, .), then Q is an ideal system defined by an ideal operator ~
iff it holds:

abceS=a.bca.bcanba.bud)sa,bua.c

Proposition 1.4. Let (S, Q) be a closure space and . be an operation on S with the
property A.SUS.A < A, for A < S. Then it holds:

1.If0€ S is a zero, then 0 e U Q,
2. U Q = {s} iff there exists an element s € S such that § = {s}.

Further, an element s € S with the property § = {s} is unique and it is a zero in (S, .).

Proof. 1.0 =a.0e 4, forevery Ac Sandaed.2.UQ = {s}=>5g UR=>
= 3§ = UQ = {s} and on the other hand § = {s} = g¢.5 5 § = {5}, for every g€
€S=g.s=ys (and s.g = s, similarly), for every ge S=> s isa zeroin S =g =
=s.aes.Ag A, forevery Ac Sandaed=>s5eUQ=>UQ =35= {s}.

§ 2. I'DEALS OF INTERSECTION AND PRODUCT TYPE

Definition 2.1. Let (S, ., Q) be an ideal space. If for every a, b € S it holds
—_— [ ]

NDa.b=anb,

P a.b=a.b, respectively,

then ideals from Q are called ideals of intersection type (I-ideals), ideals of product
type (P-ideals), respectively.

If an ideal from Q is an ideal of intersection type and product type, then it is
called an IP-ideal.
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Proposition 2.2, Let (S, ., Q) be an ideal space. Then the following assertions are
equivalent:

1. Ideals from 2 are IP-ideals.

2.5e S=>s5€§.3.

3.5eS=>5§=35.5.

4AcS=>A=4.A.

5.A,B< S=>A.B=AnB.

Proposition 2.3. Let (S, ., ) be an ideal space. Then it holds:

1. If every ideal from R is an IP-ideal, then S . A = A, for A < S.
2.IfA=S.AuU A, for A < s, then every ideal from Q is a P-ideal.

Proof.
lLxed=>xex=Xnx=x.XcS.A=A4AcS.A
2A=8S.AvA=>a.b=(S.av{a).(S.bu{p)=S.a.5.bvu

va.S.buS.a.bufa.b}2S.a.bu{a.b}=a.b.
Proposition 2.4. Let (S, ., Q) be an ideal space. Then the following assertions are
equivalent:

1. Ideals from Q are I-ideals.

2.5eS=>s€s.s.
3.seS».§=s_.-;.
4. AcS=>A=A4.A4.

5.A,BgS=>A.B=ZnB.
Examples.

1. Ideals in a commutative ring are P-ideals and are ot J-ideals with regard to
ring’s multiplication.

2. Ideals in a distributative lattice are IP-ideals with regard to the infimum.

3. Normal subgroups in a group (G, +) are neither I-ideals nor P-ideals with
regard to the operation

.
a.b=-a—-b+a+b, a,bed.

4. Convex 1-subgroups in a lattice-ordered group (G, +, V, A) are I-ideals and
are not P-ideals with regard to the operation

a.b=|al|A|b|, abeG.

5. Polars in a lattice-ordered group are I-ideals and are not P-ideals with regard
to the same operation as in the example 4.
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6. The following proposition is proved in the paper [3]: Let G be a lattice-ordered
group, A, be a convex 1-subgroup in G generated by a set A & G. Then /:exp G —
— exp G is an ideal operator on G with regard to the operationa.b = |a|A|b],
for a, b e G. Further, as far as B, is an ideal in G with regard to the operation .,
that is a subgroup in G, then B, is a convex 1-subgroup in G.

Proposition 2.5. Let (G, +, Vv, A) be a lattice-ordered group and . be an operation
on G defined in the following way:

a.b=|a|A|b], fora,beG.

Then it holds: A closure operator s : exp G — exp G is an ideal operator with regard
to the operation . iff the inclusion A,2 A {geG:0 < g S |al, for some ae A}
holds, for every A < G.

Proof. =>:Ifaed,geG,0<g<|al,theng=|g|Alal=g.aeG. A, &
€ A,.

<=: We prove the conditions III. and IV. from definition of an ideal operator:
Nl.IfgeG,acAd,,then0 < g.a=|g|A|a| S |a]| and G. 4, s A,. Similarly
A,.G < A, .
IV.If xe A. B,, then x = |a| A|c|, where ae A, ce B,. Further, c e B or there
existsanelementb e Bsuchthat0 < |c| £ | b|. It meansthat0 S x S |a|A|b|=
= q. b, for a suitable element b€ B, i.e., xe€ (4. B),. Similarly 4,. B < (4. B),.

Proposition 2.6. Let (S, Q) be a closure space, 0 € S. Then (S, ) is an ideal space
with regard to the operation . defined in the following way:

a.b=0, foreverya,beS.
Further it holds:

a) Ideals from Q are L-ideals iff A = S, for every A < S.
b) Ideals from Q are P-ideals iff 0 = {0}.
¢) Ideals from Q are IP-ideals iff S = {0}.

Proposition 2.7. If S is a non-empty set and A = S, for every A < S, then ~ is an
ideal operator and ideals belonging to that operator are I-ideals with regard to each
operation on S. Those ideals are P-ideals with regard to an operation . iff S = S. S.

Remark. If (S, .) is a commutative semigroup, then a mapping m . exp S — ¢xp S
such that A, = S.A U A, for every A < S, is the smallest ideal operator on S (i.e.,
Jor every ideal operator ~ on S it is A,, < A, for every A < S). Ideals belonging to m
are P-ideals and S . A = S . A, for every A < S.

Further, ideals belonging to m are I-ideals iff for every s€ S it holds s = s.s or
there exists | = S such that s = 1.5.s. ,

These facts follows from [4], Proposition 4.5 and definition of I-ideals and P-ideals.
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Proposition 2.8. Let (S, 2,.) be a closure space of finite character formed by
L-ideals. Then it holds:

1. Operation . is unique iff for every a,be S it is:
dagcb=>a.b=a, b.a=a.
2. Operation . is commutative and unique iff for every a,be S it is:
a=b<wa=0h.

Proof. 1. =: If operations . and % on S fulfil suppositions, thena.b=anb =
=agxbanda.b= (@.b).(axb)=axb,forabes.

=>: Ifelements a, b € Sexist suchthata < b,a.b # aor b . a # a, then we define
a binary operation % on S in the following way: As farasa< b and a. b # a or
b.a # a we define axb = a or bx*a = a, respectively, otherwise a.b = a* b,
for a,be S. To get a contradiction it is sufficient to prove t that (S, Q, *) is an ideal
space fc formed by I-ideals: It is anonc b = a*xb=a. a.b=anbandach=
=>axb=a=anb=a.b Thatfactand Proposition 1.1 (2. <+ 5.) 1mplya*b =

=a.b=anb2axb2axbh. According to Corollary 1.3 we have to prove
6*(5uc) caxbuaxec, forevery a, b, ceS.

If xea* (b v ), then x = y* z, for suitable yed, ze b u ¢. If 7 non < z, then

x=y*xz=y.zea.bvecca.bva.candif gz then x=y*z=yean

nzcan@Guée)=a.bue)ca.bua.e=a.bua.c. Finally, we have
ax(buc)ga.bua.c and now we prove a.buva.ccaxbuaxc:ach
(the case a < ¢, similarly) =>a*bua*c=2{a*blufa*c}=a=2a.buva.c
andanong b,anonc c=>axbuvaxc2{axbju{axc}={a.b}ufa.c}=

=a.bva.c2a.ba.c

2.=>:d=b=>a=a.b=b.a=5b.

=>: If operations . and * on S fulfil suppositions, then a.b=anb=axband
a.b=axb, for every a,be S. Finally,n=ﬁn5 =bna=>b.aie,a.b=
= b.a, for every a,be S.

Corollary 2.9. Let (S, Q) be a closure space and . be the unique operation on S such
that (S, Q, .) is an ideal space formed by I-ideals. Then it holds:

1. Ideals from Q are P-ideals.
2. If . is a commutative operation, then a relation < on S defined in the following
way:
asbeach, forabes,

isa partially order on Sand a.b = a A Db, for a,be S in (S, ).
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Proof. 1. From 2.8 we have @ = a. a and ideals from Q are P-ideals — see 2.1.

2.dacada=>asa,ash bsa=agch bsca=>a=b=>a=>b (seec 2.8);
asbbsc=>achbgic=>asc ¢=azsc Further a.bea.b=anb=
=a.b<a a.b<b If ceS exists such that ¢ £ a,¢c £ b, then tna.b=
=tn@nb)=c¢=>éca.b=>c<a.b Finally, a.b=aAbin (S, ).

Proposition 2.10. I (S, 2, .) is an ideal space formed by I-ideals, then Q is a distribut-
ative lattice with regard to the set-inclusion.

Proof. From [1], Theorem litfollows A . BUC =A.BU A.C,forA,B,C <
cS. It implies AABVC)=An(BuC)=AnBuC) =An(BLC) =
=A.BuC=4.BUAd.C=AnB)UANC)=AAB)V(AACT)-secll.
Further, AV(BAC)=AUu(BnC)=AnB)uv(AnC)=AABYVAACQD).

Proposition 2.11. Let (G, +) be a group, (G, Q,.) be an ideal space such that g
is a subgroup in (G, +), for every g€ G. Then it holds: Ideals from Q are I-ideals iff
x+ (@a.b)e(x + a).(x + b), for every a,b,x€G.

Proof <: xear\5=>x+as:a, x+5<;5=>(x+a) (x+6):a b=
=a. b=>x+(a b)ea b=xea.b—a. bsa.b b—a.b bga. b»&nﬁg

Sa. b=>anb=a.b b, for every a, b€ S, i.e., ideals from 2 are I-ideals.
> x+@bex+a.b=x+@nbsx+ankx+bhHsx+dn
Nnx+b=(x+a).(x+b), see 2.4.
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