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1. INTRODUCTION 

We investigate a linear differential equation of the third order of the form 

(S) y" + p(t)f + 2 ,4(0/ + U'(t) + b(t))y . 0, 

where p(t), A(t), A'(t) + b(t) are continuous on interval of definition [a, oo). Some 
new results for this equation in the case that A(t) ^ 0 were obtained by REGENDA [3] 
and §OLT£S [6]. 

A new canonical form was derived by F. NEUMAN [1], [2] for linear differential 
equations of the /i-th order of the form 

(T) y » + ax(t)/
n^ + ... + an(t)y « 0, 

a%e C°(I) for i as l, 2 , . . . , « ; / is an open interval (bounded or unbounded). Here 
C"(I) denotes for n ^ 0 the class of all continuous functions on /having here continu­
ous derivative up and including the /*-th order. This canonical form is global, i.e. 
each linear differential equation of the n-th order can be transformed into the form 
on the whole interval of definition, on the contrary to local canonical forms due to 
Laguerre—Forsyth characterized by ax s 0 and a2 -s 0. 

This general canonical form depends on an interval of definition and n — 2 
positive functions af e Cn~((J), i = 1,2,..., n — 1. 

For n == 3 the canonical form (see [1]) is 

(U) um - a'(x)l*(x) u" + (1 + *\x)) u' - a'(x)l<x(x) u - 03 

OL e Cl(J) and <x(x) > 0 for all x € / . 
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In this paper oscillation properties and boundedness of solutions of the linear 
differential equation of the form (S) or (U) are studied as a continuation of [7]. 

We use the same methods as that by SVEC, SINGH [4], [5], §OLT£S [6] and 
REGENDA [3]. 

2. BASIC RELATIONS 

It can be verified through differentiation that for (S) on / -= [a, oo) the following 
t 

identity is satisfied. If we denote L(t, a) = exp {j>(s)ds} and F(y(t)) = y'2(t) -

~2y(t)y*(t)~2A(t)y2(t)then 

(F) F(y) L(U a) » F(y(a)) + } (py'2 + 2(b - Ap) y2) L(s, a) ds. 
a 

In the proofs of some theorems in the papers [3], [5], [6], [7] there is used the 
procedure given in the form of the following 

Lemma 1. Let Wj(f) e Cr[a, oo) be functions, cin constants, i = 1, 2,. . . , s. Let the 
sequence {yn} be defined by the relations 

s s 

y» = £cinWi, £ 4 = l. 
1=1 i = l 

Then there exists a subsequence {/iy} such that ciltJ -» ct and {yHj} converges on every 
finite subinterval of [a, oo) uniformly to the function 

У = £ CtЩ, £ e4 = 1, 
І--1 j s l 

as ttj -* oo such that 

yW = Tctu\z\ z = 0,1, 2, ...,m^r. 
i-=l 

In this paper we use the following results given in [3] and [$]. 

Lemma 2. ([5]) Let a function y = y(t) be a solution of the equation yin) + Pty ("~ l ) + 
+ ••• + Pny = />o with bounded continuous coefficients Pi£t), k ** 0, 1,..., n, on 
[a, oo). If the solution y is bounded on [a, op), then the derivatives yu\t), $ ~ 1, 2, . . . , n 
of the solution y are bounded on [a, oo). 

Lemma 3. ([5]) If a function y has a finite limit as t —> oo andyt»)(t) is bounded for 
all t ^ t0, then yih)(t) -> 0 as t -*• oo for 0 < k < n. 

00 

Lemma 4. ([5]) Letf(t) e C1^, oo). If$f2(t) dt < oo andf is bounded on [a, oo), 
a 

then / ( / ) - • 0 as t -* oo. 
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Lemma 5- ([3]) If p(t) ^ 0 and 6(0 - MO fit) ^ 0 being not identically zero 
in any interval, and (S) has one oscillatory solution, then a necessary and sufficient 
condition for a solution y ^kOtobe nonoscillatory is that F(y(t)) < Ofor all t e [a, oo). 

Lemma 6. ([3]) If p(t) ^ 0 and b(t) - A(t)p(t) ;> 0 being not identically zero 
in any interval, then (S) Aas a solution for which F(y(t)) is always negative. Consequently 
y(t) is nonoscillatory. 

Lemma 7. ([7]) Let A(t) £ 0, p(t) ;g 0, A'(t) + b(t) £ 0 not identically zero on 
any subinterval of [a, oo) and y(t) =£ 0 be nonoscillatory solution of(S) satisfying the 
inequality F(y(t)) > 0 for all t £ a. Then c 6 [a, oo) exists such that for all t ^ c 
there holds y(0/(0 > 0. 

3. FURTHER RELATIONS 

Theorem 1. Let A(t) 2* 0, p(t) <; 0 and b(t) - A(t)p(t) SO be not identically zero 
on any subinterval of [a, oo). Then the equation (S) has two linearly independent non~ 
trivial solutions v(t), w(t) with the property that F(y(t)), F(w(t)) are positive for all 
t^a. 

Proof: Let the solutions yi,y2»y3 of the equation (S) be determined by the 
initial conditions 

1,2,3, 
J = 0,1, 2. 

«v . X 1° '*I' + - I » 

Let n > a be positive integers, bln, b3n and cln, c3n constants such that the solutions vn 

and wn of the equatioft (S) defined by 

vn(0 = 6myi(0 + bZny$(t), b\n + b\n - 1, 

w«(0 = c2lly2(0 + c3nj3(0» <&, + 4 , =-= 1, 

satisfy vn(n) = H > » = 0. Then F(vn(n)) £ 0, F(wl>(n)) £ 0 and since F(y(0)L(t9 a) 
is a decreasing function, there holds 

(1) F(vn(t)) > 0, F(wn(t)) > 0 on [a, n) for £(*, a) > 0. 

By Lemma 1 the sequence {nk} exists such that {vHk(t)} converges for nk -> oo on 
every Unite subinterval from [a, oo) uniformly to a function v(t) and there holds 

*>(s)(0 = M f ) ( 0 + 63yf(0, J « 0,1, 2 and 6} + 6 | - 1. 

From (1) it follows that F(t?(t)) ^ 0 on [a, oo). As F(y(t))L(t,s) is a decreasing 
function, there must be F(v(t)) > 0 on [a, oo). Otherwise F(v) obtains negative 
values which is a contradiction. We can prove similarly that F(w(t)) > 0 and c\ + c\ «• 
= 1 an [a, oo). Let the solutions v(t), w(t) be dependent. As b\ -¥ b\ «- cf -f c§ « 1 

169 



is satisfied, there holds v(t) = Ky3(t) for some K # 0, Then F(v(a)) = F(ys(a)) = 0 
by the definition of y3, which is a contradiction to F(v(t)) > 0 on [a, oo). We have 
proved that v(t), w(t) are linearly independent solutions. This completes the proof. 

Lemma 8. Let A(t) ;> 0, p(t) <; 0, A'(t) + b(t) <; 0 no/ identically zero on any 
subintervdl of [a, oo) and y(t) be a nontrivial solution of (S) satisfying the inequality 

00 

F(y(t)) > Ofor all t^ a. If $ A(t) dt = oo, then y(t) is oscillatory. 
a 

Proof: For y(t) •£ 0 nonoscillatory solution of the equation (S) there exists 
ce [a, oo) such that for all / ^ c there holds y(t)y'(t) > 0 by Lemma 7. If the in­
equality F(y(t)) > 0 on [c, oo) is satisfied then F(y) = y'2 - 2yy" - 2Ay2 > 0 i 
and only if (y'(t)jy(t)y < -A(t) on this interval. By integration of the last inequality 
from c to t we obtain 

t 

/ ( 0 M 0 < y'(c)ly(c) - J A(s) ds -* - oo as t -> oo, 
a 

which is a contradiction to >>(*) y'(f) > 0 on [c, oo) and y(t) cannot be nonoscillatory. 

Theorem 2. Let A(t) £ 0, p(t) S 0 a/id A'(t) + 6(f) g 0 and b(t) - -4(f)/>(0 £ 0, 
00 

being not identically zero on any subinterval of [a, oo). If J A(t) dt = oo f/re/5 fAe 
a 

equation (S) Aas fwo linearly independent oscillatory solutions. 
Proof: Under our suppositions the equation (S) has two nontrivial linearly 

independent solutions v(t), w(t) with the property F(v(t)) > 0 and F(w(t)) > 0 for 
all f £ a by Theorem 1. Solutions v(t), w(t) are oscillatory by Lemma 8. 

Lemma 9. Let A(t) £ 0, p(t) £ 0 and A'(t) + b(t) £ 0 and b(t) - A(t)p(t) £ 0, 
00 

being not identically zero on any subinterval of [a, oo). If J A(t) dt = oo then a non-
a 

trivial solution of the equation (S) is nonoscillatory if and only if ce [a, oo) exists 
such that F(y(c)) £ 0. 

Proof: The necessity follows from Lemma 8. Under the given suppositions the 
function F(y(t)) L(t, a) is strictly decreasing, thus F(y(t)) < 0 on [df oo), d }> c. 
Let y(t0) =- 0 for t0 e [d, oo). Then F(y(t0)) = y,2(t0) ^ 0 which is a contradiction 
and the solution y(t) must be nonoscillatory. 

Theorem 3.Letp(t) ^ 0, A(t) ^ 0, b(t) - A(t)p(t) £ m > 0 and coefficients of the 
equation (S) are bounded. If 

00 00 

J >4(f) df = oo and J p(t) dt = oo, 
a a 

then for a nontrivial nonoscillatory solution y(t) of the equation (S) there holds yik)(t) -• 0 
ast-+ oo, k » 0, 1,2, 3. 
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Proof: Let y(t) be a nontrivial nonoscillatory solution of the equation (S). We 
can suppose without loss of generality that y(t) > 0 for all t^>t0t>a. The function 
F(y(t))L(t9 a) is increasing, thus F(y(t)) < 0 on [t0, oo) or there exists tt e[*0 t oo) 
such that F(y(tt)) ^ 0 and F(y(t)) > 0 for all t = tt. 

In the first case 

0 > F(y(t))L(t> t0) = F(y(t0)) + J pyf2L{$9 t0)ds + 
-0 

-f 2 J (b - Ap)y2L(s910) ds > F(y(t0)) + 
to 

t 

+ 2m J y2(s) ds because L(t910) ;> 1. 

We have jy2(s)ds < -F(y(t0))j2m and F(y(t0)) < 0, thus jy2(t)dt < oo. We 
to '0 

assert that y'(t) is a bounded function on [a, oo). Indeed if there exists a constant 
Kt > 0 such that | / | = Kt on some interval [f2» oo), t2 = t0 = a, then from 
identity (F) we have for L(t912) = 1 

t 

F(y(t)) L(t912) > F(y(t2)) + K\ J p(s) ds ~+ oo, 
-2 

00 

as t -^ oo which is a contradiction to F(y(0) < 0 on [t0» oo). Since J j>2OOdt < oo 

and / is a bounded function, thus y(t) -• 0 as r -• oo by Lemma 4. 
00 

In the second case F(y(t)) > 0 on (tt9 oo) and J A(t)dt = oo and y(t) > 0 on 
-0 

(tt, oo). Hence y'2 - 2^* - 2Ay2 > 0 if and only if (y'/y)' < -A on [rf, oo), 
d > tt. By integration of this inequality from d to t we obtain 

/(0/XO < y\d)ly{d) - J -*(*) ds -> - oo as t -> oo. 

There exists a positive constants K2 such that / ( O < ~"^2y(0 on [d9 oo) and 
limj>(f) = fc^Oasf-*oo. If k > 0 then y' < —K2k which is a contradiction to 
j > 0 on [</, oo). We have limy(r) = 0 as t -• oo. 

The function ^"r is bounded by Lemma 2, ̂ ' -• 0 and y" -* 0 as t -» oo by Lemma 3 
and >>"" = — py" - 2 ^ ' — (A' + b) y -> 0 as t -* oo under our suppositions. The 
assertion is proved. 

Remark 1. Under the suppositions of Theorem 3 there exists a nontrivial solution 
for which F(y(t)) is always negative by Lemma 6. This solution y(t) is nonoscillatory. 
Otherwise F(y) obtains positive values which is a contradiction. 

Remark 2. In the oscillation criterion of Soltys [6] there is the supposition 
00 00 

$p(t)dt < oo, whereas we have $p(t)dt = oo. 
a a 
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4. APPLICATIONS TO THE CANONICAL FORM 

Now we consider a global canonical form (U) on J = [a, oo) 

um - a'(0/a(Ow" + (1 + a2(0)"' - a'(0/a(0" = 0, 

a e CX(J) and a(t) > 0 for all t e / . 

Remark 3. Let/(0 6 CJ(/) and 0 < k g / ' ( 0 g K be satisfied for some positive 
constants k, K If we put a(0 = exp {-AO} then the coefficients of the equation (U) 
are bounded, the function a'(0 is negative and bounded and it is evident that the 
following three conditions are equivalent 

1° - a ' ( 0 / a ( 0 = / ' ( 0 ^ f c ; 
2° A0~* oo as t-* oo; 
3° a(0 -+ 0 for t -• oo. 

For example functions / of the form 

AO = a sinm(bt + c) + nt on (0, oo), where m > 0 and n > | mab \ > 0; 
AO = logz (t + c) + kt on ( -c , oo) where k > 0; 
/ ( 0 = t(k + arctg 0 - In (1 + t2)j2 on (0, oo) where k > p/2; 
At) - t3/(l + t2) on (0, oo); 
AO = exp {-i4} on [a, oo], a be arbitrary; 
e.t.c. 

can be considered. 

Theorem 4. Let <x(t) = exp {-/(OK AO e C*(/) andO <k £f ^Kbe satisfied 
for some positive constants k9 K on J. If y(t) is a nontrivial nonoscillatory solution 
of the equation (U) then y(5)(t) ~* 0 as t -* oo, & = 0,1, 2, 3. 

Proof: According to Remark 3 we have P(0 = — a'COMO = / ' ( 0 is * a n ( i 

^4(0 = (1 + a2(0)/2 > 1/2, thus f .^(0d t=oo and J p(0 dt = oo and ft(t) -
a a 

- -4(0/>(0 = ^(0.P(0 > kl2>0 if and only if a(0 -* 0 as t -• oo. The assertion 
follows from Theorem 3. 

Theorem 5. If a'(0 ^ 0 Ae//ig not identically zero on any interval, then 
(i) a nontrivial solution of the equation (U) is nonoscillatory if and only ifc € [a, oo) 

exists such that F(y(c)) S 0; 
(ii) the equation (U) has two linearly independent oscillatory solutions. 
Proof: (i) follows from Lemma 9 and (ii) from Theorem 2. 
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