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NOTE ON THE OSCILLATION 
OF LINEAR DELAY DIFFERENTIAL EQUATIONS 

RUDOLF OLAH, Zilina 
(Received April 4,1979) 

1. INTRODUCTION 

We assume that the functions p, q satisfy the next condition: 

p, <7eCf.r0, co), (0, oo)]. 

Let G be the set to which g belongs if and only if g satisfies the conditions: 

ge C[[0, oo), [0, oo)], g(t) £ t, lim *(f) = oo. 
t-*O0 

We consider the following linear delay differential equations 

(1) «<2">(0+iK0"Cf(0) = 0, 

(2) u<2*>(tl+q(t)u(h(t))~09 

where g,heG. 
Our purpose is a comparison of the oscillatory properties of (1) with the oscillatory 

properties of (2). 
A solution w(0 of the equation (1) is called oscillatory if the set of zeros of u(f) 

is not bounded from the right. A solution u(t) of the equation (1) is called non-
oscillatory if it is eventually of constant sign. The equation (1) is called oscillatory 
if every solution of (1) is oscillatory. 

The theorems of the section 2 are an extension of some second order results in [1]. 
Our primary sources for the comparison of the oscillatory properties of (1) and (2) 
are [1] and [2]. 

2. OSCILLATORY PROPERTIES 

Theorem 1. Suppose that h(t) g g(t% q(i) g p(t) whenever t £ t0 £ 0, and (1) 
has a nonoscillatory solution. Then 

(3) v«*Kt) + q(t)v(h(t))**0 
has a nonoscillatory solution. 
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Proof. Let u(t) be a positive solution of (1). Let /_ __ f0 __ 0 be such that none 
of uf u\..., «<2»-*> has a zero on [/_, oo), and letj be the largest integer such that 
rf° > 0 on [i lf oo) if i gj. Choose t2 _> tt such that if t _> f2 then ft(f) i> *_. 

.An induction argument shows that if t _> t2 and 1 < k f_ j - 1, then 

«(0 - »(h) + i f^-S'Xh) + -L /it - srV4+1)(0-u. 
I f * » j ~ 1, we get 

(4) 1*0 _> *(*_) + jj4jjT J(' - * y * uu\s)ds. 

Ifz __ / __ f2>then 

«O )(0- I (-l)'-^--7---«0+,)(z) + 
i*0 | J 

+ p—)-i)i /(s - ° 2 "" y _ 1 *s) u ( g ( s » *• 
so 

(5) «°>(0 _ ( 2 l t _ ) _ i)i f <s " '>2""-'"1 K0«(g(5))ds. 

Using (5) in (4) we get 

«(0_»(t2)+o._1)!(2n_j._1), Ut-sy-1 (fa - v2"-'-1 *!)<&))**)& z 

- tt(/-> + ( j - l ) ! ( 2 n - j - l ) ! / / ' " s>'"1({« " s)2""'~1«(«>«(«(«)d<:)d-, 

since «(/) is increasing on [/,, oo). 
We shall prove that there is a continuous function t</) on [r0, oo) such that 

-('a) _ KO _ «(0 if <" _; /-. and v{t) is a solution of (3). We define a sequence of 
continuous functions on [/0, 00) as follows: 

f,(0 = «(0, /_ Jo, 
»«,+1(0 - «(0, /0 _ / < /2, m - 1,2,..., 

»»+i(0 -

* M('-> + 0 - l ) ! ( 2 n - j - l ) ! | ( ' " 5>'~*(J(* " -)a""i~1«(0^*(©)d©d». 

for r _ /2,m = 1,2,... 

Then we have 
, * a W " 

" «('-> + a _ i ) | ( 2 n - j - i ) ! / / ' " s>'"' ({ (* - s>2""'_1 ««> " (h ( {» <*> <** --

_ «(/), / _ 'a, 
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so 

v2(t)£vt(t)9t&t2. 
It follows by induction that: 

u(t2) £ t>M+i(0 S vm(t)> for t 2 t29 m m 1,2, ... 

We conclude that ^(f) tends to a limit function v(t) such that u(h) £ KO & **(') 
if f jj> f2 and by Lebesgue's theorem we have 

(6) ^ 4 0 -

- ^ 2 ) + 7 ^ - ^ 1 ) 1 i{t - ^ <[«- s)2"~i"1«° *( w < j ) * 
if t J> r2. Differentiation of (6) says that t<0 « a solution of (3) and clearly v(t) is 
nonoscillatory, so the proof is complete. 

Theorem 2. Suppose that h(t) £ g(t) whenever t £ t0 £ 0 and g(0 - *(') 5i 

bounded on [f0, oo). Then (1) is oscillatory if and only if 

(7) vv*\t)+p(t)v(h(t))~0 

is oscillatory. 
Proof. Let u(t) be a nonoscillatory solution of (1). Then applying the Theorem 1 

we conclude that (7) has a nonoscillatory solution v(t). 
Now let v(t) be a positive solution of (7). Let tt £ t0 ^ 0 be such that none of 

v9 v\ ..., i;(2,,""1) has a zero on [ti9 oo), and let j be the largest integer such that 
t?(l) > 0 on [tl9 oo) if ' gj. Let g(') - h(t) £ # for * £ t0. Choose f2 2 't $u®h 
that if f J> r2 then g(f) - AT ^ tj. We put y(t) -» v(t - K). Then 

Xg(0) - t<g(0 ~K)£ v(h(t))>' fc '2. 

With regard to (5) and (4) for t ^ t2 we have 

«ffr + jg)as (2,,-j-1)! Jfr - * - &m'~i*wm** 

v(t) £ ^2) + a ^ 1 ) r / ( ' - O'""1 ^(s)df & 

2 K'2) + 0> J t ) , JC - s^"1 0a)(s + -K)d5, 

since »(^(0 is decreasing on [tt, 00). 
Then 

KO .£ K'2) + 
+ a - Dt(2n ̂  j - i)i l ( t ^ ^ ^ ( J ^ - ^ ~ ^ - ^ - Kg)K*(o)dO^ 
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y(t) = v(t - K) = v(t2) + 

1 To- - - - - ) '"^ I(«-»--Qa","1P(«)Kí(«))«)d*-0 - D ! ( 2 n - j - l ) ! / / ' ' v.+* 
Now we define a sequence of continuous functions on [70, oo) as follows: 

«i(0 = XO, * = 'o, 
w-,+ i(0 = XO, 'o = < < h + *, w - 1.2,..., 

«»+l(0 = «<<2) + 

+ 0 - J ) ! ( 2 n - j - l ) ! T 0 " K ~ S)S~l Q? " S ~ K)lnl~l ^ ""(g(0)d5)dS' 
for* = t2 + /£, m = 1,2,... 

Then there is a continuous function u(t) on [70, oo) such that v(t2) _ MO) <. XO 
if / J> t2 + K and such that 

«(0 = v(t2) + 

if t ^ l2 + K. Differentiation of the last equation says that u(t) is a nonoscillatory 
solution of (1), so the proof is complete. 

Corollary. Suppose that t - g(t) is bounded on [f0, oo). Then (1) is oscillatory 
if and only if 

viU)(t)+p(t)v(t) = Q 
is oscillatory. 
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