Archivum Mathematicum

Rudolf Oláh

Note on the oscillation of linear delay differential equations

Archivum Mathematicum, Vol. 16 (1980), No. 4, 213--216

Persistent URL: http: //dml.cz/dmlcz/107076

Terms of use:

© Masaryk University, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

NOTE ON THE OSCILLATION
 OF LINEAR DELAY DIFFERENTIAL EQUATIONS

RUDOLF OLAH, Žilina

(Received April 4, 1979)

1. INTRODUCTION

We assume that the functions p, q satisfy the next condition:

$$
p, q \in C[[0, \infty),(0, \infty)]
$$

Let \boldsymbol{G} be the set to which g belongs if and only if g satisfies the conditions:

$$
g \in C[[0, \infty),[0, \infty)], g(t) \leqq t, \lim _{t \rightarrow \infty} g(t)=\infty
$$

We consider the following linear delay differential equations
(2)

$$
\begin{align*}
& u^{(2 n)}(t)+p(t) u(g(t))=0 \tag{1}\\
& u^{(2 n)}(t)+q(t) u(h(t))=0,
\end{align*}
$$

where $g, \boldsymbol{h} \in \boldsymbol{G}$.
Our purpose is a comparison of the oscillatory properties of (1) with the oscillatory properties of (2).

A solution $u(t)$ of the equation (1) is called oscillatory if the set of zeros of $u(t)$ is not bounded from the right. A solution $u(t)$ of the equation (1) is called nonoscillatory if it is eventually of constant sign. The equation (1) is called oscillatory if every solution of (1) is oscillatory.

The theorems of the section 2 are an extension of some second order results in [1]. Our primary sources for the comparison of the oscillatory properties of (1) and (2) are [1] and [2].

2. OSCILLATORY PROPERTIES

Theorem 1. Suppose that $h(t) \leqq g(t), q(t) \leqq p(t)$ whenever $t \geqq t_{0} \geqq 0$, and (1) has a nonoscillatory solution. Then
(3)

$$
v^{(2 n)}(t)+q(t) v(h(t))=0
$$

has a nonoscillatory solution.

Proof. Let $u(t)$ be a positive solution of (1). Let $t_{1} \geqq t_{0} \geqq 0$ be such that none of $u, u^{\prime}, \ldots, u^{(2 n-1)}$ has a zero on $\left[t_{1}, \infty\right)$, and let j be the largest integer such that $u^{(i)}>0$ on $\left[t_{1}, \infty\right)$ if $i \leqq j$. Choose $t_{2} \geqq t_{1}$ such that if $t \geqq t_{2}$ then $h(t) \geqq t_{1}$.

An induction argument shows that if $t \geqq t_{2}$ and $1 \leqq k \leqq j-1$, then

$$
u(t)=u\left(t_{2}\right)+\sum_{i=1}^{k} \frac{\left(t-t_{2}\right)^{i}}{i!} u^{(i)}\left(t_{2}\right)+\frac{1}{k!} \int_{i_{2}}^{t}(t-s)^{k} u^{(k+1)}(s) \mathrm{d} s
$$

If $k=j-1$, we get

$$
\begin{equation*}
u(t) \geqq u\left(t_{2}\right)+\frac{1}{(j-1)!} \int_{i_{2}}^{!}(t-s)^{j-1} u^{(j)}(s) \mathrm{d} s \tag{4}
\end{equation*}
$$

If $z \geqq t \geqq t_{2}$, then

$$
\begin{gathered}
u^{(j)}(t)=\sum_{i=0}^{2 n-j-1}(-1)^{i} \frac{(z-t)^{i}}{i!} u^{(j+i)}(z)+ \\
+\frac{1}{(2 n-j-1)!} \int_{i}^{z}(s-t)^{2 n-j-1} p(s) u(g(s)) \mathrm{d} s
\end{gathered}
$$

80

$$
\begin{equation*}
u^{(j)}(t) \geqq \frac{1}{(2 n-j-1)!} \int_{t}^{\infty}(s-t)^{2 n-j-1} p(s) u(g(s)) \mathrm{d} s \tag{5}
\end{equation*}
$$

Using (5) in (4) we get

$$
\begin{aligned}
u(t) \geqq u\left(t_{2}\right)+\frac{1}{(j-1)!(2 n-j-1)!} \int_{t_{2}}^{t}(t-s)^{j-1}\left(\int_{s}^{\infty}(\xi-s)^{2 n-j-1} p(\xi) u(g(\xi)) \mathrm{d} \xi\right) \mathrm{d} s \geqq \\
\geqq u\left(t_{2}\right)+\frac{1}{(j-1)!(2 n-j-1)!} \int_{t_{2}}^{t}(t-s)^{j-1}\left(\int_{s}^{\infty}(\xi-s)^{2 n-j-1} q(\xi) u(h(\xi)) \mathrm{d} \xi\right) \mathrm{d} s
\end{aligned}
$$

since $u(t)$ is increasing on $\left[t_{1}, \infty\right)$.
We shall prove that there is a continuous function $v(t)$ on $\left[t_{0}, \infty\right)$ such that $u\left(t_{2}\right) \leqq v(t) \leqq u(t)$ if $t \geqq t_{2}$ and $v(t)$ is a solution of (3). We define a sequence of continuous functions on $\left[t_{0}, \infty\right)$ as follows:

$$
\begin{gathered}
v_{1}(t)=u(t), t \geqq t_{0}, \\
v_{m+1}(t)=u(t), t_{0} \leqq t<t_{2}, \quad m=1,2, \ldots, \\
v_{m+1}(t)= \\
=u\left(t_{2}\right)+\frac{1}{(j-1)!(2 n-j-1)!} \int_{t_{2}}^{t}(t-s)^{j-1}\left(\int_{s}^{\infty}(\xi-s)^{2 n-j-1} q(\xi) v_{m}(h(\xi)) \mathrm{d} \xi\right) \mathrm{d} s,
\end{gathered}
$$

for $t \geqq t_{2}, m=1,2, \ldots$
Then we have

$$
\begin{aligned}
& v_{2}(t)= \\
& =u\left(t_{2}\right)+\frac{1}{(j-1)!(2 n-j-1)!} \int_{t_{2}}^{t}(t-s)^{j-1}\left(\int_{\varepsilon}^{\infty}(\xi-s)^{2 n-j-1} q(\xi) u(h(\xi)) \mathrm{d} \xi\right) \mathrm{d} s \leqq \\
& \leqq u(t), t \geqq t_{2},
\end{aligned}
$$

so

$$
v_{2}(t) \leqq v_{1}(t), t \geqq t_{2}
$$

It follows by induction that:

$$
u\left(t_{2}\right) \leqq v_{m+1}(t) \leqq v_{m}(t), \quad \text { for } t \geqq t_{2}, m=1,2, \ldots
$$

We conclude that $v_{m}(t)$ tends to a limit function $v(t)$ such that $u\left(t_{2}\right) \leqq v(t) \leqq u(t)$ if $t \geqq t_{2}$ and by Lebesgue's theorem we have

$$
\begin{equation*}
=u\left(t_{2}\right)+\frac{v(t)=}{(j-1)!(2 n-j-1)!} \int_{i_{2}}^{t}(t-s)^{j-1}\left(\int_{s}^{\infty}(\xi-s)^{2 n-j-1} q(\xi) v(h(\xi)) \mathrm{d} \xi\right) d s \tag{6}
\end{equation*}
$$

if $t \geqq t_{2}$. Differentiation of (6) says that $v(t)$ is a solution of (3) and clearly $v(t)$ is nonoscillatory, so the proof is complete.

Theorem 2. Suppose that $h(t) \leqq g(t)$ whenever $t \geqq t_{0} \geqq 0$ and $g(t)-h(t)$ is bounded on $\left[t_{0}, \infty\right)$. Then (1) is oscillatory if and only if

$$
\begin{equation*}
v^{(2 n)}(t)+p(t) v(h(t))=0 \tag{7}
\end{equation*}
$$

is oscillatory.
Proof. Let $u(t)$ be a nonoscillatory solution of (1). Then applying the Theorem 1 we conclude that (7) has a nonoscillatory solution $v(t)$.

Now let $v(t)$ be a positive solution of (7). Let $t_{1} \geqq t_{0} \geqq 0$ be such that none of $v, v^{\prime}, \ldots, v^{(2 n-1)}$ has a zero on $\left[t_{1}, \infty\right)$, and let j be the largest integer such that $v^{(i)}>0$ on $\left[t_{1}, \infty\right)$ if $i \leqq j$. Let $g(t)-h(t) \leqq K$ for $t \geqq t_{0}$. Choose $t_{2} \geqq t_{1}$ such that if $t \geqq t_{2}$ then $g(t)-K \geqq t_{1}$. We put $y(t)=v(t-K)$. Then

$$
y(g(t))=v(g(t)-K) \leqq v(h(t)), t \geqq t_{2}
$$

With regard to (5) and (4) for $t \geqq t_{2}$ we have

$$
\begin{aligned}
v^{(j)}(t+K) & \geqq \frac{1}{(2 n-j-1)!} \int_{t+K}^{\infty}(s-t-K)^{2 n-j-1} p(s) v(h(s)) \mathrm{d} s, \\
v(t) & \geqq v\left(t_{2}\right)+\frac{1}{(j-1)!} \int_{t_{2}}^{t}(t-s)^{j-1} v^{(j)}(s) \mathrm{d} s \geqq \\
& \geqq v\left(t_{2}\right)+\frac{1}{(j-1)!} \int_{t_{2}}^{t}(t-s)^{j-1} v^{(j)}(s+K) \mathrm{d} s,
\end{aligned}
$$

since $v^{(f)}(t)$ is decreasing on $\left[t_{1}, \infty\right)$.
Then

$$
+\frac{1}{(j-1)!(2 n-j-1)!} \int_{i_{2}}^{t}(t-s)^{j-1}\left(\int_{s+K}^{\infty}(\xi-s-K)^{2 n-j-1} p(\xi) v(h(\xi)) \mathrm{d} \xi\right) \mathrm{d} s,
$$

$$
\begin{gathered}
y(t)=v(t-K) \geqq v\left(t_{2}\right)+ \\
+\frac{1}{(j-1)!(2 n-j-1)!} \int_{t_{2}}^{t-K}(t-K-s)^{j-1}\left(\int_{s+K}^{\infty}(\xi-s-K)^{2 n-j-1} p(\xi) y(g(\xi)) \mathrm{d} \xi\right) \mathrm{d} s
\end{gathered}
$$

Now we define a sequence of continuous functions on $\left[t_{0}, \infty\right)$ as follows:

$$
\begin{gathered}
u_{1}(t)=y(t), \quad t \geqq t_{0}, \\
u_{m+1}(t)=y(t), t_{0} \leqq t<t_{2}+K, \quad m=1,2, \ldots, \\
u_{m+1}(t)=v\left(t_{2}\right)+ \\
+\frac{1}{(j-j)!(2 n-j-1)!} \int_{i_{2}}^{t-K}(t-K-s)^{j-1}\left(\int_{s+K}^{\infty}(\xi-s-K)^{2 n-j-1} p(\xi) u_{m}(g(\xi)) \mathrm{d} \xi\right) \mathrm{d} s
\end{gathered}
$$

for $t \geqq t_{2}+K, m=1,2, \ldots$
Then there is a continuous function $u(t)$ on $\left[t_{0}, \infty\right)$ such that $v\left(t_{2}\right) \leqq u(t) \leqq y(t)$ if $t \geqq \boldsymbol{t}_{\mathbf{2}}+K$ and such that

$$
\begin{gathered}
u(t)=v\left(t_{2}\right)+ \\
+\frac{1}{(j-1)!(2 n-J-1)!} \int_{t_{2}}^{t-K}(t-K-s)^{j-1}\left(\int_{s+K}^{\infty}(\xi-s-K)^{2 n-j-1} p(\xi) u(g(\xi)) \mathrm{d} \xi\right) \mathrm{d} s
\end{gathered}
$$

if $t \geqq t_{2}+K$. Differentiation of the last equation says that $u(t)$ is a nonoscillatory solution of (1), so the proof is complete.

Corollary. Suppose that $t-g(t)$ is bounded on $\left[t_{0}, \infty\right)$. Then (1) is oscillatory if and only if

$$
v^{(2 n)}(t)+p(t) v(t)=0
$$

is oscillatory.

REFERENCES

[1] Brands, J. J. A. M.: Oscillation Theorems for Second-Order Functional Differential Equations, J. Math. Appl. 63 (1978), 54-64.
[2] Lovelady, D. L.: Oscillation and a class of linear delay differential equations, Trans. Amer. Math. Soc. 226 (1977), 345-364.
[3] Lovelady, D. L.: An asymptotic analysis of an odd order linear differential equation, Pacific J. Math. 57 (1975), 475-480.

R. Oláh

01088 Žilina, Marxa-Engelsa 25
Crechaslovakia

