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e-IDEALS IN THE LATTICE OF SEMI <>-IDEALS 

Jaromir Duda, Brno 

(Received December 22, 1979) 

0. INTRODUCTION 

In the present paper we continue the investigation (see [2], [3], [6] and [7]) of 
ideals of binary relational systems, g-ideals in brief. 

The aim of this paper is to apply some methods and theorems of the general 
lattice theory to the poset of all ideals of a given binary relational system, ordered 
by set inclusion. However, there is an obstruction that the poset of all g-ideals is not 
a lattice in general. Therefore, the concept of g-ideal is first weakened to the concept 
of semi g-ideal. Let us note that this concept is well-known and frequently used 
under the notation hereditary subset or semiideal, whenever Q is a partial ordering. 

The poset of semi o-ideals is always a lattice, moreover, it is an algebraic lattice, 
and so ^-ideals are considered in the lattice of all semi g-ideals as elements of special 
kind. Now it is possible to apply methods of the general lattice theory to deduce some 
properties of ^-ideals with respect to the lattice of semi g-ideals. 

In order not to have to interrupt the discussion later, we recall in section 1 some 
definitions and basic properties of g-ideals that will be needed in this paper. 

In section 2 we characterize join irreducible, complete-join irreducible and directly 
irreducible o-ideals in the lattice of semi g-ideals. 

In section 3 we use the results of section 2 to derive some properties of ^-ideals 
satisfying the Ascending Chain Condition. Also some connections between the ACC 
and the join irreducibility of g-ideals are investigated. 

The last section deals with the binary relational systems isomorphic to their g-ideal 
posets and to their semi g-ideal lattices. In [5], D. Higgs has solved the problem 
of G. Gratzer. As an application of theorems of section 4, we give a slight extension 
of D. Higgs' Theorem. 

1. PRELIMINARIES 

By a binary relational system is meant a pair <_4, #>, where Q is a binary relation 
on a nonempty set A. Let a, b e A, denote by UQ(a9 b) the set {xeA;aQX and b Q X). 
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The following two properties of a subset XofA will be employed frequently in this 
paper: 

(lt) For every element a e A and every element x e X, a Q X implies a e X; 
(I2) For every elements x9 y e X the set UQ(x, y) n X is nonvoid. 
Let us recall that 
(i) A nonvoid subset X of A satisfying (Ii) and (I2) is called Q-ideal of <y4, e>. 

(ii) An arbitrary subset X of A satisfying (lx) is called semi Q-ideal of (A, Q). 
(iii) An arbitrary subset X of A satisfying (I2) is called Qu-directed subset of <,4, g>. 
Clearly, the poset of all semi 0-ideals of <A, o>, denoted by <S(A1), £>, is 

a complete sublattice of the complete lattice of all subsets of A, ordered by set-
inclusion. Consequently, <®(A0, £> is an algebraic lattice and the compact elements 
of <5(A) are exactly the finitely generated semi g-ideals. In general, the semi g-ideal 
generated by a subset M of A is denoted by S(M), the notation S({al9 ..., an}) is 
replaced by S(at,..., an). 

As we noted above, the poset of all g-ideals, denoted by (f(A), £ >, is not a lattice, 
nevertheless, for a subset M of A, I(M) denotes the smallest g-ideal containing the 
set M9 whenever it exists. 

Without risk of confusion we will use I(ax, ..., an) to denote I({al9 ..., a„}). The 
g-ideal 1(a) is called principal Q-ideal, the poset of all principal g-ideals of <.A, Q} is 
denoted by (S0(A), s >. 

For arbitrary binary relational systems <A, Q} and (B, cx>, a bijective mapping 
h : A -* B is called an isomorphism of <A, Q} onto <!?, a} whenever aQ b if and only, 
if h(a)ah(b) for every a, be A. Isomorphic binary relational systems (A,Q} and 
<5, a} will be denoted by <A, e> £ <£, a>. 

2. JOIN IRREDUCIBLE, COMPLETE-JOIN IRREDUCIBLE 
AND DIRECTLY IRREDUCIBLE g-IDEALS 

For the sake of completeness we recall some definitions from the lattice theory, 
see, e.g., [1]. 

For any complete lattice L the subset A of L is called independent if a A V (A \ {a}) = 
« Oj, holds for every element a e A. 

An element x e L is called complete-join irreducible, join irreducible, and directly 
irreducible if for every nonvoid, every nonvoid finite, and every independent subset X 
of A, respectively, x = VX implies x e X. 

At first we prove the following lemma 

Lemma I. Let X be an arbitrary Qu-directed subset of a binary relational system 
<-4» (?>. Then for any finite set of semi Q-ideals Sx, ..., Sn9 X £ (J 5, implies X £ S, 

for some i *= 1, ...,n. 
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Proof. The proof is trivial if n » 1 or X «• 0. So, hereafter, we will assume that 
n ^ 2 and X # 0. 

Now we prove Lemma 1 by induction on n. First of all, let n =- 2. Suppose JT $ St 
and X_£ S2. This means that X\Si # 0 and X\S,

2 # 0 hold. Consequently, 
there are elements xt eX\ St and x2e X\S2. By hypothesis, X is a ^-directed 
subset of A, i.e. the set UQ(xx, x2) n Xis nonvoid. Choose element x e UQ(xt, x2) n X. 
Then we get xe Sk for some k = 1, 2 since x e l s S t u S2. On the other hand, 
x e Ue(xt, x2) implies xt Q X and x2 Q X. Thus we have xt e Sk and x2eSk, a contra
diction, i.e. Lemma 1 holds for n = 2. 

Now, let us assume that Lemma 1 is also true for n — 1 and consider X s \J St. 

Clearly, (J St. == [J S(u Sn and it can be easily seen that the set \J S( is a semi 

g-ideal. Hence the conclusion is straigtforward. 
Now we are ready to prove the following 

Theorem 1. Let X be an arbitrary Qu-directed subset of {A, Q}, and let Sf be a set 
of semi Q-ideals of {A, Q}. If there is an element a of X such that the set Sfa == {5 e Sf; 
aeS} is finite, then X s \J{S; S e Sf} implies X s S for some SeSfa. 

Proof. For any element x e Xthe set UQ(x, a) n X is nonvoid since Xis ^-directed. 
Choose t e UQ(x, a) n X, i.e. x Q t and a Q t hold. Clearly, t is an element of some semi 
o-ideal SeSf. By the definition of semi #-ideaI, XQ t and aQ t imply x,ae S. This 
means that SeSfa and thus xe {J{SeS?a} for every xeX. Applying Lemma 1 
to X s \J{S; S e Sfa}, we obtain X s S for some semi g«ideal SeSfa. 

The following corollary characterizes the join irreducible ^-ideals and directly 
irreducible g-ideals. The second statement is an unpublished result of I. Chajda* 

Corollary 1. Let {A, Q} be an arbitrary binary relational system. Then 
(i) Every Q-ideal is join irreducible element of the lattice B(A); 
(ii) Every Q-ideal is directly irreducible element of the lattice <S(A). 

Proof. Let / be an arbitrary g-ideal of a binary relational system {A, g>. 
(i) Assume that / = \J S% for semi g-ideals Sl9..., Sn. In virtue of Lemma 1, 

i£n 

I £ (J S't implies / £• St for some i e {1, . . . , n}. The converse inclusion is trivial, 

t h u s / = Sf. 
(ii) Assume that / = \J{S;Se!f} for independent subset Sf of the complete 

lattice <5(A). It is not hard to verify that Sf is independent subset of B(A) if and only 
if Sf consists of pairwise disjoint semi g-ideals. This means that the independent 
subset Sf satisfies the hypothesis in Theorem 1, and so we have / £ S for some semi 
g-ideal S e Sf. Clearly / -= S. 

Remark. Applying Corollary 1 to the poset (J(A)9 £>, we obtain the following 
interesting properties of g-ideals: 
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No g-ideal of an arbitrary binary relational system </4, Q} can be expressed as 
a union of a finite set of g-ideals. 

No Q-idea\ of an arbitrary binary relational system </4, g> can be expressed as an 
arbitrary union of pairwise disjoint g-ideals. 

Finally, the complete-join irreducible ^-ideals can be characterized as follows 

Theorem 2. For any Q-ideal I of a binary relational system <A, g> the following 
three conditions are equivalent; 

(1) / is complete-join irreducible element of the lattice &(A); 
(2) I = S(a) for some element ael; 
(3) / is compact element of the lattice S(A). 

Proof. (1) implies (2): It can be easily seen that / = U{-S(a); a el} holds for every 
g-ideal /of a binary relational system (A9 #>. Thus, by hypothesis, / = \J{S(a); ael} 
implies / = S(a) for some element ael. 

Obviously (2) implies (3). 
(3) implies (1): Suppose that / = (J{5; S e Sf} for a set Sf of semi g-ideals of 

(A, #>. By hypothesis, / = (J S{ holds for some semi ^-ideals Sl9..., Sne Sf. We 
i$n 

conclude leSf. 
From Theorem 2 we get the following necessary condition for complete-join 

irreducible g-ideals. 

Corollary 2. Every complete-join irreducible Q-ideal is principal. 

Proof. Let / be a complete-join irreducible g-ideal. By Theorem 2 (2), / = S(a) 
holds for some element ael. Further, every Q-ideal is clearly semi g-ideal and so 
we have S(d) £ / for every g-ideal / containing the element a. Moreover, S(a) is 
a g-ideal and thus S(a) is the smallest g-ideal containing the element a% i.e. / = 
- S(a) = 1(a). 

Remark. Further characterizations of complete-join irreducible g-ideals may be 
found in [3]. 

To end with this section, we would like to give some examples of complete-join 
irreducible g-ideals. 

Example. If Q is an equivalence relation (lattice ordering) on A then the equivalence 
classes (lattice ideals, respectively) are exactly the g-ideals of (A, (>>. In these two 
cases it is a simple matter to check that: 

Every equivalence class [a] Q, a e A9 is complete-join irreducible Q-ideal in the lattice 
of all semi Q-ideals. 

A lattice ideal I is complete-join irreducible if and only if I is principal ideal. 



3. ^-IDEALS SATISFYING THE ASCENDING 
CHAIN CONDITION 

In this section we apply the theorems of section 2 to the pdsets of g-ideals satisfying 
the ACC. We begin with 

Theorem 3. Let <A(, g> be a binary relational system. Then the following conditions 
(1) and (2) are equivalent, (2) implies (3), and (3) implies (4): 

(1) Every semi Q-ideal of <A, Q} is finitely generated; 
(2) The lattice (5(A) satisfies the ACC; 
(3) Every Q-ideal is complete-join irreducible element of the lattice S(A); 
(4) The poset {J(A), £> satisfies the ACC. 
Proof. It is well-known (see, e.g., [1]), that a lattice L with zero satisfies the ACC 

if and only if L is algebraic and every element of L is compact element. Consequently, 
the lattice <5(A) satisfies the ACC if and only if every semi g-ideal of <-4, Q} is finitely 
generated, which proves the equivalence of (1) and (2). 

(2) implies (3): By hypothesis, also every g-ideal is a compact element of of the 
lattice <Z(A). Thus, in virtue of Theorem 2, every ^-ideal is complete-join irreducible 
element of B(A). 

(3) implies (4): Suppose an increasing sequence It £ /2 £ ... of ^-ideals. It can 
be easily verified, see [2], that the set union / =- \J ln is a g-ideal of <-4, <?>. However, 

n<a> 

by hypothesis, / -= \J In implies / = Ik for some k < co, whence /„ *» /„+ 1 for all 
i t < © 

n *z k proving the inclusion. 

Theorem 4. Let (A, g> be a binary relational system such that 1(a) exists for every 
element ae A. Then the following conditions are equivalent: 

(1) The poset (J(A), s > satisfies the ACC; 
(2) The poset (S0(A), £> satisfies the ACC; 
(3) J(A) = SQ(A); 
(4) (J(A), cz>*<S0(A), fi>. 

Proof. Clearly (1) implies (2). 
(2) implies (3): Suppose the poset <{/(*); x e /} , s > for an arbitrary g-ideal /. 

By hypothesis, there is a maximal element, denoted by 1(a), of this poset. Further, 
denote by / = {x e /; I(x) # 1(a)}. Clearly, / = 1(a) u \J{I(x); * € J} holds. In 
virtue of Lemma 1, we get / » 1(a) or / » (J {I(x); xeJ}. Suppose / •» \J {I(x); xeJ). 
Then a e I(x) for some x e / . This implies 1(a) S /(*). With resect to the maximality 
of 1(a), we have the converse inclusion which is a contradiction. Hence / » /(n). 

Clearly (3) implies (4) and so it remains to prove that (4) implies (1): Denote by g 
an order isomorphism of (f(A)9 c> onto <^o(*4), £> a»d consider an increastog 
sequence Ix £ /2 £ ... of g-ideals of <A(,£>* Then the principal ^ideals fCWt 



i < co, also form the increasing sequence <p(h) £ 9(h) S ••• By [2], \J /,, (J <p(It) 
i<m i«o 

are g-ideals and, moreover, we claim that (p( U h) ~ (J ^(A) holds. 
i<e.» i < o 

Firstly, h Q [j h implies (p(It) s <p( (J /*) for all i < cy, and so we have [j (p(h) c 
i<m i<m i<© 

= <?>( ( J A ) -
i<e> 

Conversely, ^(7,) c \J <p(/.) holds for every / < co. Thus /f = <p~~%tp(l^ c 
i < « 

S <P~l\\J<p(IiJ\ is true since <p is an isomorphism. This means that [j /f c 
i<«) i<© 

-= 9 _ 1 [ U ^7«)3' U " ^ U If) S U <KI() and so the equality <p( \j I,) = (J 9(7:) 
i<co i<cu i<m i<a> i<a> 

is verified. 
Further, q>( [j h) e J0(A)f i.e., <p( (J /{) == 1(a) holds for some aeA and thus also 

i<co i<<o 

[j <p(h) = /(a). This implies that a € (p(It) for some i < m. Then we get /(a) s <p(/f) 
i<a» 

since ̂ (/^ is a g-ideal of <Af, @>. Summarizing, we have 1(a) c 9(/() c y <p(/f) « 1(a) 
i<m 

and therefore <p(/fc) = <K4+i) is true for every k < a>, fc S> i. Obviously, also /-. = 
= 4+1 holds for every & ^ i, which completes the proof. 

4. SOME ISOMORPHISM THEOREMS 

In [2; Proposition 11] we*state that the mapping J0 : <^4,£> -• (S0(A)9 £>, 
defined by J0 : a*-± 1(a) for every a e A, is an isomorphism if and only if Q is a partial 
ordering on A. The aim of this section is to give analogous characterizations for 
partial ordering satisfying the ACC and for complete ordering satisfying the ACC. 

Theorem 5. For any binary relational system <̂ 4, Q} the following three conditions 
are equivalent: 

(1) < ^ C > S < > W ) , S > ; 
(2) J0 is an isomorphism of (A, Q} onto (*f(A), £>; 
(3) (A, @> is a poset satisfying the ACC. 
Proof. Clearly, (3) implies (2) and (2) implies (1). 
(I) implies (3): Apparently, the isomorphism (A, Q} S- <«/(AI), £> implies that Q 

is a partial ordering on A. Then, by [2; Proposition 11], also <̂ 4, Q> s <*/0(^4), £> 
is true. Sunpiarizing, we get that (*f0(A% s > s (*f(A), s > . By Theorem 4, the 
poset <«/0(-4), £ > satisfies the ACC and thus the poset <A[, g> has the same property. 

The following theorem gives equivalent conditions for chains satisfying the ACC. 

Theorem 6. For any binary relational system (A, Q} the following three conditions 
Mm equivalent: 

(1) <^,#> s •<«(*) , s > ; 



(2) J0 is an isomorphism of(A,Q) onto;(<5(A), £>; 
(3) <.A, g> is a chain satisfying the ACC. 
Proof Clearly, (3) implies (2) and (2) implies (1). It remains to prove that (1) 

implies (3): By the same way as in proof of Theorem 5 we get that Q is a partial 
ordering and that </.l,^> is isomorphic to <./0(-4), £>. Thus, by hypothesis, 
<y0(A), c> is isomorphic to <®04), c>. Now, we claim that the poset <<5(-4), £> 
is a chain. 

Denote by x an isomorphism x - (&(4)9 £> -• (J0(A), c> and assume that 
S t , S2 are arbitrary semi g-ideals of (A, Q}. Then x(si)> X(S2) and y(St u S2) are 
principal g-ideals and, moreover, it is a routine to check that x(Si u S2) == x(Si) u 

u x(S2) is true. Applying Lemma 1, we get x(Si u S2) = x(Sd for some ie (1, 2}. 
Consequently, also 5 t u S2 = St for some /e {1, 2}, i.e. SA c S2 or S2 £ Sx hold. 

However, this means that the poset <A, g> is a chain. Now it can be easily seen 
that J(A) = <Z(A). Summarizing, we find that (f0(A\ c> s <c/(-4), £>, i.e. 
(by Theorem 4; the poset <«/0(-4), £> satisfies the ACC. Clearly, the poset </4, g> 
has the same property. 

To end with, we apply the previous theorems to binary relational systems which 
happen to be lattices. As a corollary of Theorem 5, we obtain D. Higgs' solution 
of G. Gratzer's problem: 

Theorem 7. (D. Higgs [5]). Every lattice L such that L is isomorphic to J(L) has 
principal ideals only. 

Proof. It is a direct consequence of Theorem 5 since every rg-ideal of a lattice is 
a lattice ideal. 
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