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A NOTE ON FUNCTIONALLY COMPLETE ALGEBRAS 

IVAN CHAJDA, Pferov 

(Received February 2,1980) 

The aim of this note is to prove that an algebra in a variety with a "majority 
polynomial" has the Interpolation Property, [2], for all fc-ary functions (k ^ 1 
arbitrary) if and only if it has this property for all unary functions. The obtained 
result is a consequence of Pixley's Theorem, see [1] and [3]. 

Let 21 = (A, F) be an algebra, S a finite subset of Ak and / : 5 -» A. A mapping g: 
Ak -* A is an interpolating mapping if g \s = / . 21 is said to be functionally complete 
if for every integer k all functions/: Ah -+ A are algebraic. We say that a variety Y 
has a majority polynomial if there exists a ternary polynomial m over Y obeying the 
identities 

m(x9 x, y) = m(x9 y9 x) = m(y9 x9 x) = x. 

A subalgebra S of the direct product 21 x 21 is called a diagonal subalgebra if it contains 
the diagonal A = {(*, x)\ x e A}. 21 x 21 has no proper diagonal subalgebra if A and 
21 x 21 are the only diagonal subalgebras of 21 x 21. The set of all diagonal subalgebras 
of 21 x 21 forms a complete lattice with respect to the set inclusion. Denote by R(a> b) 
the least diagonal subalgebra of 21 x 21 containing the pair (a9 b). 

Theorem. Let Y be a variety with a majority polynomial and 2t == (A9 F) e Y. 
The following conditions are equivalent; 

(1) For each at, a29 bx, b2 e A with ax ^ a2 there exists a unary algebraic func
tion <p over 21 such that bt = <p(a1)9 b2 = <p(a2). 

(2) For any integer k g: 1 and every finite partial function / : Ak -+ A, f hai an 
interpolating algebraic function. 

(3) 21 x 21 has no proper diagonal subalgebra. 

Corollary. Let Y be a variety with a majority polynomial and 21 e Y be a finite 
algebra. The following conditions are equivalent; 

(1) 21 is functionally complete. 
(2) For each al9a2,bi9 b2 of 91 with at # a2 there exists a unary algebraic func

tion q> over 21 such that bt = (pia^, b2 = <p(a2). 
(3) 21 x 21 has no proper diagonal subalgebra. 
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The Corollary is an immediate consequence of the Theorem; it suffices to regard 
every function on 91 as a finite partial function. 

Lemma. Let ai9a29bi9b2 be elements of an algebra W. (bi9b2)e R(al9a2) if 
and only if there exists a unary algebraic function <p over 91 with bx = <p(al)9*b2 = 
m (p(a2). 

Proof. Let J? be the set of all pairs {bi9 b2) such that bt = <p(ci\), b2 = <p(a2) 
for some unary algebraic function <p over 91. Evidently, (ax, a2) eR9 R contains 
the diagonal A and R is a subalgebra of 91 x 91. Thus J? is a diagonal subalgebra of 
91x91 and R(al9a2) £ R. The converse inclusion is evident. 

Proof of the Theorem. (2) => (3): Suppose R is a diagonal subalgebra of 91 x91 
different from A and 91 x 91. Then there exist pairs (ax9a2)e R with ax # a2 and 
(*i > b2) € 91 x 91 — R. Since ax # a2, ax-+ bl9 a2-+ b2 is a finite partial function 
of A into A and, by (6) of Theorem 0 in [3], R is closed under q>9 which is a con
tradiction. 

(3) => (2) is a direct consequence of (6) of Theorem 0 in [3]* 
(3) => (1): Let ax ¥> a2 and al9a29bl9b2e A. Then, by (3), (bx,b2)e91 x9t = 

» R(ax, a2) and (1) is a conclusion of the Lemma. 
(1) => (3): Suppose R is a diagonal subalgebra of 91x91 different from A and 

91 x 91. Then there exist pairs (bt, b2) e 91 x 91 - R and (at 9a2)eR with at & a2. 
By (1), there exists an algebraic function <p over 91 such that bx = q>(ax)9 b2 *± <p(a2). 
By (6) of Theorem 0 in [3], R is closed under <p which is a contradiction with the 
choosing of (bt, b2). Q.E.D. 

Remark. If a (d + l)-ary "near unanimity" polynomial (see [3]) is considered 
instead of the majority polynomial and 91* instead of 91 x 91, the Theorem is not 
valid for d £ 3. Namely, for d *> 3, 91' has a diagonal subalgebra R = 91 x A4-1 • 
where A^-i = {(*, ...9x)eAi~i}9 which makes it impossible to apply the above 
way of proving (2) => (3) and (1) =» (3). 
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