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COVERING k-GROUPS OF n-GROUPS

JACEK MICHALSKI, Wroclaw
(Received June 4, 1980)

1. Introduction. Covering groups and their special case —the free covering groups®
appeared originally in the fundamental Post’s paper [10] on n-groups. Also there
the problem of reducibility of n-groups, formerly considered by Dérnte in [1], was
discussed. Problems involving these notions also appeared later in [4], [8], [11], [2]
and many other papers on the theory of #-semigroups and n-groups. One can find
there also some modifications of Post’s construction of the free covering group (called
by him the abstract containing ordinary group).

In our paper we introduce generalizations of these notions, i.e. the notion of
covering k-groups and free covering k-groups. We also show a construction of the
free covering k-group (for k = 2 it is simply the free covering group), different in
detail from Post’s construction. Furthermore, we arrive at a generalization of Post’s
Coset Theorem, proved by methods distinct from those employed by Post, and
a connection between covering k-groups and reducibility of n-groups.

This paper is a slightly modified version of Chapter II of my dissertation written
under prof. B. Glewhgewncht I am greatful to-him and to dr. K. Glazek for helpful
conversations. : :

Most of the results of the present paper was annouced in [5] _

2. Some notions and notation. We will be interested mainly in inner properties
of n-groups, thus by n-group we always mean a non-empty one (as it was originally
understood by Dérnte in [1]). Introducing the empty n-group appears to be con-
venient, when considering the category of n-groups (see [7]).

We use the usual notations ‘which may be found in papers on n-groups, in parti-
cular in [3].

Let & = (G,f) be an n-group. If m = u(n — 1) + 1, the m-ary operation g
given by ' '

8(Xys ey Xm) = S, f(F X1 5 ois Xy X1y v Xzgmt) =2)s oy X),
u. .
called the simple iteration of the operation £, will be denoted by f(.). In certain situa-
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tions, when the arity of the simple iteration does not play a crucial role, or when it
will differ depending on additional assumptions, we will write f{.,, to mean f, for
some ¥ = 1, 2, ... It has been already shown by Dérnte (see [1]) that the m-groupoid
®,, is an m-group. We will call &, the m-group derived from the n-group ®,
and ® —the creating n-group of the m-group ®,,. Further, if & = (G, f) will be
an m-group, we denote any of its creating n-groups by ®,-1y = (G, f,-1)). To justify
that symbol, note that for simple iterations the formula (f(;)) = fag) holds.

The skew element to x (in an n-group ® = (G, f)) will be usually denoted by x,
instead of X, when it is clear from the context, that ¥ is the skew element to x
with respect to the n-group operation f.

q
We use the symbol x in the following meaning:
q
forqg >0 JOKLs s Xy Xy Xpsga s voes Xp) =
= Xy ooy Xy Xy 15 ey Xpbgs Xrb g 15 oo Xn)s
ifx'+1 = L= r+q = x;
forg=0
o
T ts s X s Xp 15 ooes Xn) = L)Xt coes Xy Xpioqy wens Xi)-
)

In the category of n-groups monomorphisms coincide with injective homo-
morphisms and epimorphisms with surjective homomorphisms (see [7]). For that
reason we call injective and surjective homomorphisms shortly monomorphisms and
epimorphisms, although we never consider the category of n-groups. Some formula-
tions will be expressed, for clarity, in terms of embeddings, instead of monomor-
phisms.

Definition 1. Let t: & — U, be an embedding of the n-group & = (G, f) into
the n-group A, = (4,g), derived from a k-group A = (4,g), where n =
= s(k — 1) + 1. If ©(G) generates the k-group A, the pair (A, ) will be called
a covering k-group of the n-group 6.

Definition 2. If the covering k-group <, t) of the n-group & satisfies the addi-
tional condition:

for each homomorphism #; & — B ), where B ,) = (B, g,)) is an n-group derived
from an arbitrary k-group B = (B, g), there exists a unique homomorphism
h* : A — B such that h*r = h then the pair (A, t) is called a free covering k-group
of the n-group 6.

It is an immediate consequence of the definition that the free covering k-group
is determined uniquely up to an isomorphisms. If the pair <%, ), where 7 ; & - A,
is a covering k-group of the n-group ®, then, foreach @ = 0, 1, ..., it is also a cover-
ing k-group of the (a(n — 1) + 1)-group G, derived from the n-group 6.
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The set Z, = {0, 1, ..., s — 1}, where s is a positive integer, with the (k + 1)-ary
operation @(ly, ..., lk+1) =1 + ... + 4y + 1 (mod s) forms a (k + 1)-group. Itis
a cyclic (k 4+ 1)-group of order s (see [10]). We will denote it by €; ;+; = (Z;, ¢).

For the sake of description of the construction of the free covering k-group of
some n-group and for investigation of covering k-groups it will be convenient to
treat (k + 1)-groups and (n + 1)-groups rather, than k-groups and n-groups. Hence-
forth throughout the whole paper we assume always n = sk, s = mgq.

3. Free covering (k + 1)-groups of (» + 1)-groups. Let & = (G, f) be arbitrary
(n + 1)-group and c € G an arbitrary, but fixed element of it. Form the set G** =
= G xZ, and define a (k + 1)-ary operation f* in G*® in the following manner:
Let .
X1y ooy Xgs1 € G, Iy, i1 € Z

then
S*¥(ers 1) ooy (g 15 By ) =
L otk n—1—=0(,....hs)k
=(foyx1, 6 iy Xgrr, € LG c ), @y s ooy Ik s 1))-

Theorem 1. The (k + 1)-groupoid &*° = (G**, f*) with the mapping © : G - G**
given by the formula t(x) = (x, 0) is a free covering (k + 1)-group of the (n + 1)-group
6 = (G, ).

Proof. We first show that the (k + 1)-groupoid G** = (G**, f*) forms a (k + 1)-
group.

In fact, let

gy eens a2k+IEG9 ll""”2k+1€Zs5
then
f*((‘h 1)y e @=L ), F*(@gs 1)y -oes @ik Biai))s
@irks 15 Lirga s oo @2k 15 bake1)) =
Ik livik
= f*((al’ ll)’ L] (ai—l’ li—l)a (f(.)(ab C 5y yygy, C 5,
n=1— g, ...k

> 4 ) @iy ooy 1isi)s oos @apa1s Laxen)) =
11k ltk li"l-kk n-— l - ¢(l‘, coey Il+k) k
=(f(-)(ala € sy @is C s @iag, C G c s
(P(I.'a seey li+k) k 12k+1k n - 1 - (P(z)(ll, seey Iz.+1) k
’ ¢ s oo Qopyqs c ,¢& c )’
s ‘P(z)(ln v bgay)) =
Ilk Iik Ikk Ik+1k Izg.‘. lk

= (./i.)(al, c ’".’al’ c ""’ak’c ’ak+1’ [4 ,...,a2k+1, C ,E,
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n-1- (p(Z)(Il’ seey 12k+1)k
¢ )s @ lys o5 Laks 1)

which proves that the operation f* is associative, thus G** is an (n + 1)-semigroup.
Now, we check the solvability of equations. Consider the equation

™ f*(ag, 1y), s (@, 1), (%, 0), (@415 Lig 1) o5 (@ir 15 e t)) = (B, 1)
with the variable (x, a). Then

1,k Ik ok I ik Lk
(folay, ¢ ,..ca, ¢ ,%,¢,8141, € 4.ty @yy, € 58,
n— 1 - ¢(11, ""Ii’ a, li+l’ ""Ik+l)k
y c ,(p(ll,...,li,a,li.,.‘,...,lk+1))=(b, t)

which leads to the following system of equations:

(p(ll’ ceey l‘, a, [l'+l’ ceey lk+l) = t,

Lk Lk ok livik Y
Jolay, ¢ ,,a, ¢, x,¢,a,4q, € .., 841, €5,

n—1—0@(, .l ligg, . shi)k
, c )=>b.
The first of these equations has exactly one solution for « in the (k + 1)-group
C,.x+1, and the second has exactly one solution for x in the (n + 1)-group &. Thus
the original equation (*) has exactly one solution in the (k + 1)-semigroup ®*°,
whence the (k + 1)-semigroup G*° is a (k + 1)-group.
Consider the mapping t : G — G** given by the formula t(x) = (x, 0). Note, that

f(:)(f(ax), s W@y q)) = ﬁ:)((ax, 0), ..., (@y+1,0)) =
0 0 n-1-0 :
= (ﬁ.)(al9c7""an+h s ¢, c ), 0) = (flay, ..., Gp44),0) =
= t(flay, --.s Ap+1)),

which proves 7 :  — (G*°), to be a homomorphism. Obviously, 7 is even a mono-
morphism.
Let (a, /) € G**. Then

Ik n-1-1Ik
f‘(l)((aa 0)9 (C, 0)’ seey (C, 0)) = (f(a’ ¢ C, ¢ )’ l) = (as I):
Ik

thus the (k + 1)-group G** is generated by the set 7(G).
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Take an arbitrary homomorphism & :® — B,,, where B, = (B, g) is an
(n + 1)-group derived from an arbitrary (k + 1)-group B = (B, g). Define the
' Ik
mapping h* : G* — B by the formula h*(a,!) = gu)(h(a), h(c)). Then

h*(f*((ag, 1h)s s @a1s lks 1)) =

Ik otk n—=1—o0(y, ... L)k
= h*(f(')(al’ Chruws @y, € 0 c )’ (P(ll’ "'91k+1)) =
llk Ik+lk n - l - ¢(I‘, a-.,.1k+1)k
= g('?(h-----’ku))(h(ﬁ')(al’ €.y @y, ©C c, ¢ )),
(p(ll’ tery Ik+1) k
h(c) )=
1k btk m—1
= gesh(@s) h(C), .., h@ys 1), hO), hE), h(©)) =

1,k Iy K

= g(g(ll)(h(al)’ h(c)), ..., 8+ 1)(h(ak+ V), k() =
= g(h*(ay), ..., h*(@+1)).

Note, that A(c) in the former calculation denoted the element skew to A(c) in the
(n + 1)-group B, since a homomorphism commutes with the operation of taking
the skew element.

It follows that the mapping 4* : ®** — B is a homomorphism. It is easy to see
that 4*t = h. Moreover, A* is a unique homomorphism for which that equality holds,
since 7(G) generates the (k + 1)-group G*°. B

To simplify notation, the symbol @:‘;) will stand always for (G*%),.

It turns out that a free covering group contains all free covering (k + 1)-groups
as its subsets.

Corollary 1. A free covering (k + 1)-group ®*° of an (n + 1)-group ® is iso-
morphic to the sub-(k + I)-group of the (k + 1)-group (52",{; derived from the free
covering group ® **, consisting of elements of the form (a, /k) where/ = 0, 1, ..., s — 1.

Proof. Define a mapping w : G** - G*" by the formula w(x,!) = (x, [k). It is
easy to see that this mapping is injective. Furthermore,

w(f*(ag, 1y), ooy @1, e 1)) =

'ka ll;+1k n—1—=o(,....her)k

= W(ﬁ.)(al, C ey Qgeys c , é, 4 ), (p(ll, veey lk"'l)) =
Lk letk n—1—=0(,.... L)k

= (fi')(ab €,y Gyr, € 56 ¢ )0y, ons ls ) K) =

211



=f*(k)((ax > ’lk)’ s @iy s 1K) =
=f*(k)(w(a1 Y ) RO (- A ) ) §

which proves that the mapping w : G*° — @E",{; is a homomorphism. Each element
of the (k + 1)-group @(";"; of the form (a, /k) is an element of the set w(G**). Thus the
set of elements of the form (g, /k), where / =0,1,...,5s — 1, is a (k + 1)-group,
isomorphic to G**. B

4. The Coset Theorem. Post proved the following characterization of covering
groups: A group G’ is a covering group of a certain n-group G iff there exists
such an invariant subgroup G, of G’ such that G'/G, = Z,, where u is a divisor of
n — 1. The following theorem is a generalization of that theorem to covering
k-groups.

Theorem 2. A (k + 1)-group W = (A, g) is a covering (k + 1)-group of a certain
(n + 1)-group if and only if for some a € {1, ..., q} there exists an invariant sub-(ak +1)-
group B = (B, g,)) of the (ak + 1)-group W, such that A ,|B = (€, 1)), where
the natural mapping { : A — Z, is a homomorphism of W onto €, ;. . Then each subset
of the form { (1), where [ €, 1+ 1 is an element of order 3, is an invariant sub-(Pk + 1)-
group of the (Bk + 1)-group W gy. Moreover, for the element €€, 1 of order q the
pair (W, 1>, where 1 is the inclusion of {~'(I) into A, is a covering (k + 1)-group of the
(n + D-group (1), g).

Proof. Let the pair (2, A) be a covering (k + 1)-group of the (n + 1)-group
D = (G, f). Consider the free covering (k + 1)-group G*° = (G**, f¥) together with
the embedding 7: G — (52';; There exists a unique homomorphism A* : D* —
such that A*z = A. Since, according to Definition 1, the subset A(G) generates the
(k + 1)-group A, the homomorphism A* is a surjection. Let A*(ay, ) = A*(ay, I)-

Ik Ik

Then, according to Theorem 1, guy(A(ay), A(c)) = gu)(Aas), A(c)), hence A(a;) =
= AM(a,). The homomorphism 4 being injective, this yields @, = a,. Letusdenote W, =
= {(a,]):aeG} for I =0,1,...,5s — 1. Thus the mapping A*1,, is injective for
1=0,1,..,5s = 1.

Now, let A*(W,) n A*(W,,) # 9. We show, that in consequence A*(W,) =
= A¥*(W,,). In fact, let for some a,, a, € G:A*(ay, ) = A*(a,, I,) (wWe can assume
I3 > 1)). Then

Lk Lk
8(!.)('1(01), Ac) = g(lz)(l(aZ)’ A(c)),
Lk -0k Lk
gay(May), A€)) = gq,(Uaz), A(c), Ac)),
(I, —l)k

)'(al) = g(lz—h)(;"(az)9 A(C) )°
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Take an arbitrary element (x, /,) € W,,. Then

. Lk
A¥(x, 1) = guy(A(x), Ac)) =
n—2 Lk
= Zs+1,)(A(X), Aay), A@y), Aay), Ac)) =
n—2 , — 1)k Lk
= g(s+lz)()“(x)s May), May), May), M), Ac) =
n—2 Lk
= g(sH,)(l(x), Aay), M@y), May), Mc)) =
.n—2 Lk - n=2
= ga,)MUf(x, a3, @y, ay)), Ac)) = AX(f(x, a3, @3, ay), I}).
Similarly, let (x, /;) € W,,. Then
1k
A¥(x, 1) = ga,y(Ax), Ac)) =
n—2 1,k
= g(s+l,)(/1(x)» May), Ma,), May), ],(c)) =
' n—2 (I, - 1)k Lk
= (00, Aa), M@, Map), M) A =
n—2 Lk n-2
=.guz)()~(f(x, ay, a, ay)), Ac)) = A*(f(x, a, ’ a,, ay), ).
The last equalities show that A¥(W,)) = A*(W),).

Let for some /;,/,€{0,1,...,s — 1} the equality A*(W,) = A*(W,,) holds.
Thus there exist elements (a,,/;) e W,, and (a,,/,) € W,, such that A*(a,, ;) =

= A*(a,, I,), whence
Lk Lk
g(l,)('l(al)a Ac)) = ga,)(/l(az), A(c)).

Take an arbitrary positive integer j. From the last equality it follows, that

Lk jk Lk jk
g(j)(g(x,)(}v(al), Ac)), Mc)) = g(j)(glz) (Aay), A(c)), Ac));
G+ 1)k ' G+ L)k

g(j-H;)(}*(al)a Mc) )= g(j+|2)('1(az): AMe) ).
Thus
esk rik e,5k  rk
8(i+1yA(ay), A(c), A(€)) = gj+1(Ma2), A(c), A(©)),
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where

0s(U+h)—¢gs<s, 0Z(+1h)—es5<s
re=Jj+1li—gs, ry=j+1, —¢gs
Hence
&n &;n

A*(.f(n)(al ’ C), rl) = A*(ﬁzz)(az » € )’ 7‘2), 1e l*(wv’l) = l"‘(W,z)

It is easy to see that the last equality implies A*(W,)) = A*(W},).

Let ¢ be the least positive integer, for which A*(W,_,) = A*(W,_,). Suppose
that g <s. Let s = mg + r where r <gq, then A*(W_ y+q) = A% (W _),,0),
whence A*(W,) = A*(W,). Hence A*(W,_,) = A¥(W,04,-1) = A¥(W,_, . )(since
MW, = 2*(W,_1)0+9 = A*(W(,-1)9). From the last equality, by the definition
of g, it follows that r = 0. Thus g is always a divisor of s (s = mq). Let for some /,
and /,, such that /; </, <g, the equality A*(W,,) = A*(W,,) holds. Then A*(W,,, ) =
= A Wa-1y+1) A¥(Wo) = A*(Wy,_y,), whence [, — [ =0 (by I, -1 <gq).
This proves that the mapping A*|Wo U W, U W,__, is injective. The set 4 can be thus
decomposed into pairwise disjoint cosets A*(Wy), A¥(W)), ..., A¥(W,_,). Moreover,
gAX(W), ..., AX(W,, ) = AX(f* Wiy, ooy W) € A*(Woq,, . 1, ) Which proves
that the decomposition of the (k + 1)-group U into cosets is compatible with the
operation g. Denote that congruence relation by @. Thus A/@ = ¢, ,,,. Let { be
the natural mapping of the (k + 1)-group U onto the quotient (k + 1)-group A/O.
Take an arbitrary element /e €, ;. of order B. Then the order of /€ (€, ;)
equals one. The mapping { : 4 —» Z, is a homomorphism of the (fk + 1)-group Ay,
onto the (Bk + 1)-group (€, ;1) -Thus the subset W, = {7!(1) is an invariant
sub-(Bk + 1)-group U as the inverse image of an invariant element of order one.
Let/e €, 4+ be anelement of order ¢. Then /is a generator of the cyclic (k + 1)-group
G, v+1- Hence the set W, generates the (k + 1)-group A, which proves that the
pair (A, A), where A is the inclusion of W, into 4, is a covering (k + 1)-group of
the (n + 1)-group (W, g()-

Conversely, let the (ak + 1)-group B = (B, g,,) be an invariant sub-(ak + 1)-
group of the (ak + 1)-group A,)) = 4,8, such that W, /B = (€_ ;) - In addition,
assume that the natural mapping{ : 4 - Z,is a homomorphism of the (k + 1)-group
~ A onto the (k + 1)-group €, ;.. As it has been already shown, the set W, =
= {~1(I), where /€ € x4, is an element of order g, generates the (k + 1)-group A
and is a sub-(gk + 1)-group of the (¢k + 1)-group A,,. The pair <A, 1>, where 1
is the inclusion of W, into A, is in consequence a covering (k + 1)-group of the
(n + 1)'81'0‘-‘1’ (Wl, g(s))- n

The just proved theorem indicates a following strict connection between the
embedding A : G - A4 and the epimorphism {: 4 - Z, — each covering (k + 1)-group
<A, ) determines a unique natural mapping { : A — €, ;., and conversely, each
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epimorphism { : A - €, ,,, determines a unique inclusion 4 :{~!(0) - A4, where
the pair <%, 1) is a covering (k + 1)-group of the (n + 1)-group ((~(0), g,
Henceforth we shall use interchangeably the symbols <, 1), where 4 : G — A4 or
U, (), where {: A — Z, or (U, 4,(), to denote the covering (k + 1)-group A
of the (n + 1)-group ®. Define the notion of index of a covering (k + 1)-group.
That notion, in case of k = 1 (i.e. for covering groups) has been introduced by Post
(see [10], p. 240).

Definition 3. A covering (k + 1)-group <, () has index q,if { : A = Z,.
It is quite plain from the definition that the index of a covering (k + 1)-group
of (n + 1)-group is always a divisor of nlk.

Corollary 2. A covering (k + 1)-group (U, 1) of an (n + 1)-group G is a free
covering (k + 1)-group of ® if and only if the index of (U, 1) is equal to s = n/k.

Proof. Use the same notation as in Theorem 2. If ¢ = s, then A* : G** - A
is a monomorphism, thus an isomorphism, since A* is always surjective. Hence the
(k + 1)-groups A and G** are isomorphic if and only if ¢ = 5. R

In a special case one can derive a theorem, related to the Theorem 2, which is
exactly analogous to the mentioned above Post’s Coset Theorem.

Theorem 3. A (k + 1)-group W = (A, g) contains an invariant sub-(k + 1)-group
B = (B, g) such that /B = €, ., if and only if the greatest common divisor of q
and k equals to 1 and (U, () is a covering (k + 1)-group of the (n + 1)-group ® =
= ({X0), 8s))- Then B = {™'(l), where | is the unique element of the (k + 1)-group
€, w1 Such that q | lk + 1.

Proof. Let B = (B, g) be an invariant sub-(k + 1)-group of the (k + 1)-group
A = (4, g), such that A/B = €, ;. and { is the natural mapping of A onto A/B.
As is known from [10], each quotient (k + 1)-group which is determined by an
invariant sub-(k + 1)-group, is derived from a group. But (see [10], p.286)
a cyclic (k + 1)-group of order g is derived from a certain group if and only if
the greatest common divisor (abbreviated in the sequel by g.c.d.) of g and k equals
to 1. By Theorem 2 the pair (U, {) is a covering (k + 1)-group of the (n + 1)-group
® = ({71(0), g())- Let I = {(B). The element /, corresponding to the invariant sub-
(k + D-group, is an element of order one (see [10], p. 231). Hence ¢ | Ik + 1.

Conversely, let the pair (¥, {}, where { : 4 —» Z,, be a covering (k + 1)-group
of the (n + 1)-group 6 = ({~'(0), g,,). Assume that g.c.d. (¢, k) = 1. Then in the
cyclic (k + 1)-group there exists a unique element / of order one (see [10], p. 304).
Hence, by Theorem 2, the set B = {~!(/) is an invariant sub-(k + 1)-group of the
(k + 1)-group A. The invariant sub-(k + 1)-group determines a unique congruence
relation © on the (k + 1)-group A such that Bis an equivalence class of @. Simultane-
ously, the homomorphism { : ¥ - €, , ., determines also a congruence relation @’
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on A such that B = {~'(/) is an equivalence class of @'. Hence A/B = €, 54,
(see [9]).

It is known from [10], p. 241, that there exists a strict connection between covering
groups and reducibility of n-groups.

Corollary 3. If the (k + 1)-group A = (4, g) with the embedding 1 : & — U,
is a covering (k + 1)-group of index g of the (n + 1)-group ®, then the same
(k + 1)-group A with the embedding 4 : -1y = AU, is simultaneously a free
covering (k + 1)-group of the (gk + 1)-group G-, which is a creating (gk + 1)-
group of the (n + 1)-group 6.

Proof. Let (U, 4, {)> be a covering (k + 1)-group of index g of the (n + 1)-group 6.
According to Theorem 2, <, 4, {) is a covering (k + 1)-group of the (gk + 1)-group
¢, &) (since the element 0€ €, ., being a generator of €, ;. ,is an element
of order ¢). Simultaneously, the (n + 1)-group ((~*(0), 8(4)(m is isomorphic to the
(n + 1)-group ®. Hence G,-1, = ({71(0), g,) is a creating (gk + 1)-group of the
(n + 1)-group G. The (k + 1)-group A with the embedding 4 : ®,-1, = Ay, is
a covering (k + 1)-group of index g of ®,,-1,. Thus, in view of Corollary 2, <, 1)
is a free covering (k + 1)-group of ®,,-1,. B

Also the converse theorem is true.

Corollary 4. If the (n + 1)-group & = (G, f) is derived from the (gk + 1)-group
® (-1, then the free covering (k + 1)-group <(6f,,‘,‘_1,,t) of the (gk + 1)-group
®m-1) is also a covering (k + 1)-group of index Z of 6.

From Corollaries 3 and 4 one obtains the following generalization of Post’s
result (see [10], p. 241).

Corollary 5. An (n + 1)-group ® posseses a covering (k + 1)-group of index ¢
if and only if the (n + 1)-group ® is derivated from some (gk + 1)-group G,,-1.

Proof. If the (n + 1)-group ® posseses a covering (k + 1)-group of index gq,
then in view of Corollary 3, & is derivated from some (gk + 1)-group S n-1y-

Conversely, if the (n + 1)-group © is derived from a (gk + 1)-group G-,
then in view of Corollary 4, the free covering (k + 1)-group (6,-1))*? of G, -1 is
also a covering (k + 1)-group of index q of G. 1

5. The category of covering (k + 1)-groups of (n + 1)-groups

As we already mentioned, a covering (k + 1)-group (%', 4, {> of index q of the
(n + 1)-group A is determined by the pair of mappings: A: 4 > A" and { : 4" > Z,.
Hence it seems to be natural to define a morphism in the category of covering
(k + 1)-groups as a triple of homomorphisms.

Definition 4. Let <U’, 1,,{,> and <{B’, A, {5 be covering (k + 1)-groups of
indices g, and g of (n + 1)-groups A = (4, f) and B = (B, f), respectively. A triple
K, h,{ of homomorphisms A" : A — B', h: A — B, £:€, x+1— €, ;4 Where
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¢(0) = 0 will be a morphism <A’, h, &) : CW, A4, (4> = (B, Ag, {s) 1f the following
diagram

1

¢
ZlIA - Zl!a
t
[ ls
|
A— -B
L
h
A— -B

is commutative.
The following theorem indicates a connection between the homomorphisms 4, h, &
and simplifies the question of commutativity of the former diagram. First we prove

Lemma 1. Let {, : G' - Z,, and {, : G' - Z,, be epimorphisms of a (k + 1)-group
D' = (G',8) onto the cyclic (k + 1)-groups €, ,., and€,, .., . 1f{;'(0) > ¢ 40),
then there exists a unique epimorphism { : €, 4,1 = €, ., such that &y = {,.

Proof. For a’,b' e G’ let {;(a’) = {;(b") = le Z,,. Then @’ = 8(@1s s Qs 1),
b = geyby, ..., bysy) where a;€l{7'(0), b;el({'0), i=1,...,lk + 1. Hence
{2(@) = (H(gays -, A1) = (P(I)(Cz(a1)9 s $a(apesy)) = (P(z)(oa v 0) =0 X
X(2(by)s e’ CaBies ) = (2(8(B1s oo byesr)) = {2(b"). Thus in view of the
Isomorphism Theorem, there exists a unique epimorphism { : €, x4+1 = €y 041
such that &0, = (,. 1§

Theorem 4. Consider the following diagrams

4 , K
G‘IA-k+l___-’0:qa,fk+1 Y| B’
oy b,
K h
A B’ A B
4
Q:q“ku——“’cq,,kﬂ
]CAAA ICBAB
h
A——+ B

where (W, 44, (> and {B', Ag, () are covering (k + 1)-groups of indices q, and gy
of (n + 1)-groups W = (A, f) and B = (B, f), respectively, and h': W' — B, §:€,, y41 =
= €, x+1 where £0) = 0, h : U,y = B,y where W, -1y and B,y are creating
(q4k + 1)-groups of the (n + 1)-groups N and B determined by (W,,,{,> and
{B’, Ag, {g)>. Then the existence of any pair of homomorphisms k', h,& and com-
mutativity of the respective diagram implies the existence of the third morphism and
commutativity of the remaining two diagrams.
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Proof. Let homomorphisms 4', A be given in such a way, that the respective
diagram is commutative. Let ¢’ € {;'(0). By Lemma 1 there exists a unique epi-
morphism ¢ : € 44 — {ph(A’) such that £, = {gh'. Note, that &(0) = &{(a’) =
= {gh'(a’) = 0. Thus the homomorphism ¢ : €, ., = €, .., is an epimorphism.
From the definition of £ it is evident, that ¢ does not depend on the choice of the
homomorphisms 4’ and A.

Now, let homomorphisms 4’ and ¢ be given in such a way, that the respective
diagram is commutative. According to Corollary 3, (W', 1,,{,) is a free covering
(k + 1)-group of the (g,k + 1)-group A, ', and (B’, A, {5) is a covering (k + 1)-
group of the (g,k + 1)-group B,,-1,. Leta € A. Then {3h'A (a) = E{ A (a) = E(0) =
= 0, whence h'A,(A) = Ag(B). Define a mapping h : 4 — B by the formula A(x) =
= Az 'W'2,(x). From the definition of A it is clear that A: U, — B,y and
Agh = K4,

Finally, let homomorphisms 4 and ¢ be given in such a way, that the respective
diagram is commutative. As we already mentioned, (', i,,{,) is a free covering
(k + 1)-group of the (g,k + 1)-group A, . Thus there exists an homomorphism
h' W — B’ such that A'A, = Agh. For the homomorphisms 4 and A’ there exists
an epimorphism ¢ : €, ., = €, ., such that '{, = {h’ and &'(0) = 0. It follows
from the last equality, that &’ = &. Hence &0, = (h'.

Proposition 1. Consider the following diagrams

< & h} H, )
Q:*'Ln""’l——__>(€q,,.k+l—""" qu,,k+1 A'—-- D’ 2 —>B
t i 1 4
{a $p 'CB i)sA ;AD lB
hi : k; ! h ' h
Al 1 D, 2 B, A 1 . D 2 . B
él B 62
G‘lm"*l - quxk"’ 1= qu,k+1
Lt oo (ata
h, ‘ h,
A -D B

where <, 44, {4, <B', 15, {p) are covering (k + 1)-groups of indices g4, gp of
(n + 1)-groups A, B, respectively, and Jp : D> D' is an embedding of a (gpk + 1)-
group D into a (gpk + 1)-group D', derived from D’ and, in addition, A,(D)
generates D’ and g, is the least positive integer for which Ap(D) is a sub-(gpk + 1)-
group of D', ), {p is an epimorphism of D’ onto Corr1> W : W > D, H, Do,
{x:cq‘v,k+l =€ k15 02:C€, k01 > €, 4y Where £,(0) = 0,&,(0) = 0,h4: 9I(»-2‘)"
= Dimpmz)s B2 1 D > B,;1). Then the existence of any two pairs of the three pairs
of homomorphisms A}, h3; k4, ;3 &y, &5 and commutativity of the respective diagram
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implies the existence of the third pair of homomorphisms and commutativity of the
remaining two diagrams.

Proof. Let the pairs A, h; and A, , h, be given in such a way, that the respective
diagram is commutative. From the definition of the covering (k + 1)-group and
from Theorem 2 and the accompanying corollaries it follows that the pair (®’, 1p)
is a free covering (k + 1)-group of the (gpk + 1)-group D. Thus there exists the
epimorphism {p, : D' —» €, ;. for which {;!(0) = Ap(D). Further, from Theorem 4
there exists a pair of epimorphisms ¢; : €, 441 = Copai1y €21 Cpivs = Cpp iiy
for which the respective diagrams are commutative.

Now, let the pairs Ay, h; and &;, &, be given in such a way, that the respective
diagram is commutative. Let D = {;'(0) and 1: D — D’ be the inclusion of D
into D'. From Theorem 2 it follows, that <®’, 4, {,) is a free covering (k + 1)-
group of the (gpk + 1)-group D. Theorem 4 asserts the existence of homomorphisms
Iy Wty = Dimpmz!) and hy : D = B, -1y for which the respective diagrams are
commutative. :

Finally, let the pairs A, h, and &, ¢, be given in such a way, that the respective
diagram is commutative. Let <{®’, Ap,{p) be a free covering (k + 1)-group of.
the (g;k + 1)—group D, Theorem 4 assures the existence of homomorphisms 4] :
: W - D and 4, : D' — B’ for which the respective diagrams are commutative. B

A more detailed description of the category of covering (k + 1)-groups of (n + 1)-
groups will appear in [6].

In case of g, = qp, one can draw from Proposition 1 the following

Corollary 6. If <A, 4,,(,> and <{B', Ay, {p) are covering (k + 1)-groups of
index g of (n + 1)-groups A and B, respectively, 4} : A’ — D', b : D’ > B’ where D’
is a certain (k + 1)-group, and {zh3h{ = {,, then there exists an (n + 1)-group D,
a mapping A, : D —» D’ and homomorphisms Ay : W-1) = Dim-1y, Ay ¢ Digy-1y =
— B,-1y such that (D', Ap,{p)> is a covering (k + 1)-group of index g of the
(n + 1)-group D and <hy, hy,idy) 1 KW, 24,000 = <D, Ap, Lp), <y, by, idy ) :
1D, Ap, Lp) = <B', Ap, (-

Proof. The following diagram

l.dz‘l : l'd Zq

Zq Zq Z‘J

Y)CA ]CD ICB
hl hl

Ar 1 Dr 2 ' B,_

t o

4 ]zp s

A D B

where {, = {shy, D = {;*(0) is commutative. By Proposition 1, there exists homo-
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morphisms A; : W, _1) = D1y, Ay : Dpp-1y = By fulfilling the demanded condi-
tions. W

6. Some characterizations of (n + 1)-groups derived from (k + 1)-groups. In the
first theorem of that paragraph, we give a condition for an (n + 1)-group to be derived
from some (k + 1)-group. That condition is a modification (adjusted to our const-
ruction of the free covering group) of the condition proved by Post (see [10],
p. 229).

Theorem 5. An (n + 1)-group ® = (G,f) is derived from some (k + 1)-group
® -1y if and only if for each element c € G there exists an element d e G such that

s (k—=Ds
1° f(d, ¢ , X) = x for each x € G;
k-1
2° f(X1y ooy Xindy, € S Xipgs eees Xpr1—k) =
k-1 k-1

= (X1, s Xy € @ Xty s X1 =S € X, e, Xy 1)

for each x,, ..., X,+1-x€.G and arbitrary i = 1,...,n + 1 — k. In addition, the

(k + 1)-ary operation g in the (k + 1)-group ® -1, = (G,g) can be given by the formula
s—1Gk-D(G-1
8(Xys ous Xpw1) = fxps ooy Xipys d 4 )-

Proof. Let the (n + 1)-group & = (G, f) be derived from a (k + 1)-group
®-1y = (G, g), i.e. g = f. Take an arbitrary element c € G. Let d be the element
skew to c in the creating (k + 1)-group ®-.,. Then

k-1
SOegs ooy Xindy, € S Xigqy ey Xppi—p) =
k—1
= g(s—l)(xh s X, 8d € Xk 1)y Xig 2y ey Xpa1-k) =
= g(s—l)(xl’ vy Xjy Xints coes Xns1—p)
Similarly
k-1 )
SCeps oo Xy € A Xipqs s Xy 1) =
k-1
= 8(;-—1)("1, s X5, 80 € LA Xip)y e, Xppg—p) =
= g(s—-l)(x19 s Xy Xig g ooy Xpt 1 =)
which proves that ¢ and d fulfill the condition 2°. Hence
s (k—-1Ds k-1 k-1
fd, ¢ ,x)=fd ¢ ,..,d ¢, x)=

s
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. k-1 k-1 k-1 k-1 k-1
=gs-nd, ¢ ,...,d ¢ ‘,g(d, ¢ X)) =8gs-d ¢ ,.,d, ¢ ,x)=
s—1 s—1 ‘
k-1
=..=gd ¢ ,x) =x,

that is, also the condition 1° is fulfilled. Moreover
k-1 k-1
g(xys vy Xir1) = g(X15 o5 xk+lvf:_ ¢ ,...,d, ¢ )=
s=1
k—1 k-1 s—=1k=-=1(-=1)
= f(x1y eee, Xos1ody € eend € ) =f(Xy, 00y Xepy, d c ).

S

s—1

Conversely, let in the (n + 1)-group ® = (G, f) for each element c € G there
exists an element de G such that the condition 1° and 2° are fulfilled. Define

a (k + 1)-ary operation g in the set G by the formula:
' s=1 k=1 (-1
8(Xys ooy Xpy1) = f(Xys ooy Xiwrs d c ).

Then
801y ooy Xiy 8Xig 15 ooy Xig 1 4k)s w05 X 1) =
s—1 k=1 (@G-1
= X1, s X Kk 1y oos Xig140o A ¢ ) Xiv2 4k ooos Xoka1s
s—=1 (k=D@E-1
, d , c ) =
s—1 (k=1D@E-1 ,
= f)(Xps coes Xis Xiggs ooos Xiwreks d s ¢ )s X2 4k o5 Xaka1
s—1 (k=1 -1
, d c ) =
2(s = 1) 2(k—-D(s -1
= fiy(X1s ooes Xok1, A, c ),

thus the operation g is associative.
25-D2k -1 (@-=1
=.f(2)(x1’ cees X2k 415 d ’ 4 ),
thus the operation g is associative.
Let g(ay, ..., a;_4, X, @y, ..., @) = b for fixed a,, ..., a, € G. Hence
' s—1 k=-1)(@E-1
flay, ..,a;_ys %, a5 ..., d c ) =b.
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The last equation has a unique solution in the (n + 1)-group ® = (G, f). This proves
that the set G with the just defined operation g is a (k + 1)-group. In addition

g(a)(xl’ ey Xpyp) = 8(:~1)(8(x1, coos X4 1)5-Xp4 25 onnsy Xyt1) =
s—1 k=D@E-=1

= gu-1y (X1, s Xiy1, d c ) Xih 2y eeey Xpg1) =
s—1k—=D(G-=1 s—1
= gu-([(f(x1, oo Xes1, d c ) Xepas ooes Xoxs1s d s
k-1 -1)
5 c )s ey Xppy) =
25—-1 2k —-D(G~-1
= ge-2yfi2)(X15 o5 Xap4 15 d ; c )y ey Xpi1) =
s~2 (k=-D(s-2)
= g2 (f(x1s ooy Xop41,  d ¢ )y Xppg) = oo =

= f(xy, -.-> X5+ 1), Whence g, = f, which proves the (k + 1)-group &-:) = (G, g)
to be creating (k + 1)-group of the (n + 1)-group & n.
In some particular cases the covering (k + 1)-groups have a very simple form.

Theorem 6. If the (n + 1)-group © = (G,f) is derived from the (k + 1)-group
G-y = (G, g), then (O -1y x € 4.1,A>, where 2 : G—Gx Z, is given by the
Sformula A(x) = (x, 0), is a free covering (k + 1)-group of ®.

Proof. Let the (k + 1)-group G-, = (G, g) be a creating (k + 1)-group of the
(n + 1)-group 6 = (G,f), i.e. g = f. Form the direct product G -1y x4,y =
= (GxZ,, g). The mapping 4: G- (G-1)xC; ;) is 2 homomorphism, since

A(f(al, evey an+1)) = (f(al’ evey an+1)s 0) =
= (g(s)(al’ seey an+1), (p(s)(oa ceey 0)) = g(s)((al’ 0)’ ceey (an+l ’ 0)) =
= g(s)(l(al)’ cre l(an+ 1))

Let the (k + 1)-group G*° = (G**, f*) with the embedding 7 : & —» G5 and the
fixed element c € G be a free covering (k + 1)-group of D. Then there exists a unique
homomorphism A* : G* — G-, xC, .., such that A*r = A, defined as in
Theorem 1. The (n 4+ 1)-group ® is derived from the (k + 1)-group G-, thus,
by Theorem 5, one can choose an element d € G to the given element ¢ € G in such
a way that the conditions 1° and 2° are satisfied. Let (a,) € G**. Then

Ik
A-*(a7 l) = g(l)('l(a)’ j' (C)) = g(l)((a’ 0)5 (Ca 0)’ LX) (C: 0)) =
Ik
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Ik Ik +1 Ik k-1 k-1
=Q@uw@c)oen( 0 ) =(gyac, ¢ , d .. c¢ ,d,)=

[

s —1
k (k=1)(G-=0) s—1 n+l—s s-1
=(fla, ¢, ¢ , d ZWD=a ¢ , d)D.

n+l-ss—1
For each b e G and / € Z, the equation f(x, c , d ) = b has a unique solu-
tion in the (n + 1)-group ®. Hence for each element (b,1) € G x Z, there exists
a unique element (a, /) € G** such that A* (a,/) = (b, /). This proves the homo-
morphism 4* : 6** > &1, xE, ;. to be an isomorphism. B
That theorem enables to give some other necessary and sufficient conditions for
(n + 1)-group to be derived from a (k + 1)-group. We first prove

Lemma 2. If A = (4,f) is an (n + 1)-group derived from a (k + 1)-group
U,-1y = (A4, g) and h : W— B is an epimorphism onto an (n + 1)-group B, then B
is also derived from a certain (k + 1)-group B ,-1,.

Proof. Take an arbitrary element c € B. Since % : W — B is a surjection, there
exists an element ¢’ € 4 such that A(c’) = c. The (n + 1)-group U is derived from
the (k + 1)-group -1y, thus an element d’ € A can be chosen to the element ¢’
in such a way, that ¢’ and d’ satisfy the conditions 1° and 2° of Theorem 5. Let
d = h(d’). We show, that ¢ and d also satisfy 1° and 2°. In fact, take an arbitrary
element x € B. There exists x’ € A4 such that A(x") = x. Then

s (k—=1s s (k—=1)s stk—-1Ds
fd, ¢ L, x)=fhd), h(c), hx))=h(fld, ¢ ,x)=hx)=1x,
which proves that ¢ and dsatisfy 1°. A similar reasoning proves that 2° is also satisfied.
Hence the (n + 1)-group B is derived from a certain (k + 1)-group B,-i,. ]

Proposition 2. An (n + 1)-group & is derivated from a (k + 1)-group G-, if
and only if there exists an epimorphism g : Df; — D such that g4t = idg. More-
over, the mapping g¢ can be chosen in such a way, that g ; *' = G,-1,. ’

Proof. According to Theorem 6 the direct product & -.yxC, 4, With the
embedding A : & » (G-1)XC, ;44) given by the formula A(x) = (x,0) is a free
covering (k + 1)-group of the (n + 1)-group ®. The ‘projection Q¢ : -1y x
X €141 ®-1) is obviously a homomorphism, for which ggd = id;.

Conversely, let g : (5?;; — ® be an epimorphism for which g4t = idg. Since g¢
is an epimorphism and the (n + 1)-group 6} is derivated from the (k + 1)-group
®** by Lemma 2 6 is derived from some (k + 1)-group G-1). Let #: 6 —
~ (®,-1))s) be the identity. There exists 2 homomorphism h* : &** =+ -1, such
that h*z; = h =idg;. n
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Proposition 3. An (n + 1)-group & = (G,f) is derived from a (k + 1')-group
G (-1 if and only if there exists a mapping n : G**— G**, where <G**, 7, { is a free
covering (k + 1)-group of ®, satisfying the following conditions:

1° {n(x) = {(x) — 1 (mod s) for each x € G**;

2° r’(f(:)(xl’ s Xy ) = fg)(xh wees X1 N(X)s Xjaqs ens X,+1) for each Xiy eans

s Xy+1 € G* and arbitrary i = 1,...,n + 1;
3° n...n(x) = x for each x € G**.
A d

s
Moreover, such a mapping 7 is already an automorphism of (5(,)

Proof. If the (n + 1)-group ® = (G,f) is derived from a (k + 1)-group
®,-1y = (G, g), then by Theorem 6 the direct product & -1, x €, s+, is a free covering
(k + 1)-group of ®. It is easily verified that the mapping n: GXZ,—» G x Z, given
by the formula #n(a,!) = (a, 6(l)), where a€ G, le ;,, 6 = (s — 1,5 — 2,...,1,0) is
a cyclic permutation of order s, satisfies 1°, 2° and 3°.

Conversely, - let the mapping n : G**— G*° satisfy the conditions 1°, 2°, 3°.
Define a mapping ¢ : G**— G by the formula ¢(x) = t™'n ... n(x) for xe W, =

‘—T—’
= {71(0). Let xy, ..., Xp41 € G*, where x,€ W, for i =1,..,n+ 1. Then
QU1 s Xna ) =TT o Moo X D) =T o MG s ) =
—— ——

L 7O (ST )| L+ o+ Ly
l(ﬁs)(’? - (%), 'l(xn+1))) =
[1 In+1
‘_f(‘t " (xl)’ ceey cee ’,(xn+l)) =f(Q(x1)’ cet Q(xn+l))'
ll In+1

Thus Q (,)—> ® is a homomorphism, and even an epimorphism. Consequently,
by Lemma 2, the (n + 1)-group G is derived from some (k + 1)-group ®-,.
If the mapping n : G**— G*° satisfies the conditionn ... n = idthenn ... n =

N N’
s sk
= id, whence n ... n = n. Let xy, ..., X, € G**. Then
N
n+1 '
"(f(:)(xn v Xpp 1)) =1 . ’l(f(s)(xu eees Xp11)) =fz:)("(x1)s cees N(Xp41))s
n+ 1
which proves that 7 : 03(,) - (5(,) is a homomorphism. Also, the conditionn ... n =
[
s

= id implies that n is injective and surjective. Hence 5 is an automorphism. B
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In a special case, when g.c.d. (s, k) = 1 then in the cyclic (k + 1)-group €, ».,
there exists a unique element of order one. That fact admits to extract some additional
relations between the covering (k + 1)-group and the creating (k¥ + 1)-group of the
(n + 1)-group.

Corollary 7. If the (n + 1)-group ® = (G, f) is derived from a (k + 1)-group
6,-1) = (G, g) and g.c.d. (s, k) = 1, then the sub-(k + 1)-group B = ({~1()),/*)
of the free covering (k + 1)-group <(6**, 1, (>, where /€ €, ;4 is the element of
order one, is isomorphic to & ,-.,.

Proof. By Theorem 6, the direct product {G-1, x4+, 4) is a free covering
(k + 1)-group of the (n + 1)-group & = (G, f). In view of Theorem 2, the set
W, = G x{l}, where l€ €, is the element of order one, is a sub-(k + 1)-group
B = (W,,f*) of the (k + 1)-group 6* = G-1)xC, ;. . The (k + 1)-group
® -1y x {1} is isomorphic to G -,,. ®

Theorem 7. Let g.c.d. (s,k) = 1 and {&*°, 1,{) be a free covering (k + 1)-group
of the (n + 1)-group ®. Then the following conditions are equivalent:

1° the (n + 1)-group ® is derivated from the (k + 1)-group ®,-1,;

2° all sub-(n + 1)-groups of the (n + 1)-group &f, of the form ({~'(),£%),
where l € Z,, are isomorphic;

3° the sub-(n + 1)-group of the (n + 1)-group 63(’:; of the form ({~'()), f(’:)), where
le €, 4+, is the element of order one, is isomorphic to the (n + 1)-group 6.

Proof. We show that 1°= 2°= 3° = 1°, '

Letthe (n + 1)-group ® be derivated from the (k + 1)-group ®,-1,. By Theorem 6
the direct product ®-1)x€, ., is a free covering (k + 1)-group of the (n + 1)-
group ®. The order of each element in the cyclic (k + 1)-group €, ;. is a divisor
of s, whence the one-element subsets {/} are sub-(n + 1)-groups of the (» + 1)-group
(€, x+1)s- In consequence, the (n + 1)-group (G,-1),) is isomorphic to each of the
(n + 1)-groups (O,- 1) x {I})5)-

Now, we assume that all the sub-(n + 1)-groups of the form ({~!()), f(':)), where
le Z,, are isomorphic. As shown in Theorem 3, in a (k + 1)-group ®** there exists
a sub-(k + 1)-group B = ({~(p), f*) where /, € €, ;4 is the element of order one.
The (n + 1)-group B, = (("'(h).f5) derived from the (k + 1)-group B is,
by assumption, isomorphic to the (n + 1)-group ({~*(0), f&) which by itself is
isomorphic to the (n + 1)-group 6.

Finally, assume that the sub-(n + 1)-group ({~'(!), f}), where /€@, ;,, is the
element of order one, is isomorphic to the (n + 1)-group ®. According to Theorem 2,
the (» + 1)-group ((7'(),f3) is derived from the (k + 1)-group ((™'(1), /),
whence the (n + 1)-group & isomorphic to the (n + 1)-group ({~!(), jz,) is also
derivated from some (k + 1)-group. ¥

It is known that usually there is no unique (kK + 1)-group creating a given
(n + 1)-group (see [1]), thus an (n + 1)-group can be derived from distinct non-
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isomorphic (k + 1)-groups. Post proved (see [10]) that in case of k = 1, the creating
2-group (i.e. the creating group) is determined uniquely up to an isomorphism. But
the restriction to k = 1 is only a sufficient condition. Here we give a certain condi-
tion, also sufficient to the uniqueness of the creating group, which includes the case
considered by Post.

Proposition 4. If an (n + 1)-group & = (G, f) is derived from a certain (k + 1)-
-group and y is the least positive integer for which g.c.d. (s/y, k) = 1, then all the
creating (yk + 1)-groups of & are isomorphic.

Proof. Let y be the least positive integer for which g.c.d. (s/y, k) = 1. The (n + 1)-
group ® is, by assumption, derived from some (k + 1)-group G-, thus it is
also derived from the (yk + 1)-group (G-4)),- In accordance to Corollary 7
the (yk + 1)-group (6,-1,),, is isomorphic to the sub-(yk + 1)-group B = ({ (_,;, ™,
where /€ €, ., is the element of order one, of the free covering (yk + 1)-group
G*/" = (G*/", f*). The (yk + 1)-group B is determined up to an isomorphism,
consequently all the creating (yk + 1)-groups of the (n + 1)-group ® are also
isomorphic. 1
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