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ARCH. MATH. 4, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
XVII: 207—226, 1981 

COVERING k-GROUPS OF n-GROUPS 

JACEK MICHALSKI, Wroclaw 
(Received June 4, 1980) 

1. Introduction. Covering groups and their special case—the free covering groups' 
appeared originally in the fundamental Post's paper [10] on n-groups. Also there 
the problem of reducibility of ^-groups, formerly considered by Dornte in [1], was 
discussed. Problems involving these notions also appeared later in [4], [8], [11], [2] 
and many other papers on the theory of ^-semigroups and ^-groups. One can find 
there also some modifications of Post's construction of the free covering group (called 
by him the abstract containing ordinary group). 

In our paper we introduce generalizations of these notions, i.e. the notion of 
covering fc-groups and free covering it-groups. We also show a construction of the 
free covering &-group (for k = 2 it is simply the free covering group), different in 
detail from Post's construction. Furthermore, we arrive at a generalization of Post's 
Coset Theorem, proved by methods distinct from those employed by Post, and 
a connection between covering ^-groups and reducibility of ^-groups. 

This paper is a slightly modified version of Chapter II of my dissertation written 
under prof. B. Gleichgewicht. I am greatful to him and to dr. K. Glazek for he}pf*ul 
conversations. 

Most of the results of the present paper was annouced in [5]. 
2. Some notions and notation. We will be interested mainly in inner properties 

of ^-groups, thus by «-group we always mean a non-empty one (as it was originally 
understood by Dornte in [1]). Introducing the empty w-group appears to be con­
venient, when considering the category of ^-groups (see [7]). 

We use the usual notations which may be found in papers on^-groups, in parti­
cular in [3]. 

Let (5 = (G,f) be an H-group. If m = u(n — 1)4- 1, the m-ary operation g 
given by 

g(xi9>^9xm)^f(f{-^J(f(xl9..t,xJ9xtt^u.^,x2n^i)^^...9xm)9 

u 
called the simple iteration of the operation/, will be denoted by/(tt>. In certain situa-
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tions, when the arity of the simple iteration does not play a crucial role, or when it 
will differ depending on additional assumptions, we will write fV), to mean/(ll) for 
some u = 1, 2,... It has been already shown by Ddrnte (see [1]) that the m-groupoid 
©(ll) is an m-group. We will call ©(ll) the m-group derived from the w-group ©, 
and ©—the creating w-group of the m-group ©(a). Further, if © = (G,f) will be 
an m-group, we denote any of its creating w-groups by ©(ll-i) = (<?,/(„-1>). To justify 
that symbol, note that for simple iterations the formula (/(«))(£) = /(«/?> holds. 

The skew element to x (in an w-group © = (G,/)) will be usually denoted by x, 
instead of x(f\ when it is clear from the context, that x is the skew element to x 
with respect to the w-group operation / 

q 
We use the symbol x in the following meaning: 

for q > 0 /(.)Oi, . . . ,*„ *,*,+«+1> •••>*,«) = 

it # r+i = ... = x r + € = x; 

for gr = 0 

In the category of w-groups monomorphisms coincide with injective homo­
morphisms and epimorphisms with surjective homomorphisms (see [7]). For that 
reason we call injective and surjective homomorphisms shortly monomorphisms and 
epimorphisms, although we never consider the category of w-groups. Some formula­
tions will be expressed, for clarity, in terms of embeddings, instead of monomor­
phisms. 

Definition 1. Let T: © -• 9l(s) be an embedding of the w-group © = (G,f) into 
the w-group 9l(5) = (A,g(s)), derived from a fc-group 91 = (A, g), where w = 
= s(k — 1) + 1. If t(G) generates the fc-group 91, the pair <9l, t> will be called 
a covering fc-group of the w-group ©. 

Definition 2. If the covering fc-group <9l, T> of the w-group © satisfies the addi­
tional condition: 

for each homomorphism h; © -> S ( s ), where S(s> = (B, gis)) is an w-group derived 
from an arbitrary A>group 95 = (B,g)> there exists a unique homomorphism 
h* : 91 -* © such that h*% = h then the pair <9l, T> is called a free covering fc-group 
of then-group ©. 

It is an immediate consequence of the definition that the free covering fc-group 
is determined uniquely up to an isomorphisms. If the pair <9l, T>, where x ; © -» 9t(s) 

is a covering fc-group of the w-group ®, then, for each a = 0 ,1 , . . . , it is also a cover­
ing &-group of the (a(w — 1) + l)-group ©(a) derived from the w-group ©. 
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The set Zs = {0,1,. . . , $ — 1}, where s is a positive integer, with the (fc -f l)-ary 
operation <p(ll9..., /k+1) s lt 4- ... + lk+t 4- 1 (mods) forms a (A: + l)-group. It is 
a cyclic (A: + l)-group of order s (see [10]). We will denote it by £5tk+i = (Zai <p). 

For the sake of description of the construction of the free covering fc-group of 
some /i-group and for investigation of covering fc-groups it will be convenient to 
treat (k + l)-groups and (n + l)-groups rather, than fc-groups and /i-groups. Hence­
forth throughout the whole paper we assume always n = sk, s = mq. 

3. Free covering (k + l)~groups of (n + 1)-groups. Let © = (G,f) be arbitrary 
in -f l)-group and ce(?an arbitrary, but fixed element of it. Form the set G** = 
= GxZs and define a (k + l)-ary operation/* in G*s in the following manner: 
Let 

xl> --> xk+l e G, lx> ..., Ik+t 6 Zs 

then 

/*((*i>' i)> ••.>(**+!, 4+1)) = 

'i* 4+i^ n - I - q>(lu ...Jk+i)k 
= (/(.)(*i,c, . . . ,xk + 1 , c ,c, c ), (p(lt, . . . ,4+0). 

Theorem 1. 77re (k + \\groupoid ©*s = (G*s,/*) w/*A fAe mapping x ; G ~* G*' 
given by the formula T(X) = (x, 0) fr a/m? covering (k + l)-group of the (n + l)-group 
© = (<?,/). 

Proof. We first show that the (fc + l)-groupoid (5*s = (G*s,/*) forms a (fc + 1)-
group. 

In fact, let 

then 

/*((«!, /i), - , (*i-i J,-i),/*((«i, 4), ..-.(«!+*. W ) > 
(a i + k + 1 , / j + k + 1 ) , . . . , (#2k+l> *2k+l)) ^ 

/|fc h+k* 

= / * ( ( « ! , / l ) , . . . , ( « ! - ! , / | - l ) , (/(.)(«!, C , . . . , a i + k , C ,.£, 

5 £ X <?(4> . . . , / i + k ) ) , . . . , (02ft+l» '2fc+l)) ^ 

4& /ffc 4+kfc n - 1 - p(/ f , . . . , 4+fc) fc 
== (/(.)(«i> c , ...,#*, c , . . . ,a i + k , c ,e, c , 

<pQi>-,li+k)k l2h+tk n~ 1 -9<2)( ' i»-» ' t t+i)* . 
c «n+i. c ,2, c ), 

> <P(2)(h> •••> ^2Jk+l)) =" 

^fc /<fc /kfc / k + 1 fc / 2 k + l f c 

= (/(.)(«i» c , . . . ,a j? c , . . . ,ak , c , a k + i , c , . . . , a 2 k + 1 , c ,£, 

209 



C ),<P(2)(ll>>>l2k + l)) 

which proves that the operation/* is associative, thus ©** is an (n + l)-semigroup. 
Now, we check the solvability of equations. Consider the equation 

(*) /*( (*! , h)> . . . , (*! , /*)> (*> a)» (*i+i> /i+i)»..., (ak + 1 , 4+ 1)) = (6, /) 

with the variable (JC, a). Then 

/I - 1 - ^ ( / l f . . . , /„ a,/ l + 1 , ...,/k+1)fc 
C , <p(/i, . . . , / | , a , / , + 1 , . . . ,/ f t+i)) = (6 ,0 

which leads to the following system of equations: 

9 ( / l 5 . . . , / j , a , / | + 1 , . . . , / k + 1 ) = f, 

/i - 1 - (p(ll9 . . . , / | , a , / l + 1 > ...,lk+i)k 
c ) = 6. 

The first of these equations has exactly one solution for a in the (fc + l)-group 
£,,*+i, and the second has exactly one solution for x in the (JI + l)-group ©. Thus 
the original equation (*) has exactly one solution in the (k + l)-semigroup ©**, 
whence the (k + l)-semigroup ©*s is a (k + l)-group. 

Consider the mapping t : G -+ G*5 given by the formula T(JC) = (x, 0). Note, that 

/(iWfli), .- , t(aB + 1)) = /<*>((*!,0), . . . , (o,+ 1 ,0)) = 

0 0 n - 1 - 0 

= (fi.)(<*i>c> •• ^ « + i ? c, c, c ),0) = (f(al%...9an+l)90) = 

= T(/(a1 , . . . ,a l l + 1)) , 

which proves T : © -» (©*%> to be a homomorphism. Obviously, x is even a mono-
morphism. 

Let (a, /) € G**. Then 
Ik n - 1 - Ik 

/*</>((*, 0), (c,0), . . . , (c,0)) = {f(a, c, c, c ), /) = (a, /) , 

/it 

thus the (k -f l)-group ©** is generated by the set T(G). 
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Take an arbitrary homomorphism A:©-*9S(J), where 93(s) = (B,g(a)) is an 
(n + l)-group derived from an arbitrary (k 4- l)-group S « (fl, g). Define the 

/it 
mapping h* : G*s -» 5 by the formula h*(a, I) = g(l)(h(a), h(c)). Then 

**Cr*((«i , /I) , . .M(^+I . '*+ i )»-

/ifc 4+ifc n-l-<p(lli...Jk+i)k 
= A*(/c)(fli» c > "Mflk+i, c ,c, c ) , f ( ' i H . . , y ) * 

/jfc 4+1fc n - 1 - <p(/„ ...,,4+1)* 

= £(*(*! *»c + i))(A(/(-)(0l, C,...,flfk+1, c , c, c )), 

<P<7i> . . . , 4 + i ) f c 
A(c) ) -

/jfc 4+1^ w — l 
= g(')(K<ti) A(c),..., A(afc+0, A(c), ft(c), A(c)) = 

' i * 4+i* 

= sfeooCAfai), A(<0), ...sg(fc+i)Wafc+1),/i(c))) = 

= ^*(a1),...,A*(ak+1)). 

Note, that /*(c) in the former calculation denoted the element skew to h(c) in the 
(n + l)-group 23(s), since a homomorphism commutes with the operation of taking 
the skew element. 

It follows that the mapping A* : ©*s -+ S is a homomorphism. It is easy to see 
that h*x = h. Moreover, h* is a unique homomorphism for which that equality holds, 
since x(G) generates the (k + l)-group ©*s. I 

To simplify notation, the symbol ©J^ will stand always for (©*%*). 
It turns out that a free covering group contains all free covering (k + l)-groups 

as its subsets. 

Corollary 1. A free covering (k + l)-group ©*s of an (n 4- l)-group © is iso­
morphic to the sub-(fc 4- l)-group of the (k 4- l)-group ©*k" derived from the free 
covering group © *", consisting of elements of the form (a, Ik) where / = 0,1,...,$ — L 

Proof. Define a mapping w : G*s -* G*w by the formula w(x,l) = (A:, Ik). It is 
easy to see that this mapping is injective. Furthermore, 

w(/* ( (a i , / i ) , . . . , ( ^ + 1 , / k + 1 ) ) ) = 

lxk lk+ik n - 1 - <K/i,...,4+i)fc 
= K/J.jfo, c,. . . ,ajt+ 1 , c , c, c ),(p(li> — >4+i)) ^ 

/ ^ 4+1fc « — 1 — <K4, . . . ,4+i )^ 
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= A*)((*i > hk)> •••, 0*+1 > 4+1*0) = 
- / * (&) (^ i , h),..., *>(#*+!, / fc+0), 

which proves that the mapping w : ©*s -» ffi(*
n
} is a homomorphism. Each element 

of the (A: 4- l)-group ©(*" of the form (a, Ik) is an element of the set w(G*$). Thus the 
set of elements of the form (a, Ik), where / = 0, 1, ..., s - 1, is a (A: + l)-group, 
isomorphic to ©*s. • 

4. The Coset Theorem. Post proved the following characterization of covering 
groups: A group G' is a covering group of a certain «-group G iff there exists 
such an invariant subgroup G0 of G' such that G'jG0 = ZM, where u is a divisor of 
n — 1. The following theorem is a generalization of that theorem to covering 
Ar-groups. 

Theorem 2. A (k 4- \ygroup % ~ (A,g) w a covering (k 4- \)-group of a certain 
(n 4- \)-group if and only if for some a e {1, ..., #} f/iere olyto a« invariant sub-(<xk 4-1)-
#rowp S = CB,g(c0) O/*/K? (afc + l)-group 9l(a) swc/j f/wtf 2I(a)/» = (£«,* +1)<«), wAer* 
?Ae natural mapping £ : A -+ Zq is a homomorphism of% onto (£€,fc+1 • 7%e« e#<?/j subset 
of the form £~l (I), where I edqtk+1 is an element of order (JJs an invariant sub-(Pk + 1)-
#rowp 0/fAe (/?/: 4- l)-group 2l (^. Moreover, for the element le&q,k + i of order q the 
pair <9l, A>, wAere A is the inclusion 0 / ( _ 1 ( / ) wto A, is a covering (k 4- \)-group of the 
(n + \ygroup (CHO, g(s)). 

Proof. Let the pair <2l, A> be a covering (A: 4- l)-group of the (n 4- l)-group 
J) = (G,/) . Consider the free covering (A: 4- l)-group ©*s = (G*s,/*) together with 
the embedding x : © -» ©*s*. There exists a unique homomorphism A* : D*s -> 21 
such that A*r = A. Since, according to Definition 1, the subset 1(G) generates the 
(k 4- l)-group % the homomorphism A* is a surjection. Let A*(a l5/) = A*(a2,/). 

/A: /A: 

Then, according to Theorem 1, g(i)(M
ai)> A(c)) = gii){X(a2), A(c)), hence A(a t) s* 

-= A(a2). The homomorphism A being injective, this yields at = a2. Let us denote W^ ^ 

= {(a, /) : a 6 G} for / = 0 ,1 , ..., s - 1. Thus the mapping A* lwl is injective for 
/ = 0 , 1 , . . . , * - 1. 

Now, let A*(Wh) n A*(Wh) # 0. We show, that in consequence A * ( ^ ) ^ 
= A*(^,2). In fact, let for some ai,a2eG; X*(a1, / t) = A*(#2,I2) (we can assume 

/2 > lt). Then 

/XA: /2A: 

S(h)(Mfli)> A( c» = gihyWPi), Mc))> 

lxk (l2~li)k hk 

Z(h)M<*il Mp)) = gih)(M
a2)> MP), MP)), 

( / 2 - / 1 ) * 

*(«i) « gih-h>(Mp2), Mc) ). 
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Take an arbitrary element (x, l2) e Wh. Then 

l2k 

n — 2 l2k 

= g(,+i2)WW, A(a2), K&2)> A(a2), X(c)) = 

n - 2 (t2 - / t) fc / ^ 

= 8(s+12)(*>(*)> Kai), ^2>» A(a2), A(c), A(c)) = 

/i — 2 /tfc 

= ^(s+io^W, ^ 2 ) 5 Ka2\ Kad, Kc)) = 

« ~ 2 Itk n — 2 
= g(h)Mf(x, a2,a2, at)\ X(c)) = A*(/(x, a2, a2, ax), / t) . 

Similarly, let (x, / J e Wh. Then 

^ * ( ^ / i ) = g ( / 1 ) ( ^ X ^ ) ) = 

n — 2 ^fc 

= £(s+l,)W*)> ^(«i)» ^ i ) > ^Oi)> % ) ) = 

n — 2 (l2 — lt) k lxk 

= g{s+i2)(A(x), A(aj)> ^ i ) > ^ 2 ) , *(<0 ,A(c)) = 

n — 2 l2k n — 2 
= .S(i2)W/(*, « i , <*i > a2)), A(c)) = A*(/(x, ax, ax , a2), /2). 

The last equalities show that A*(Wh) = A*W2) . 
Let for some ll912 e {0 ,1 , . . . , s - 1} the equality X*(Wh) = A*(Wh) holds. 

Thus there exist elements (at, lt) e Wh and (a2, /2) 6 W[2 such that A * ^ , It) = 
= A*(a2, /2), whence 

*<i,)W«i)» Kc)) = g<i2)(A(a2), ^( c»-

Take an arbitrary positive integer j . From the last equality it follows, that 

ltk jk l2k jk 
gU)(gih)a(ai), X{c)), X(c)) = g0)(gh) (X(a2), Me)), X(c)); 

(j+lt)k U+l2)k 
gu+h)(X(a1), X(c) ) = g(j+h)(X(a2), X(c) ). 

Thus 

etsk rtk e2sk r2k 

*a+i,)(A(ai). Kc), Kc)) = ga+i2)(A(a2)» *(<0, A(c)), 
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where 

0 £ (J + /i) - ets <s, OS U + /2) ~ £2* < ^ 
rt **j + Ix — ets, r2 = J 4- l2 — e2

5-
Hence 

W ( e > i > * ), r,) = A*(/(e2)(a2, c ), r2), i.e. A*(^ t) = ^(K2\ 

It is easy to see that the last equality implies X*(Wtl) = X*(JViz). 
Let q be the least positive integer, for which X*(Wq.l) = A*(W/

s~i). Suppose 
that ^ < 5*. Let s ~ mq + r where r < qy then A*(FF(<?_1)+$i) = ^*('*r(,-i)+Ji), 
whence X*(Wq) ~ X*(W0). Hence A*(fFs^) = X*(Wm+r„x) = A*(^_1+r)(since 
A*(WH) = X*(W(y„1)q+q) = A*(FF(y„1)f)). From the last equality, by the definition 
of q, it follows that r = 0. Thus # is always a divisor of s (s = m#). Let for some /x 

and /2, such that lt£l2< q> the equality X*(Wh) = A*(JF,2) holds. Then A*(W0 + Il) = 
= A*(^ ( l2. l l ) + l l), A*(^0) = WWlz-lx)9 whence /2 - /, - 0 (by l2 - lt < q). 
This proves that the mapping X*\ W0 u ^ u W€__ j is injective. The set A can be thus 
decomposed into pairwise disjoint cosets X*(WQ), X*(Wl)9 ..., X*(Wq_x). Moreover, 
g(X*(Whl ..., X*(Wlk+l)) - W W ^ ..., JFfc+1)) c A*(^(ll,...,rk+l)) which proves 
that the decomposition of the (A: + l)-group 91 into cosets is compatible with the 
operation g. Denote that congruence relation by 0 . Thus 91/0 = <£„,*+1- Let £ be 
the natural mapping of the (k 4- l)-group 91 onto the quotient (& + l)-group 21/0. 
Take an arbitrary element le&qtk+l of order /?. Then the order of le(dqtk+l)(P) 

equals one. The mapping £ : A -• Z€ is a homomorphism of the (/?& + l)-group 9l(/?) 

onto the (pk 4- l)-group (&qtk+l)m.Th\x$ the subset Wx = C"Hl) is an invariant 
sub-(j5fc 4- l)-group 91 )̂ as the inverse image of an invariant element of order one. 
Let / G G€,fc+1 be an element of order q. Then /is a generator of the cyclic (k 4- l)-group 
$«,*+! • Hence the set Wx generates the (k 4- l)-group 91, which proves that the 
pair <9t, A>, where X is the inclusion of Wx into A, is a covering (k 4- l)-group of 
the (n 4- l)-group (J^,g (s )). 

Conversely, let the (ak + l)-group 93 = (B, g(a)) be an invariant sub-(afc 4- 1)-
group of the (<xk + l)-group 9l(a)) = A,gia) such that 9I(flE)/93 = (<£qfk+ i)(a). In addition, 
assume that the natural mapping £ : A -* Zq is a homomorphism of the (k 4- l)-group 
91 onto the (fc 4- l)-group G^)k+1. As it has been already shown, the set Wx = 
= C"1^)* where /e €qfk^i is an element of order q9 generates the (k 4- l)-group 91 
and is a $uh-(qk 4- l)-group of the (#A: 4- l)-group 9l(4). The pair <9l, A>, where X 
is the inclusion of Wx into 4̂, is in consequence a covering (A: 4- l)-group of the 
(n 4- l)-group(^,g ( s )). • 

The just proved theorem indicates a following strict connection between the 
embedding X:G-> A and the epimorphism £: A -» Zq — each covering (k 4- l)-group 
<9I, X} determines a unique natural mapping £ : 91 -+ (£€jJfe+1 and conversely, each 
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epimorphism f : 91 -* C,,*+1 determines a unique inclusion A : C~!(0) -» v4, where 
the pair <9I, A> is a covering (fc 4 l)-group of the (n + l)-group (CH^g^). 
Henceforth we shall use interchangeably the symbols <9t, A>, where A : G -* f̂ or 
<9l, C>» where C:A-+ Zq or <9t, A, C>, to denote the covering (A: 4- l)~group 91 
of the (n + l)-group (5. Define the notion of index of a covering (fc 4- l)-group. 
That notion, in case of k = 1 (i.e. for covering groups) has been introduced by Post 
(see [10], p. 240). 

Definition 3. A covering (k 4- \)-group <9t, £> has index q, if £ : A -+ Zq. 
It is quite plain from the definition that the index of a covering (k 4- 1)-group 

of {n 4- 1)-group is always a divisor ofn/k. 

Corollary 2. A covering (k 4- l)-group <9t, A> of an (n 4- l)-group © is a free 
covering (k 4- l)-group of © if and only if the index of <9t, A> is equal to s = n\k. 

Proof. Use the same notation as in Theorem 2. If q = 5, then A* : ©*s~» 91 
is a monomorphism, thus an isomorphism, since A* is always surjective. Hence the 
(k + l)-groups 91 and ©*s are isomorphic if and only if q = s. I 

In a special case one can derive a theorem, related to the Theorem 2, which is 
exactly analogous to the mentioned above Post's Coset Theorem. 

Theorem 3. A (k 4- X)-group 91 = (A,g) contains an invariant sub-(k 4- \)-group 
$ = (B, g) such that 91/2J = (£4,fc+i if and only if the greatest common divisor of q 
and k equals to 1 and <9I, {> is a covering (k 4- l)-group of the (n + \)'group © = 
= (C-1(0), g(s)). Then B = C"!(0» wAere / zs //?*? urifyf/e element of the (k 4- l)-gr0wp 
^,k + i ^ c ^ ffeif q\ Ik + 1. 

Proof. Let 95 = (B9g) be an invariant sub-(/c 4- l)-group of the (k 4- l)-group 
91 = (A9 g), such that 91/93 = $qtk+i and { is the natural mapping of 91 onto 91/S. 
As is known from [10], each quotient (k 4- l)-group which is determined by an 
invariant sub-(fc + l)-group, is derived from a group. But (see [10], p. 286) 
a cyclic (k 4- l)-group of order q is derived from a certain group if and only if 
the greatest common divisor (abbreviated in the sequel by g.c.d.) of q and k equals 
to 1. By Theorem 2 the pair <9l, £> is a covering (k + l)-group of the (n 4- l)-group 
© = (C^O), g{s)). Let / = £(!?). The element /, corresponding to the invariant sub-
(k + l)-group, is an element of order one (see [10], p. 231). Hence q\lk 4- 1. 

Conversely, let the pair <9I, £>, where ( : A -» Zq, be a covering (k 4- l)-group 
of the (n 4- l)-group © = (£~x(0)9gia)). Assume that g.c.d. (q, k) = 1. Then in the 
cyclic (k 4- l)-group there exists a unique element / of order one (see [10], p. 304). 
Hence, by Theorem 2, the set B = C"1(0 is an invariant sub-(fc 4- l)-group of the 
(k 4- l)-group 91. The invariant sub-(fc 4- l)-group determines a unique congruence 
relation 0 on the (k 4- l)-group 91 such that B is an equivalence class of 0. Simultane­
ously, the homomorphism { : 91 -*> &qtk+i determines also a congruence relation 0' 
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on 91 such that B = £"*(/) is an equivalence class of &, Hence 91/95 = dq *+ 1 

(see [9]). 
It is known from [10], p. 241, that there exists a strict connection between covering 

groups and reducibility of n-groups. 

Corollary 3. If the (k + l)~group 91 = (A, g) with the embedding X : © -» 9I(OT<r) 

is a covering (k 4- l)-group of index q of the (« 4- l)-group ©, then the same 
(k 4 l)-group 91 with the embedding 1 : (&(m-i)-* 9l(g) is simultaneously a free 
covering (k 4 l)-group of the (qk 4 l)-group ©(m-i) which is a creating (qk 4 1)-
group of the (n 4 l)-group ©. 

Proof. Let <9I, A, O be a covering (& 4 l)-group of index q of the («-f- l)-group ©. 
According to Theorem 2, <9I, A, £> i s a covering (/: 4 l)-group of the (qk 4 l)-group 
(C"*"1, giq)) (since the element 0G<£4,fc+1, being a generator of C€ t k + 1 , is an element 
of order g). Simultaneously, the (n 4 l)-group (C~3(0)> £(<o)(m) is isomorphic to the 
(n 4 l)-group ©. Hence ©(m-i) = (CHO)^^) is a creating (#& 4 l)-group of the 
(n 4 l)-group ©. The (fc + l)-group 91 with the embedding X :© (w-i)-> 9l(9) is 
a covering (fc 4 l)-group of index q of ©(m-i). Thus, in view of Corollary 2, <9t, A> 
is a free covering (& 4- l)-group of ©(OT-i). • 

Also the converse theorem is true. 
Corollary 4. If the (n 4 l)-group © = (G,f) is derived from the (qk 4 l)-group 

© ( m . n , then the free covering (k 4 l)-group <©jJ!2-i),T> of the (g/c 4 l)-group 
(5(m-i) is also a covering (fc 4 l)-group of index 2 of ©. 

From Corollaries 3 and 4 one obtains the following generalization of Post's 
result (see [10], p. 241). 

Corollary 5. An (n 4 l)-group © posseses a covering (k 4 l)-group of index q 
if and only if the (n 4 l)-group © is derivated from some (qk 4 l)-group ©(m-i). 

Proof. If the (n 4 l)-group © posseses a covering (k 4 l)-group of index q, 
then in view of Corollary 3, © is derivated from some (qk 4 l)-group ©(m-i). 

Conversely, if the (n 4 l)-group © is derived from a (qk 4 l)-group ©(m-i), 
then in view of Corollary 4, the free covering (k + l)-group (©(„-!))** of ©(m-i) is 
also a covering (k 4 l)-group of index q of ©. I 

5. The category of covering (k 4 l)-groups of (n + l)-groups 
As we already mentioned, a covering (k 4 l)-group (91', X, (> of index q of the 

(n 4 l)-group 91 is determined by the pair of mappings: X : A -> A' and C : A' -* Zq. 
Hence it seems to be natural to define a morphism in the category of covering 
(k 4 l)-groups as a triple of homomorphisms. 

Definition 4. Let <&',AA9{Ay and <93',AB,CB> be covering (k + l)-groups of 
indices qA and qB of (n 4 l)-groups 91 = (A9f) and 93 = (5 , / ) , respectively. A triple 
h\ h, C of homomorphisms h' : 91' -» ©', h : 91 -* S , t : &qAtk+i -* C^.k+i where 
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£(0) = 0 will be a morphism <A\ K O : <«', A ,̂ Ĉ > -> <»', AB, &»> *f t h e following 
diagram 

z _ i — z 

y4-
A' 

—5 

« I 
^ -+B 

is commutative. 
The following theorem indicates a connection between the homomorphisms H, h, £ 

and simplifies the question of commutativity of the former diagram. First we prove 

Lemma 1. Let Ct :G'-* Zqi and C2 : G' -* Zqi be epimorphisms ofa(k + \)-group 
D' = (G',g) onto the cyclic (k + l>grotq>s1£tuk+l a»rfC f a ,4 + l .If CJ'CO) => Ci_1(0), 
Men fnere exists a unique epimorphism £ : <£4l,*+i -»• C«.t+i J«cA that Ĉi = £2-

Proof. For a', V e C let W O = d(6') = / e Z f I. Then a' = * { .>(a l t . . . . a»+ 1) , 
*' = * < # i , . . . , & » + i ) where a, eCf *(()), MCi_ 1(0), / « l, . . . , * + 1 . Hence 
C2(a') = Cifeofci* •••> aik+i)) = 9(i)(C2(«i). -.Cifcik+i)) = <P(0(0, ...,0) = <p(0 x 
x(C2Oi), •••,C2(&i*+i)) = C2fe<#i> ->*i*+i)) = CzQ>')- Thus in view of the 

Isomorphism Theorem, there exists a unique epimorphism £ 
such that (JCi = C2- • 

Theorem 4. Consider the following diagrams 

:£, 4 l . * + l ^ . f c + l 

e. 

A'-
h' 

-~^B' 

G. '«A 

/4 

k + 1 - € , 

p . 

CB*B 

5 
wAere <9f, AA, Cx> #«^ <®'» AB, CB> flr^ covering (k 4- \)-groups of indices qA and qB 

of (/1 + lygroups 91 = (A,f) and® = (B,f), respectively, andh': 9T -> 33', J : ^ , k + 1 -* 
~* e«B,k+i where W>) = 0, A : 9l(m-*} -> 8^- i j wAere 21^-^ a/i</ 8 ^ , are creating 
(qAk + \)-groups of the (n + lygroups 91 am/ S determined by <9f, A^, C >̂ #«rf 
<93\ AB, CB>- ^ ^ n ^ existence of any pair of homomorphisms h\ h9 £ and com­
mutativity of the respective diagram implies the existence of the third morphism and 
commutativity of the remaining two diagrams. 
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Proof. Let homomorphisms h\h be given in such a way, that the respective 
diagram is commutative. Let a €^{0). By Lemma 1 there exists a unique epi-
morphism £ : G^,fc+1 - (Bh(W) such that &A = (Bh\ Note, that {(0) = ftxGO = 
= £Bh'(a') = 0. Thus the homomorphism £ : 6^,*+! -> ^B,*+i is an epimorphism. 
From the definition of £ it is evident, that £ does not depend on the choice of the 
homomorphisms h' and h. 

Now, let homomorphisms A' and £ be given in such a way, that the respective 
diagram is commutative. According to Corollary 3, <8T, A ,̂ d> is a free covering 
(A: + l)-group of the (qAk + l)-group St^-^ and <»', XB, £B> is a covering (k + 1> 
group of the (qAk + l)-group 93(m-v Let a e X Then CBh'XA(a) = &AXA(a) = £(0) = 
= 0, whence A'^04) cz XB(B). Define a mapping h : A -> B by the formula A(x) = 
= XB

xh'XA(x). From the definition of h it is clear that h : 8l(m^) -> ^(mi1) and 
XBh = h'XA. 

Finally, let homomorphisms h and £ be given in such a way, that the respective 
diagram is commutative. As we already mentioned, <8T, XA, Cx> is a free covering 
(A: + l)-group of the (qAk + l)-group 8t(m-»r Thus there exists an homomorphism 
A' : 81' -» 2J' such that /?'AX = XBh. For the homomorphisms h and A' there exists 
an epimorphism { : 6^,*+! -» C^fc+i such that £'£A = £Bh' and £'(0) = 0- It follows 
from the last equality, that t' = £. Hence ££A = CBA'. • 

Proposition 1. Consider the following diagrams 

t t t 
1^4 SCD G , 

A'~ 
K 

>D' 
A; 

— J ? ' 

h\ 

* i 

Z>' 
A; 

^D 

-*Z> 

5' 

AB 

5 

ft if ' €2 

t t 
C*4 AAX 

* ! 
C^i> 

£>-

W, B^B 

where <8l\ AX,C^>, <SJ\ XB,CB} are covering (& + l)-groups of indices qAiqB of 
(/i + l)«groups 81, 93, respectively, and XD : D -> D' is an embedding of a (fofc + 1)-
group 1> into a ( ^ + l)-group £'(fD) derived from $' , and, in addition, AD(D) 
generates D' and g0 is the least positive integer for which XD(D) is a sub-(#i>fc 4- 1)-
group of D'(€o), Ci> is an epimorphism of £ ' onto <&qDik+ x, A'!: 81' -* D', A'2 : £>' -• ©', 
*i :«*„*+1 ~> « to.*+i, C2 : < W i -> G,B,k+1 where £(0) = 0, £2(0) = 0,h t : Werf/4 
~» (̂itiDinl1)* A2 : t> -• ©(mo1)- T, len the existence of any two pairs of the three pairs 
of homomorphisms h[, A2; hl,h2;£t, £2 and commutativity of the respective diagram 
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implies the existence of the third pair of homomorphisms and commutativity of the 
remaining two diagrams. 

Proof. Let the pairs h\, h2 and ht, h2 be given in such a way, that the respective 
diagram is commutative. From the definition of the covering (k -f l)-group and 
from Theorem 2 and the accompanying corollaries it follows that the pair <£', XD} 
is a free covering (k + l)-group of the (qjc 4- l)-group D. Thus there exists the 
epimorphism CD : $ ' -> <E,DiJk+1 for which C^CO) = XD(D). Further, from Theorem4 
there exists a pair of epimorphisms ix : (£( <lA,k+l £, 4fD.*+ l> *»2 «*:«< €D.*+1 G; '«».*+i 
for which the respective diagrams are commutative. 

Now, let the pairs h'l9'h'2 and £l91% be given in such a way, that the respective 
diagram is commutative. Let D = CDJ(0)

 ar*d k\ D-+ D' be the inclusion of D 
into D'. From Theorem 2 it follows, that <$', AD, £D> is a free covering (fc 4- 1)-
group of the (qDk + l)-group J). Theorem 4 asserts the existence of homomorphisms 

% D(mDW-i
> and h2 '• T> -» 93(m~i} f° r which the respective diagrams are 

commutative. 
Finally, let the pairs hx, h2 and £i, £2 be given in such a way, that the respective 

diagram is commutative. Let <X>', XD9(D} be a free covering (k 4- l)-group of. 
the (qDk + 1) —group I), Theorem 4 assures the existence of homomorphisms h\ : 
: 21' --> D' and /^ : D' -+ 93' for which the respective diagrams are commutative. I 

A more detailed description of the category of covering^ + l)-groups of (n + 1)-
groups will appear in [6]. 

In case of qA = qB, one can draw from Proposition 1 the following 

Corollary 6. If <2T, 1A,CA) and <93', AB, £B) are covering (k + l)-groups of 
index # 0f (n + l)-groups 21 and 93, respectively, h[ : 21' -+ X)', /*2 : ©' -* 93' where ©' 
is a certain (& + l)-group, and CB^I = Co then there exists an (n 4- l)-groupX>, 
a mapping AD : D -» D' and homomorphisms At : 2I(w-i) -» $(m-i), h2 : £(m-i) -+ 
-> 93(M-i) such that <D', A^,^) is a covering (k + l)-group of index q of the 
(n + l)-group D and <h[, hl9idZq) : <2T, A ,̂ Cx> - <$'> ^i» CD>, <*i, h2, idZq> : 
:<£^D,CD>-+<S',AB,CB>. 

Proof. The following diagram J 

W7 id7 

it i 

- Z „ 

A; 
CB 

B' 

D B 

where Co ~ £»*2» D = CD^O) is commutative. By Proposition 1, there exists homo-

219 



morphisms hi : 5I(OT-t) -» D(m_i), h2 : 35(m-i> -» S(m-i) fulfilling the demanded condi­
tions. I 

6. Some characterizations of (n 4- l)-groups derived from {k 4- l)-groups. In the 
first theorem of that paragraph, we give a condition for an (n 4- l)-group to be derived 
from some (k 4- l)-group. That condition is a modification (adjusted to our const­
ruction of the free covering group) of the condition proved by Post (see [10], 
p. 229). 

Theorem 5. An (n 4- \)-group © = (G,f) is derived from some (k 4- l)-group 
®(s-») if and only if for each element ce G there exists an element deG such that 

s (k~l)s 
1 ° f(d9 c , x) = x for each xeG; 

k - 1 

fc~1 & - 1 
= / ( * 1 5 •••> •*<> c » "> xi+l » •••> * n + l - f c ) ==: f(«» C > * 1 J •••> */ i+l- fc)> 

/or eac/r x t , .,.,xfl+1_ke.G a«rf arbitrary i = l,'...,/i -f 1 — k. In addition, the 
(k 4- l)-ary operation g in the (k 4- l)-growp©(s-i) = (G,g) can be given by the formula 

* - 1 (Jfc - 1) C* - 1) 
g(Xl, . . . , Xk+i) = / ( x 1 , . . . , #fc+i> « , c ). 

Proof. Let the (n 4- l)-group © = (G,/) be derived from a (A: 4- l)-group 
©(,-1) = (G,g), i.e. g(s) = / . Take an arbitrary element ce G. Let d be the element 
skew to c in the creating (k 4- l)-group ©(s-i). Then 

A:- 1 
/(ATJ , ..., xt, dy c , xi+i9 ..., xB+1_fc) = 

A: - 1 
= ^(s-l)(^l» ">xi>g(d c ^ xi+i), xi+2, . r.,xn+1_k) = 

^ # ( s - l ) ( * l > •••> * i> * * + l > •••» - ^ i i + l - * ) -

Similarly 
i t - 1 

/ ( * i , . . . . xi9 c , a, *,-+i, . . . , *„+i-&) = 

Jfc- 1 

which proves that c and d fulfill the condition 2°. Hence 

. j (A: - 1) J £ - 1 k - 1 
/(</, c ' ^ = /(<*> g , — ,<* c? x) = 

s 
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k - 1 k - l k - \ k - 1 k - \ 

7^1 ~~' J - 1 
i t - 1 

= ... = g(d, c ,x) = x, 

that is, also the condition 1 ° is fulfilled. Moreover 

k - l k - 1 
g(xt,...,xk+1) = g^iXi,...,xk+i, d, c ,...,d, c ) = 

s - 1 
k - l k - l s - 1 (k - 1) (j - 1) 

= / (*! , ...,*t+1,rf, c ,...,</ c ) =f(xi, ••-, JCfc.,.,, d , c ). 

j ^ 1 . 

Conversely, let in the (« + l)-group © = (G,f) for each element ceG there 
exists an element deG such that the condition 1° and 2° are fulfilled. Define 
a (k + l)-ary operation g in the set G by the formula: 

s - 1 (A: - 1) (5 - 1) 
g(xl> •••> xk+l) — f(Xl> •••> Xk+l> " ' c )• 

Then 

* - 1 (fc - 1) (s - 1) 
= f(xl' • " ' • * i t / ( * J + l> •••> * i + l+*> " > c )> -Kf+Z+t* •••> x2k + l> 

S- I (k - l)(s- 1) 
, d , c ) = 

5 - 1 (k-l)(S-l) 
= f(2)\xi 9 ••• 5 *J> * i + l ? ••• J * i+ l+ fc> " J ^ )> ** + 2+fc» ••• J x2k+l 

s - 1 (A; - 1) 0* - 1). 
, rf , c ) «• 

2(s - 1) 2(ifc - 1) (J - 1) 

thus the operation g is associative. 

2(s- 1) 2(Ar- 1) ( 5 - 1) 
= f(2)(Xl> •••> *2fc + l» d y C ) , 

thus the operation g is associative. 
Let g(a l 5 . . . ,«;_!, x, a|,..., a*) = b for fixed ai9..., akeG. Hence 

s - 1 (A: - 1) (* - 1) 
f(al9...9al„i9x9ai9 ...9ak9 d , c ) =* 6. 
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The last equation has a unique solution in the (n -f l)-group © = (G,/). This proves 
that the set G with the just defined operation g is a (k 4- l)-group. In addition 

s - 1 (fc - l) (j - l) 

= £<s-i)(/(*i> •••>**+!, ^ , c ) ,x k + 2 , . . . ,x r t + 1) = 
J - 1 (A: - 1) Cs - 1) ^ - l 

— 8(s~2)(f(f(Xl> •••> *k+l> « J C )'*fc + 2> •••> *2*+l> ^ » 

(* - l) (* - l) 
, C ) , . . . , X n + 1 ) = 

2{s - 1) 2(fc - 1) (s - 1) 
= g(s-2)(f(2)(Xl> •••> *2fc+l> ^ ? C ) , . . . , X n + 1 ) == 

J - 2 ' (fc - 1) (jr - 2) 

^ ^s-2)(/(^l? •••> X2k+1> " 5 c ) > • • • > * / i + l ) ==: ••• = = 

= / (* ! , . . . ,xB + 1 ) , whence g(s) = / , which proves the (k + l)-group ©(s-i) = (G,g) 
to be creating (k + l)-group of the (n + l)-group © I . 

In some particular cases the covering (k 4- l)-groups have a very simple form. 

Theorem 6. If the (n 4- l)-group © = (G,/) fr derived from the (k -h \)-group 
©(s-i) = (G, g), /A^« <©(s-i) x (£s fc+1,A>, w/*e/*e A : G — GxZs is given by the 
formula X(x) = (x, 0), w a/ree covering (k 4- \)-group of®. 

Proof. Let the {k 4- l)-group ©(s-i} = (G,g) be a creating (k 4- l)-group of the 
(n + l)-group © = (G,/) , i.e. g(s) = / . Form the direct product ® ( s-i)X6S ) k + 1 = 
= (GxZ s ,g ) . The mapping X : ©-» (®(s-i) x£ s > k + 1) ( s ) is a homomorphism, since 

A(/(a1? ..., aB+1)) = (f(au ..., aw+1), 0) = 

= (£<s)(«i> •-., *»+i), 9(s)(0, ..., 0)) = ^(5)((a!, 0), ..., (a„+ 1 , 0)) = 

Let the (k + l)-group ©*s = (G*s,/*) with the embedding T : ©-» ©(*J and the 
fixed element c e G be a free covering (fc 4- l)-group of D. Then there exists a unique 
homomorphism A* : ©**-• ®(s-i) x £ S ) H 1 such that A*T = A, defined as in 
Theorem 1. The (n + l)-group © is derived from the (k 4- l)-group ©(s-i), thus, 
by Theorem 5, one can choose an element deG to the given element c e G in such 
a way that the conditions 1° and 2° are satisfied. Let (a,l)e G*s. Then 

Ik 
**(«. 0 = g«)Wfl), * (<0) = g(l)((a, 0), (c,Q),...,(c,0)) = 

Ik 
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Ik Ik + 1 Ik k - 1 k - 1 
= (8<ofa * )> <P(i)( 0 )) = (#(s)(a, c , c ,d,..„ c ,<Q,1) = 

Ik (k - 1) (s - /) s - / n + / - J ^ - / 
= t/fo * , c , rf ),/) = (/(*, c , rf ),/). 

n + I — s s — I 
For each 6e(? and le Zs the equation/(x, c , d ) = b has a unique solu­
tion in the (n + l)-group ©. Hence for each element (bJ)eGxZs there exists 
a unique element (a, /) 6 G*s such that A* (a, /) = (b, 1). This proves the homo-
morphism A* : ©*s~> ©(s-i) x(£s>k+1 to be an isomorphism. I 

That theorem enables to give some other necessary and sufficient conditions for 
(n -f l)-group to be derived from a (k + l)-group. We first prove 

Lemma 2. If 51 = (A,f) is an (n + 1)-group derived from a (k + 1)-group 
9l(s-i) = (A, g) and h :Sll-^ S& is an epimorphism onto an (n -f lygroup 9$, then 95 
is also derived from a certain (k + \)-group S(s-i). 

Proof. Take an arbitrary element ceB. Since h : 21-• S is a surjection, there 
exists an element c' e A such that A(c') = c. The (# + l)-group 91 is derived from 
the (k + l)-group 2l(s-i), thus an element rf' e A can be chosen to the element c' 
in such a way, that c' and d' satisfy the conditions 1 ° and 2° of Theorem 5. Let 
d = h(d'). We show, that c and d also satisfy 1° and 2°. In fact, take an arbitrary 
element xeB. There exists x' e A such that h(x') = x. Then 

5 (k — 1) ^ .s (k — I) s s (k — 1) s 
M c ,x)=f(h(d% h(c% h(x')) = h(f(d', c' ,*') = /*(*') = x, 

which proves that c and d satisfy 1 °. A similar reasoning proves that 2° is also satisfied. 
Hence the (n + l)-group 93 is derived from a certain (k + l)-group ©(s-i). I 

Proposition 2. An (« + l)-group © is derivated from a (k -f l)-group ©(5-i) if 
and only if there exists an epimorphism QG : D(** -» I) such that QGTG ±= /rfG. More­
over, the mapping gG can be chosen in such a way, that QG ; ®*s ~» ®(S-i). 

Proof. According to Theorem 6 the direct product ©(S-i)X<£Jfk+1 with the 
embedding A : ©-> (©(S-i)X(£5>fc+1)(s) given by the formula k{x) = (x,0) is a free 
covering (k + l)-group of the (n + l)-group ©. The projection £c?:®(5-i)X 
x^s,fc+i"^ ®(s-1) is obviously a homomorphism, for which QGX — «/<y. 

Conversely, let QG : ©J*-* © be an epimorphism for which gG% = *dG. Since gG 

is an epimorphism and the (n + l)-group ©*5* is derivated from the (k + l)-group 
ffi*s by Lemma 2 © is derived from some (k -f l)-group ©^-i). Let h : © -* 
-* (®(s-i))(S) be the identity. There exists a homomorphism A* : <5*5-* ®(s-*) s u ch 
that A*TG = h = M/C. I 
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Proposition 3. An (n 4- l)-group © = (G,/) is derived from a (it 4- l)-group 
©(,-*> if and only if there exists a mapping t\ : G**-+ G**, where <<S*S, t, £> is a free 
covering (& 4- l)-group of ©, satisfying the following conditions: 

1° £ti(x) s f(x) - 1 (mod ^) for each x e G*s; 
2° *K/(?)(*i> -.., ^„+i) =/(!>(^i, . . . ,* i - i , *y(*i)> *«+i, . - - ^ I I + I ) for each JC15 ..., 

..., xH+t € G*a and arbitrary i = 1,...,» + 1; 
3° tj... t\(x) = x for each x e G*5. 

$ 
Moreover, such a mapping r\ is already an automorphism of ©(*J. 

Proof. If the (n 4- l)-group © = (G,/) is derived from a (k 4- l)-group 
©(J-1) = (G, g), then by Theorem 6 the direct product ®(s-1> x GStk+1 is a free covering 
(fc 4- l)-group of ©. It is easily verified that the mapping rj : GxZs-> GxZs given 
by the formula r\{a, I) = (a, a(l)), where a e G, / e z<) <r = (s - 1, jr - 2, ..., 1,0) is 
a cyclic permutation of order j , satisfies 1°, 2° and 3°. 

Conversely, let the mapping rj : G*s-+ G*s satisfy the conditions 1°, 2°, 3°. 
Define a mapping Q : G*s-* G by the formula Q(X) = x"lrj ... *f(x) for x e Wx = 

/ 
= C"1^). Let x l 5 ..., xB+1 e G*s, where x* e JF,. for i = 1, ..., n 4- 1. Then 
e(/<!)(*i. ••.>*,,+i)) = *~1>? ... ^(/(?)(^i,...,^»+i))=sT~1i/... i/(/(!J)(^1,...,xII+1)) = 

= T"1(/(t)(^ ... l (*l)fM* •- ffo+1)))^ 

'1 'w+1 

= / ( t ~ ^ ... *K*i), ....t"1!? ... »i(xn+1)) = / t e (x0 , ...,^(xn+1)). 

Thus g : ©*,* -+ © is a homomorphism, and even an epimorphism. Consequently, 
by Lemma 2, the (n + l)-group © is derived from some (k 4- l)-group ©(s-i). 

If the mapping t\ : G*s-» G*s satisfies the condition rj ... r\ = w/then if ... >/ = 

= id, whence rj ... *y = r/. Let xl5 ..., xn+1 e G*s. Then 

« 4- 1 

^(/(!)(*i>..->*»»+i)) = >J - ? ( / w ( * i . - - M ^ + i ) ) = / ^ ( i K ^ i ) . - - - t « i ( ^ + i ) ) » 

which proves that r\ : ©*s* -• ©(*' is a homomorphism. Also, the condition t\ ... r\ = 

= &/ implies that JJ is injective and surjective. Hence t\ is an automorphism. I 
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In a special case, when gx.d. (s, k) = 1 then in the cyclic (k 4- l)-group (£ft*+i 
there exists a unique element of order one. That fact admits to extract some additional 
relations between the covering (k + l)-group and the creating (k 4- l)-group of the 
(n 4- l)-group. 

Corollary 7. If the (n 4- l)-group © = (G,f) is derived from a (k 4- l)-group 
©(•-») = (G,g) and g.c.d. (s,k) = 1, then the sub-(& 4- l)-group S » (C'W*/*) 
of the free covering (& 4- l)-group <©*5»t, f>> where /e(£Si*+1 is the element of 
order one, is isomorphic to ©(s-i). 

Proof. By Theorem 6, the direct product <S(s-i)XCJ>k+1, A> is a free covering 
(fc 4- l)-group of the (« + l)-group © = (G,/). In view of Theorem 2, the set 
Wx = 6x{/}, where le(£S)k+1 is the element of order one, is a sub-(fc 4- l)-group 
» = (Whf*) of the (k + l)-group ©*s = V ^ ^ + i ' T h e (* + l>group 
©(s-i) x {/} is isomorphic to ©(s-i). I 

Theorem 7. Let g.c.d. (s9 k) = 1 and <©*s, t, £> *e a/ree covering (k 4- l)-group 
of the (n 4- \ygroup ©. TAew the following conditions are equivalent: 

1° */?e (w 4- \)-group © w derivated from the (k 4- lygroup ©(5-i); 
2° a// MM" + l)-gr0wp.y o/ rAe (/i 4- Y)-group ©(*s) 0/ /Ae >rw (CHO,/^)), 

wAere / e Z „ are isomorphic; 
3° f/re 5i/ft-(̂  + lygroup of the (n 4- \ygroup ©$ of the form (CHO, /(Jj), wAere 

/e GSfk+1 w fAe element of order one, is isomorphic to the (n 4- l)-gr0«p ©. 
Pro of. We show that 1° => 2° => 3° => 1 °. 
Let the (n 4- l)-group© be derivated from the (k + l)-group©(s-i). By Theorem 6 

the direct product ©(J-i)X<£s>fc+1 is a free covering (k 4- l)-group of the (n + 1)-
group ©. The order of each element in the cyclic (k 4- l)-group (£,,*+1 is a divisor 
of s9 whence the one-element subsets {/} are sub-(« 4- l)-groups of the (n 4- l)-group 
(GSjfc+ i)(S). In consequence, the (n 4- l)-group (©<«-i))(S) is isomorphic to each of the 
(n 4- l)-groups (®(s-i) x {/})(s). 

Now, we assume that all the sub-(/i 4- l)-groups of the form (C-1(0»/u))» where 
leZq9 are isomorphic. As shown in Theorem 3, in a (k 4- l)-group ©** there exists 
a sub-(fc 4- l)-group S = (CVoX/*) where /0 e £f,k+i is the element of order one. 
The (n 4- l)-group » ( I ) = (C'^/o)./}?)) derived from the (fe 4- l)-group » is, 
by assumption, isomorphic to the (n 4- l)-group (C^O),/^) which by itself is 
isomorphic to the (n 4- l)-group ©. 

Finally, assume that the sub-(/i 4- l)-group (CHO*/?)* where /€C f i k + 1 is the 
element of order one, is isomorphic to the (n 4- l)-group ©. According to Theorem 2, 
the (n + l>group (r 'COJft) *s derived from the (k 4- l)-group ( rHO,/*) , 
whence the (n 4- l>group © isomorphic to the (n 4- l)-group (C~*(/)>/(!)) is also 
derivated from some (k 4- l)-group. I 

It is known that usually there is no unique (k 4- lygroup creating a given 
(n 4- l)-group (see [1]), thus an (n 4- l)-group can be derived from distinct non-
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isomorphic (k 4- l)-groups. Post proved (see [10]) that in case of k = 1, the creating 
2-group (i.e. the creating group) is determined uniquely up to an isomorphism. But 
the restriction to k = 1 is only a sufficient condition. Here we give a certain condi­
tion, also sufficient to the uniqueness of the creating group, which includes the case 
considered by Post. 

Proposition 4. If an (n 4- l)-group (5 = (G,f) is derived from a certain (k 4- 1)-
-group and y is the least positive integer for which g.c.d. (sly, k) = 1, then all the 
creating (yk 4- l)-groups of© are isomorphic. 

Proof. Let y be the least positive integer for which g.c.d. (sjy, k) = 1. The (n 4- 1)-
group © is, by assumption, derived from some (k 4- l)-group ffi(s-t), thus it is 
also derived from the (yk + l)-group (®(,-i))(y). In accordance to Corollary 7 
the (yk 4- l)-group (©s-i))(y) is isomorphic to the $ub-(yk 4- l)-group 2$ = (C(j),/*), 
where leds/yk+i is the element of order one, of the free covering (yk 4- l)-group 
(5*5/y = (G*5/y,/*). The (yk 4- l)-group S is determined up to an isomorphism, 
consequently all the creating (yk 4- l)-groups of the (n 4- l)-group © are also 
isomorphic. I 
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