Archivum Mathematicum

Josef Dalík

On semimodular lattices of generating systems

Archivum Mathematicum, Vol. 18 (1982), No. 1, 1--8
Persistent URL: http://dml.cz/dmlcz/107116

Terms of use:

© Masaryk University, 1982
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON SEMIMODULAR LATTICES OF GENERATING SYSTEMS

JOSEF DALIK, Brno
(Received November 21, 1980)

0. INTRODUCTION

A subset of a complete lattice L closed under formation of arbitrary g.1. bounds is called a closure system on L and the complete lattice of closure systems on L, ordered by inclusion, is denoted by $\mathfrak{C}(L)$. The following results are obtained. A principal filter in $\mathfrak{C}(L)$ is semimodular iff it is meet infinitely distributive. Under certain conditions, $\mathfrak{C}(L)$ does not contain the "diamond". An example showing that these conditions cannot be omitted is presented and some corollaries concerning lattices of generating systems, called briefly gs-lattices in [4] and [5], are formulated.

For the motivation of the study of gs-lattices the reader may look at [5]. This study can be included into the general treatment of lattices of topologies on a set introduced in [9], but the properties of gs-lattices differ essentially from the properties of lattices of topologies in the sense of [2]. This fact can be observed by comparison of the results from [4] and this paper with those from [7] and [8]. An extensive list of results concerning lattices of topologies can be found in [6].

1. THE SEMIMODULARITY OF $\mathbb{C}(L, N)$

The symbol \emptyset will signify the empty set. For a set A we denote by $\operatorname{card}(A)$ the cardinality of A and by $i d_{A}$ the identity relation on A.
If P is a poset then the ordering on P will be denoted by \leqq, the covering relation by \prec, the incomparability relation by $\|$ and $a \preceq b$ will abbreviate $a \prec b$ or $a=b$. As it is usual, (a], [a) will denote the principal ideal, principal filter in P generated by a, respectively, and $[a, b]$ the interval $[a) \cap(b]$ for all $a, b \in P$, $a \leqq b$. A set $Q \leqq P$ will be called hereditary in P if $a \in Q, b \leqq a$ imply $b \in Q$. The set of hereditary subsets in P will be denoted by $\mathbf{H}(P)$ and the normal completion of P by $\mathbf{N}(P)$ or, more exactly, by $\mathbf{N}(P, \leqq)$. It is the least subset of $\mathbf{H}(P)$ containing P as well as all principal ideals in P which is closed under intersection. If $A \subseteq P$ then (A] will denote the least hereditary subset of P containing A, i.e. $(A]=\varnothing$ if $A=\emptyset$ and $(A]=\bigcup(a]$ otherwise. Finally, $\wedge A, a \wedge b$ and $\vee A, a \vee b$ will be
a notation for the g.l. bound of $A,\{a, b\}$ and the l.u. bound of $A,\{a, b\}$ in P, respectively.
1.1. Definition. A subset C of a complete lattice L is said to be a closure system on L if $\Lambda A \in C$ for each $A \subseteq C$. ($(\boldsymbol{0}$ is the greatest element in L.)

We denote by $\mathbb{C}(L)$ the set of closure systems on L and by $\mathbb{C}(L, N)$ the set $\{C \in \mathbb{C}(L) \mid N \cong C\}$ for each $N \in \mathbb{C}(L)$.
1.2. Remark. (i) In the following, both $\mathbb{C}(L)$ and $\mathbb{C}(L, N)$ will be considered to be complete lattices in which L is the greatest element and the g.l. bound of every nonempty subset is its intersection.
(ii) Important special cases of $\mathfrak{C}(L, N)$ are lattices $\mathbb{C}(\mathbf{H}(P), \mathbf{N}(P))$, where P is a poset, which are called lattices of generating systems and denoted by $\mathrm{Gs}(P)$ in [3], [4], [5].
1.3. Definition. If $C \in \mathbb{C}(L)$ then we put $\varphi_{C}(a)=\Lambda\{b \in C \mid a \leqq b\}$ for each $a \in L$.
1.4. Lemma. If $C \in \mathbb{C}(L)$ then φ_{c} is an isotone, extensive and idempotent map of L into L (a closure operator on L) and $C=\left\{a \in L \mid a=\varphi_{c}(a)\right\}$.
1.5. Lemma. The following assertions hold for all $C, D \in \mathbb{C}(L)$.
(i) $C \vee D=\{c \wedge d \mid c \in C$ and $d \in D\}$.
(ii) $\varphi_{C V D}(a)=\varphi_{C}(a) \wedge \varphi_{D}(a)$ for each $a \in L$.
(iii) $C \leqq D \Rightarrow \varphi_{D}(a) \leqq \varphi_{C}(a)$ for each $a \in L$.
1.6. Corollary. $a \in C \vee D$ iff $a=\varphi_{C}(a) \wedge \varphi_{D}(a)$ for all $a \in L$ and $C, D \in \mathbb{C}(L)$.
1.7. Definition. We denote by $\langle A\rangle$ the least $C \in \mathbb{C}(L)$ satisfying $A \subseteq C$ for any complete lattice L and $A \subseteq L$.

If $C \in \mathbb{C}(L)$ and $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subseteq L$ then it is possible to write $\left\langle C, a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ instead of $\left\langle C \cup\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right\rangle$.
1.8. Lemma. Let L be a complete lattice. Then the following assertions hold.
(i) $\langle A\rangle=\{\wedge B \mid B \subseteq A\}$ for each $A \subseteq L$.
(ii) $\langle C, a\rangle \subseteq C \cup(a]$ for all $C \in \mathbb{C}(L), a \in L$.
(iii) $\langle C, a\rangle-\{a\} \in \mathbb{C}(L)$ for all $C \in \mathbb{C}(L), a \in L-C$.
1.9. Lemma. If $B, C \in \mathbb{C}(L)$ and $a \in L-C$ then $a \in B \vee C$ implies $\varphi_{B}(a) \notin C$.

Proof. $a \in B \vee C \Rightarrow a=\varphi_{B}(a) \wedge \varphi_{C}(a)$ regarding 1.6. By this and by $\varphi_{B}(a) \in C$ we obtain $a \in C$ which is a contradiction.
1.10. Definition. A complete lattice L is said to be
(i) semimodular if $a \prec b$ implies $a \vee x \preceq b \vee x$ for each $x \in L$.
(ii) meet infinitely distributive if $a \vee \Lambda B=\bigvee_{b \in B}(a \vee b)$ for all $a \in L$ and $B \subseteq L$.
(iii) upper continuous if $a \wedge \vee B=\wedge_{b \in B}(a \wedge b)$ for all $a \in L$ and all chains B in L.
1.11. Theorem. Let L be a complete lattice and $N \in \mathbb{C}(L)$. Then the following assertions are equivalent.
(i) $\mathbb{C}(L, N)$ is samimodulan
(ii) $\mathbb{C}(L, N)$ is meet infinitely distributive.
(iii) $C \vee D=C \cup D$ for all $C, D \in \mathbb{C}(L, N)$.
(iv) $\left[a, \varphi_{N}(a)\right]$ is a chain for each $a \in L$.

Proof. (i) \Rightarrow (iii): If (iii) is not true then there exist $E, F \in \mathbb{C}(L, N)$ and $a \in$ $\epsilon(E \vee F)-(E \cup F)$. For $b=\varphi_{E}(a), c=\varphi_{F}(a)$ it holds $a<b, a<c$ and $a=$ $=b \wedge c$ by 1.4, 1.6. If we put

$$
!
$$

$$
\mathrm{B}=\langle N, b\rangle, \quad C=\langle N, c\rangle, \quad A=B-\{b\}
$$

hen $A \in \mathbb{C}(L, N)$ by 1.8 (iii) and by the validity of $b \notin N$. Indeed, $b \notin F$ by 1.9 and $N \subseteq F$.

It follows by $b \notin N, b \nsubseteq c$ and $C \cong N \cup(c]$, see 1.8 (ii), that $b \in L-C$. Moreover, $b \notin A \Rightarrow b<\varphi_{A}(b) \in A \subseteq B \subseteq N \cup(b] \Rightarrow \varphi_{A}(b) \in N \subseteq C$. The last two conclusions and 1.9 give $b \notin A \vee C$. Further, $N \subseteq E, b \in E$ imply $A \subseteq B=\langle N, b\rangle \subseteq$ $\subseteq E$. Then $b=\varphi_{E}(a) \leqq \varphi_{A}(a)$ by 1.5 (iii) and this fact together with $\varphi_{A}(a) \in$ $\in A=B-\{b\} \cong(N \cup(b])-\{b\}$ imply $\varphi_{A}(a) \in N \cong C$. By this, $a \notin F \supseteq C$ and by 1.9 we obtain $a \notin A \vee C$. As $b \in B \vee C$ obviously and $a \in B \vee C$ according to $a=b \wedge c, b \in B, c \in C$, it holds $\{a, b\} \subseteq(B \vee C)-(A \vee C)$.

If we denote $D=\langle A \vee C, a\rangle$ then $D \subseteq B \vee C$ and $b \notin D$ regarding $D \subseteq$ $\subseteq(A \vee C) \cup(a], a<b$. Hence $A \vee C \subset D \subset B \vee C$ and we have not $A \vee C \preceq$〔BマC. Since $A \prec B$ obviously, (i) does not hold for $\mathbb{C}(L, N)$.
(iii) \Rightarrow (iv): Let us admit that $\left[a, \varphi_{N}(a)\right]$ is not a chain for some $a \in L$. Then there exist $b, c \in\left[a, \varphi_{N}(a)\right]$ such that $b \| c$. If we denote $B=\langle N, b\rangle$ and $C=\langle N, c\rangle$ then, according to $\varphi_{B}(a) \in B$ and 1.8 (i), we can find $Q \cong N \cup\{b\}$ satisfying $\varphi_{B}(a)=\Lambda Q$. We, have $\varphi_{B}(a) \geqq \wedge(Q-\{b\}) \wedge b \geqq \varphi_{N}(a) \wedge b=b$ because of $Q-\{b\} \subseteq N$ and $a \leqq x$ for all $x \in Q-\{b\}$. By $b \leqq \varphi_{B}(a)$ and by $b \| c, a \leqq$ $\leqq b \wedge c$ we obtain $b \wedge c<b \leqq \varphi_{B}(a) \leqq \varphi_{B}(b \wedge c)$. In the same way we prove $b \wedge c<\varphi_{\mathrm{C}}(b \wedge c)$.

These two relations and 1.4 say $b \wedge c \notin B \cup C$. As $b \wedge c \in B \vee C$, we have $B \cup C \neq B \cup C$.
(iv) \Rightarrow (iii): Let us now suppose that $\left[a, \varphi_{N}(a)\right]$ is a chain for each $a \in L$ and take $C, D \in \mathbb{C}(L, N), a \in C \vee D$ arbitrarily. Then $a=\varphi_{C}(a) \wedge \varphi_{D}(a)$ according to 1.6. It follows by $N \subseteq C, N \cong D$ and 1.4, 1.5 (iii) that $\varphi_{C}(a), \varphi_{D}(a) \in\left[a, \varphi_{N}(a)\right]$. Hence $\varphi_{C}(a)$ is comparable with $\varphi_{D}(a)$ and either $a=\varphi_{C}(a)$ or $a=\varphi_{D}(a)$. As this is equivalent to $a \in C \cup D$, we have $C \vee D \subseteq C \cup D$; the converse inclusion is true trivially.
1.12. Corollary. Let L be a complete lattice. Then $\mathbb{C}(L)$ is semimodular iff $L i$ a chain.

2. ON A LATTICE $\mathbb{C}(L)$ CONTAINING M_{3}

2.1. Definition. Let V be a set and o, i elements such that $\operatorname{card}(V)>1, o \neq i$ and $V \cap\{o, i\}=\emptyset$. We denote by M_{V} the lattice $V \cup\{o, i\}$ provided by the following ordering. $o \leqq x \leqq i$ and $x \| y$ for all $x, y \in V, x \neq y$.

We write M_{3} instead of $M_{\{a, b, c\}}$.
2.2. Definition. We say that a complete lattice L contains M_{V} whenever there is an embedding (an injective lattice-homomorphism) of M_{V} into L.
2.3. Definition. A closure system C on a complete lattice L is called inductive in L if $V\left\{a_{i} \mid i=0,1, \ldots\right\} \in C$ for each chain $a_{0}<a_{1}<\ldots$ in C.
2.4. Theorem. Let L be an upper continuous complete lattice, N a closure system on L and let every element of $\mathfrak{C}(L, N)$ be inductive in L. Then $\mathfrak{C}(L, N)$ does not contain M_{3}.

Proof. Let us admit that $\ell: M_{3} \rightarrow \mathbb{C}(L, N)$ is an embedding and put $\ell x=X$ for $x=o, i, a, b, c$. Then $A \cap B=B \cap C=C \cap A=0, A \vee B=B \vee C=$ $=C \vee A=I$ and $\Delta_{X}=X-0 \neq \emptyset$ for $X=A, B, C$.

Choose $a \in \Delta_{A}$ arbitrarily. Then $a \in A \subseteq B \vee C$ implies $a=\varphi_{B}(a) \wedge \varphi_{C}(a)$ and, as $a \notin B, a<\varphi_{B}(a)$. Moreover, $a \in L-B, a \in B \vee C$ and 1.9 imply $\varphi_{B}(a) \notin C$. Hence $\varphi_{B}(a) \in \Delta_{B}$. If we take $\varphi_{B}(a)$ instead of a and change the roles of A, B in the previous consideration then we get

$$
\varphi_{B}(a)=\varphi_{A} \varphi_{B}(a) \wedge \varphi_{C} \varphi_{B}(a), \quad \varphi_{B}(a)<\varphi_{A} \varphi_{B}(a) \quad \text { and } \quad \varphi_{A} \varphi_{B}(a) \in \Delta_{A}
$$

Further, $a=\varphi_{B}(a) \wedge \varphi_{C}(a)=\varphi_{A} \varphi_{B}(a) \wedge \varphi_{C} \varphi_{B}(a) \wedge \varphi_{C}(a)=\varphi_{A} \varphi_{B}(a) \wedge \varphi_{C}(a)$ according to $\varphi_{C}(a) \leqq \varphi_{C} \varphi_{B}(a)$. Hence $a<\varphi_{B}(a)<\varphi_{A} \varphi_{B}(a)$ and $\varphi_{A} \varphi_{B}(a) \wedge \varphi_{C}(a)=$ $=a$. By induction we obtain

$$
a<\varphi_{B}(a)<\varphi_{A} \varphi_{B}(a)<\ldots<\varphi_{B}\left(\varphi_{A} \varphi_{B}\right)^{k}(a)<\left(\varphi_{A} \varphi_{B}\right)^{k+1}(a)<\ldots
$$

and

$$
\left(\varphi_{A} \varphi_{B}\right)^{n}(a) \wedge \varphi_{C}(a)=a \quad \text { for } n=1,2, \ldots
$$

If we put $Q=\left\{\left(\varphi_{A} \varphi_{B}\right)^{n}(a) \mid n=1,2, \ldots\right\}, R=\left\{\varphi_{B}\left(\varphi_{A} \varphi_{B}\right)^{n}(a) \mid n=1,2, \ldots\right\}$ and $b=\vee Q$ then $b=V R$ obviously. By this, $Q \subseteq A, R \subseteq B$ and by the inductivity of A, B we obtain $b \in A \cap B=0$. As, moreover, $a<b$, we have $\varphi_{0}(a) \leqq b$. At the same time, $a<\varphi_{C}(a)$ and $\varphi_{C}(a) \leqq \varphi_{0}(a)$ hold with respect to $a \notin C$ and $0 \cong C$. Then $a<\varphi_{c}(a)=b \wedge \varphi_{c}(a)$ But $\quad b \wedge \varphi_{C}(a)=\vee Q \wedge \varphi_{c}(a)=$ $=\mathrm{V}\left\{\left(\varphi_{A} \varphi_{B}\right)^{n}(a) \wedge \varphi_{C}(a) \mid n=1,2, \ldots\right\}=a$ and we have a contradiction.

We shall now prove that there exists a complete lattice L such that $\mathbb{C}(L)$ contains M_{V} for an arbitrary given set V with the property $\operatorname{card}(V)>1$.
2.5. Definition. Let $V \neq \varnothing$ be a set. We denote by V^{*} the free monoid over V and by e its unit. If $u \in V^{*}$ then there are $m \geqq 0$ and $a_{1}, a_{2}, \ldots, a_{m} \in V$ with the
property $a_{1} a_{2} \ldots a_{m}=u$ (we set $a_{1} a_{2} \ldots a_{m}=e$ for $m=0$). We call the symbol $a_{1} a_{2} \ldots a_{m}$ a decomposition of u (in V) and m a length of u; we write $m=|u|$. If $u, v \in V^{*}$ then the symbol $v_{0} a_{1} v_{1} \ldots a_{m} v_{m}$ is said to be a u-decomposition of v whenever $a_{1} a_{2} \ldots a_{m}$ is a decomposition of $u, v_{0}, v_{1}, \ldots, v_{m} \in V^{*}$ and $v_{0} a_{1} v_{1} \ldots a_{m} v_{m}=$ $=v$. For arbitrary $u, v \in V^{*}$ we put

$$
u \leqq v \quad \text { if there is a } u \text {-decomposition of } v .
$$

One can easily see that \leqq is an ordering on V^{*}.
In lemma 2.6 we repeatedly use the following obvious fact. If $V \neq \emptyset, u_{1}, u_{2}, v_{1}$, $v_{2} \in V^{*}$ and $u_{1} u_{2}=v_{1} v_{2}$ then $\left|v_{1}\right| \leqq\left|u_{1}\right|,\left|v_{1}\right|<\left|u_{1}\right|$ if and only if there exists $z \in V^{*}, z \in V^{*}-\{e\}$, respectively, such that $u_{1}=v_{1} z$.
2.6. Lemma. If $V \neq \emptyset, v_{i} \in V^{*}$ for $i=0,1, \ldots, m$, and $a_{i} \in V$ are such that $a_{i} \$ v_{i-1}$ for $i=1,2, \ldots, m+1$ then

$$
a_{1} a_{2} \ldots a_{m+1} \neq v_{0} a_{1} v_{1} \ldots a_{m} v_{m} .
$$

Proof. Let us denote $v=v_{0} a_{1} v_{1} \ldots a_{m} v_{m}$ and admit that $a_{1} a_{2} \ldots a_{m+1} \leqq v$. Then there is an $a_{1} a_{2} \ldots a_{m+1}$-decomposition $w_{0} a_{1} w_{1} \ldots a_{m+1} w_{m+1}$ of v. Let us put $\bar{x}_{i}=x_{0} a_{1} x_{1} \ldots a_{i} x_{i}$ for $x=v, w$ and $i=0,1, \ldots, m$ and

$$
S=\left\{i| | \bar{v}_{i}\left|\leqq\left|\bar{w}_{i}\right|\right\}\right.
$$

(a) $0 \in S$: If $0 \notin S$ then $\left|w_{0}\right|=\left|\bar{w}_{0}\right|<\left|\bar{v}_{0}\right|=\left|v_{0}\right|$. Thus $\left|w_{0} a_{1}\right| \leqq\left|v_{0}\right|$ and we can find $z \in V^{*}$ such that $w_{0} a_{1} z=v_{0}$. But then $a_{1} \leqq v_{0}$, a contradiction.
(b) $m \notin S:\left|\bar{w}_{m}\right|<|v|=\left|\bar{v}_{m}\right|$.

The statements (a) and (b) say that S is a nonempty subset of $\{0,1, \ldots, m-1\}$. If we denote by k the greatest integer in S then $\left|\bar{v}_{k}\right| \leqq\left|\bar{w}_{k}\right|,\left|\bar{w}_{k+1}\right|<\left|\bar{v}_{k+1}\right|$. Hence there exist $z_{1} \in V^{*}, z_{2} \in V^{*}-\{e\}$ satisfying $\bar{w}_{k}=\bar{v}_{k} z_{1}, \bar{v}_{k+1}=\bar{w}_{k+1} z_{2}$. By this and by $\bar{w}_{k+1}=\bar{w}_{k} a_{k+1} w_{k+1}$ we obtain
(c) $\bar{v}_{k+1}=\bar{w}_{k+1} z_{2}=\bar{w}_{k} a_{k+1} w_{k+1} z_{2}=\bar{v}_{k} z_{1} a_{k+1} w_{k+1} z_{2}$.

Since $\left|a_{k+2}\right| \leqq\left|z_{2}\right|$, it holds $\left|\bar{v}_{k} z_{1} a_{k+1} w_{k+1} a_{k+2}\right| \leqq\left|\bar{v}_{k} z_{1} a_{k+1} w_{k+1} z_{2}\right|$. This implies $\bar{v}_{k} z_{1} a_{k+1} w_{k+1} a_{k+2} z_{3}=\bar{v}_{k} z_{1} a_{k+1} w_{k+1} z_{2}$ for some $z_{3} \in V^{*}$. Then $a_{k+2} z_{3}=z_{2}$ and by this, (c), $\bar{v}_{k+1}=\bar{v}_{k} a_{k+1} v_{k+1}$ we obtain $z_{1} a_{k+1} w_{k+1} a_{k+2} z_{3}=a_{k+1} v_{k+1}$. As, simultaneously, $\left|a_{k+1}\right| \leqq\left|z_{1} a_{k+1}\right|$, there is $z_{4} \in V^{*}$ with the property $a_{k+1} z_{4}=$ $=z_{1} a_{k+1}$. But then $a_{k+1} z_{4} w_{k+1} a_{k+2} z_{3}=a_{k+1} v_{k+1}$ implies $z_{4} w_{k+1} a_{k+2} z_{3}=$ $=v_{k+1}$ which means $a_{k+2} \leqq v_{k+1}$. This is a contradiction.
2.7. Definition. Suppose that $V \neq \emptyset$ and $G \subseteq V^{*}$. We say that
(i) G is locally complete if $G \cap[u)$ has a least element, which we denote by u_{G}, for each $u \in V^{*}$.
(ii) G is closed under submerging whenever

$$
u_{0} a_{1} u_{1} \ldots a_{m} u_{m} \in G, \quad v_{0} a_{1} v_{1} \ldots a_{m} v_{m} \in G \Rightarrow u_{0} v_{0} a_{1} u_{1} v_{1} \ldots a_{m} u_{m} v_{m} \in G
$$

for arbitrary $m \geqq 0, a_{1}, a_{2}, \ldots, a_{m} \in V$ and $u_{0}, v_{0}, u_{1}, v_{1}, \ldots, u_{m}, v_{m} \in V^{*}$.
2.8. Lemma. Suppose that $V \neq \varnothing, G \subseteq V^{*}$ is closed under submerging, $0<k$, $s_{1} \leqq s_{2} \leqq \ldots \leqq s_{k}=s$ are integers and $a_{1}, a_{2}, \ldots, a_{s+1} \in V$. Further, let $u_{0}^{i}, u_{1}^{i}, \ldots, u_{s_{1}}^{i} \in V^{*}$ be such that $u_{0}^{i} a_{1} u_{1}^{i} \ldots a_{s_{1}} u_{s_{1}}^{i} \in G, u_{s_{1}+1}^{i}=\ldots=u_{s}^{i}=e$ for $i=1,2, \ldots, k$ and $v_{j}=u_{j}^{1} u_{j}^{2} \ldots u_{j}^{k}$ for $j=0,1, \ldots, s$. Then $v_{0} a_{1} v_{1} \ldots a_{s} v_{s} \in G$.

Proof. (a) If $k=1$ then $v_{0} a_{1} v_{1} \ldots a_{s} v_{s}=u_{0}^{1} a_{1} u_{1}^{1} \ldots a_{s} u_{s}^{1} \in G$.
(b) Assume that $k>1$ and $v_{0}^{\prime} a_{1} v_{i}^{\prime} \ldots a_{t} v_{t}^{\prime} \in G$ for $v_{j}^{\prime}=u_{j}^{1} u_{j}^{2} \ldots u_{j}^{k-1}$ and $j=$ $=1,2, \ldots, s_{k-1}=t$. If we put $\bar{u}_{t}^{k}=u_{t}^{k} a_{t+1} u_{i+1}^{k} \ldots a_{s} u_{s}^{k}$ then also $u_{0}^{k} a_{1} u_{1}^{k} \ldots a_{t} \bar{u}_{t}^{k} \in G$ and, as G is closed under submerging, we have $v_{0}^{\prime} u_{0}^{k} a_{1} v_{1}^{\prime} u_{1}^{k} \ldots a_{t} v_{\mathrm{t}}^{\prime} \bar{u}_{t}^{k} \in G$. But $v_{j}^{\prime} u_{j}^{k}=v_{j}$ for $j=0,1, \ldots, t-1$ and $v_{t}^{\prime} \bar{u}_{t}^{k}=v_{t}^{\prime} u_{t}^{k} a_{t+1} u_{t+1}^{k} \ldots a_{s} u_{s}^{k}=v_{t} a_{t+1} v_{t+1} \ldots a_{z} v_{z}$ because $v_{t}^{\prime} u_{t}^{k}=v_{t}$ and, regarding $s_{j}<t+1, u_{t+1}^{j}=\ldots=u_{s}^{j}=e$ for $j=$ $=1,2, \ldots, k-1$. Hence $v_{0} a_{1} v_{1} \ldots a_{3} v_{s} \in G$.
2.9. Theorem. Suppose that $V \neq \varnothing$ and $G \subseteq V^{*}$ is locally complete and closed under submerging. Then

$$
\langle\{(u] \mid u \in G\}\rangle=\left\{V^{*}\right\} \cup\{(F] \mid \emptyset \neq F \subseteq G \text { and } F \text { is finite }\} .
$$

Proof. Let us denote $C_{G}=\langle\{(u] \mid u \in G\}\rangle$ and $L_{G}=\left\{V^{*}\right\} \cup\{(F] \mid \emptyset \neq F \subseteq G$ and F is finite $\}$.
(a) $C_{G} \subseteq L_{G}$: If we take an arbitrary $P \in C_{G}$ then, by 1.8 (i), there is $Q \subseteq G$ such that $P=\bigwedge\{(q] \mid q \in Q\}$. In case $Q=\emptyset$ we have $P=V^{*} \in L_{G}$. Otherwise $P=\bigcap\{(q] \mid q \in Q\}=\left\{u \in V^{*} \mid u \leqq q\right.$ for all $\left.q \in Q\right\}$. One can easily see that $(q]$ is finite and $e_{G} \in(q] \cap G$ for every $q \in Q$. Since, at the same time, $P \subseteq(q]$ for at least one $q \in Q$, we obtain that $F_{P}=P \cap G$ is a finite nonempty subset of G. The validity of $\left(F_{p}\right] \subseteq P$ is a consequence of $F_{P} \subseteq P, P \in \mathbf{H}\left(V^{*}\right)$. For the proof of the converse inclusion consider $u \in P$ arbitrarily. Since $Q \subseteq G \cap[u)$, we have $u_{G} \leqq q$ for all $q \in Q$. This and $u_{G} \in G$ imply $u_{G} \in F_{P}$. Then $u \in\left(u_{G}\right] \subseteq\left(F_{P}\right]$.
(b) $L_{G} \subseteq C_{G}$: Clearly, $V^{*} \in C_{G}$. If $P \in L_{G}-\left\{V^{*}\right\}$ then there is a finite nonempty set $\left\{u^{1}, u^{2}, \ldots, u^{k}\right\} \subseteq G$ satisfying $P=\bigcup_{i=1}^{k}\left(u^{i}\right]$. We prove that $P=\bigcap\{(w] \mid w \in W\}$ where

$$
W=\left\{w \mid u^{i} \leqq w \text { for } i=1,2, \ldots, k \text { and } w \in G\right\}
$$

The inclusion $P \subseteq \bigcap\{(w] \mid w \in W\}$ being trivial, consider an arbitrary $z=$ $=a_{1} a_{2} \ldots a_{m} \in V^{*}$ and suppose that $z \notin P$. Then, for $i=1,2, \ldots, k$, we have $z \not \leq u^{i}$ which is equivalent to $a_{1} a_{2} \ldots a_{s_{i}} \leqq u^{i}, a_{1} a_{2} \ldots a_{s_{i}+1} \not \leq u^{i}$ for some s_{i}, $0 \leqq s_{i}<m$. Without loss of generality we assume that $s_{1} \leqq s_{2} \leqq \ldots \leqq s_{k}$ and put $s=s_{k}$. Obviously, there exists such an $a_{1} a_{2} \ldots a_{s_{i}}$-decomposition $u_{0}^{i} a_{1} u_{1}^{i} \ldots a_{s_{1}} u_{s_{t}}^{i}$ of u^{i} that $a_{j} \$ u_{j-1}^{i}$ for $j=1,2, \ldots, s_{i} ; a_{s_{i}+1} \not \leq u_{s_{i}}^{i}$ is now a consequence of $a_{1} a_{2} \ldots a_{s_{1}+1}$ 本 u^{i} for $i=1,2, \ldots, k$.

Let $u_{j}^{i}=e$ for $j=s_{i}+1, \ldots, s, i=1,2, \ldots, k$ and $v_{j}=u_{j}^{1} u_{j}^{2} \ldots u_{j}^{k}$ for $j=$ $=0,1, \ldots, s$. Further, let $v=v_{0} a_{1} v_{1} \ldots a_{s} v_{s}$. Then $v \in G$ by 2.8 and $u^{l} \leqq v$ for $i=1,2, \ldots, k$. Indeed, since $u_{j}^{i} \leqq v_{j}$ for $j=0,1, \ldots, s$ obviously, we have $u^{i}=$
$=u_{0}^{i} a_{1} u_{1}^{i} \ldots a_{s_{i}} u_{s_{t}}^{i} \leqq v_{0} a_{1} v_{1} \ldots a_{s_{t}} v_{s_{i}} \leqq v_{0} a_{1} v_{1} \ldots a_{s} v_{s}=v$. Hence $v \in W^{\prime}$ and, as $a_{j} \$ u_{j-1}^{i}$ for $i=1,2, \ldots, k$, we have $a_{j} \nmid v_{j-1}$ for all $j \in\{1,2, \ldots, s+1\}$. But then $a_{1} a_{2} \ldots a_{z+1} \neq v$ by 2.6 and we have $z \boldsymbol{\$} v$.
2.10. Definition. If $V \neq \varnothing$ and $a \in V$ then we put

$$
V^{*} a=\left\{u a \mid u \in V^{*}\right\}, \quad L_{a}=\left\langle\left\{(u] \mid u \in V^{*} a\right\}\right\rangle .
$$

2.11. Lemma. If $V \neq \varnothing$ then V^{*} and $V^{*} a$ for every $a \in V$ are locally complete and closed under submerging.

Proof. $V^{*} a$ is locally complete for each $a \in V$: Let $u \in V^{*}$ be arbitrary. In case $u \in V^{*} a$ we have $u_{V^{*} a}=u$. If $u \in V^{*}-V^{*} a$ then we show $u_{V{ }^{*} a}=u a$. As $u a \in$ $\in[u) \cap V^{*} a$ obviously, consider $v \in[u) \cap V^{*} a$ arbitrarily. Then there is a u-decomposition $v_{0} a_{1} v_{1} \ldots a_{m} v_{m}$ of v. It holds $a_{m} \neq a$ according to $u \notin V^{*} a$. By this and by $v \in V^{*} a$ there exists $\bar{v}_{m} \in V^{*}$ satisfying $v_{m}=\bar{v}_{m} a$. But then $v_{0} a_{1} v_{1} \ldots a_{m} \bar{v}_{m} a e$ is a $u a$-decomposition of v so that $u a \leqq v$.

All the remaining statements of this lemma are true trivially.
2.12. Corollary. If $V \neq \emptyset$ then $\mathbf{N}\left(V^{*}, \leqq\right)=\left\{V^{*}\right\} \cup\left\{(A] \mid \emptyset \subset A \subseteq V^{*}\right.$ is finite $\}$ and $L_{a}=\left\{V^{*}\right\} \cup\left\{(A] \mid \varnothing \subset A \subseteq V^{*} a\right.$ is finite $\}$ for each $a \in V$.
2.13. Lemma. If $a, b \in V, a \neq b$ and $v \in V^{*}$ then $v=v a \wedge v b$.

Proof. v is a lower bound of $\{v a, v b\}$ obviously. Suppose that $u \leqq v a$ and $u \leqq v b$ for some $u \in V^{*}$ and denote by $v_{0} a_{1} v_{1} \ldots a_{m} v_{m}, v_{0}^{\prime} a_{1} v_{1}^{\prime} \ldots a_{m} v_{m}^{\prime}$ the u-decomposition of $v a, v b$, respectively. Since $a \neq b$, either $a_{m} \neq a$ or $a_{m} \neq b$ is true. In the first case there is $\bar{v}_{m} \in V^{*}$ satisfying $v_{m}=\bar{v}_{m} a$ and, clearly, $v_{0} a_{1} v_{1} \ldots a_{m} v_{m}$ is a u-decomposition of v so that $u \leqq v$. In the second case we obtain $u \leqq v$, too.
2.14. Theorem. For every set V satisfying $\operatorname{card}(V)>1$ there exists a complete lattice L such that $\mathbb{C}(L)$ contains M_{V}.

Proof. Let us put $L=\mathbf{N}\left(V^{*}, \leqq\right), \iota=\left\{V^{*}\right\}, \iota i=L$ and $\iota x=L_{x}$ for each $x \in V$.
(a) $L_{a} \wedge L_{b}=\left\{V^{*}\right\}$ for arbitrary $a, b \in V, a \neq b:\left\{V^{*}\right\} \subseteq L_{a} \wedge L_{b}$ by 2.12. For the proof of the converse inclusion, consider $P \in L_{a}-\left\{V^{*}\right\}$ arbitrarily. Then, regarding 2.12, there is a finite nonempty set $F \subseteq V^{*} a$ with the property $P=(F]$. By this and by the finiteness of principal ideals in V^{*} we obtain that P is finite and nonempty. Hence P is uniquely determined by the antichain $A \neq \varnothing$ of its maximal elements. It follows immediately by $P=(F]$ that $A \subseteq F \subseteq V^{*} a$. If we admit $P \in L_{b}$ then we get $A \subseteq V^{*} b$ in the same way. But this implies $\emptyset \subset A \subseteq V^{*} a \cap$ $\cap V^{*} b$ which is a contradiction.
(b) $L_{a} \vee L_{b}=L$ for arbitrary $a, b \in V, a \neq b$: Since $L_{a} \vee L_{b} \in \mathbb{C}(L)$ and $L=$ $=\mathbf{N}\left(V^{*}, \leqq\right)$, it is sufficient to prove ($\left.u\right] \in L_{a} \vee L_{b}$ for every $u \in V^{*}:$ As $u=u a \wedge u b$ regarding 2.13, we obtain $(u]=(u a] \dot{\cap}(u b]$. This, $(u a] \in L_{a},(u b] \in L_{b}$ and $1.5(i)$ imply $(u] \in L_{a} \vee L_{b}$.

3. COROLLARIES ON LATTICES OF GENERATING SẎSTEMS

As it is usual, we write $\left(A^{*}\right)_{*}$ instead of $\varphi_{\mathrm{N}(P)}(A)$ for arbitrary poset P and $A \in$ $\in \mathbf{H}(P)$.
3.1. Theorem. If P is a poset then the following statements are equivalent.
(i) $\mathrm{Gs}(P)$ is semimodular.
(ii) $\mathrm{Gs}(P)$ is meet infinitely distributive.
(iii) $\mathfrak{G} \vee \mathfrak{5}=\mathfrak{G} \cup \mathfrak{S}$ for all $\mathfrak{G}, \mathfrak{5} \in \mathrm{Gs}(P)$.
(iv) $\left(A^{*}\right)_{*}-A$ is a chain in P for each $A \in \mathbf{H}(P)$.

Proof. Regarding 1.11 we only have to prove that $\left(A^{*}\right)_{*}-A$ is a chain in $P \Leftrightarrow\left[A,\left(A^{*}\right)_{*}\right]$ is a chain in $\mathbf{H}(P)$ for all posets P and $A \in \mathbf{H}(P)$.

If $\left[A,\left(A^{*}\right)_{*}\right]$ is not a chain then there exist $B, C \in\left[A,\left(A^{*}\right)_{*}\right]$ such that $B \| C$. Clearly, there are $b \in B-C$ and $c \in C-B$; but then $b \| c$ and $b, c \in\left(A^{*}\right)_{*}-A$. Conversely, if there exist $b, c \in\left(A^{*}\right)_{*}-A$ such that $b \| c$ then we have $B \| C$ and $B, C \in\left[A,\left(A^{*}\right)_{*}\right]$ for $B=A \cup(b], C=A \cup(c]$.
3.2. Theorem. If $\mathrm{Gs}(P)$ is finite then it does not contain M_{3}.

Proof. This is a consequence of 2.4 .
3.3. Theorem. For every set V satisfying card $(V)>1$ there exists a poset P such that $\operatorname{Gs}(P)$ contains M_{V}.

Proof. If we consider V^{*} ordered by $\omega=i d_{V^{*}}$ then, evidently, $\mathbf{N}\left(V^{*}, \omega\right)=$ $=\left\{0, V^{*}\right\} \cup\left\{\{u\} \mid u \in V^{*}\right\}$. Using 2.14 (a), (b), one can easily see that $t: M_{V} \rightarrow$ $\rightarrow \operatorname{Gs}\left(V^{*}\right)$, defined by $t o=\mathbf{N}\left(V^{*}, \omega\right), \quad i i=\mathbf{N}\left(V^{*}, \leqq\right) \cup \mathbf{N}\left(V^{*}, \omega\right)$ and $\quad i x=$ $=L_{x} \cup \mathbf{N}\left(V^{*}, \omega\right)$ for every $x \in V$, is an embedding.

REFERENCES

[1] G. Grätzer: General Lattice Theory, Akademie-Verlag Berlin, 1978.
[2] J. Kelley: General Topology, New York, 1955.
[3] J. Dalik: An embedding problem and its application in linguistics, Arch. Math. (Brno) 3, XIV (1978), 123-138.
[4] J. Dalik: Lattices of generating systems, Arch? Math. (Brno) 3, XVI (1980), 137-152.
[5] J. Dalik: Characterizations of certain classes of posets having gs-lattices of a relatively small stze, Czechoslovak Math. J. 31 (106), 1981, 433-450.
[6] R. E. Larson, S. J. Andima: The lattice of topologies: a survey, Rocky Mountains J. Math. 5 (1975), 177-198.
[7] A. C. M. van Rooij: The lattice of all topologies is complemented, Katholicke Universiteit, Nijmegen, Netherlands, 1967.
[8] J. Rosick \mathfrak{y} : Embeddings of lattices in the lattice of topologies, Arch. Math. (Brno) 2, IX (1973), 49-56.
[9] M. Sekanina: Sistermy topologij na dannom množestve, Czechoslovak Math. J. 15 (90), 1965.
J. Dalik

61300 Brno, ndam. SNP 18
Czechoslovakia

