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AN EXTENSION OF A THEOREM OF ABIAN 

ELGIN H. JOHNSTON 
(Received August 20, 1979) 

Abstract. In [1], Abian has proved a theorem to the effect that in every deleted 
neighborhood A of an isolated essential singularity of an analytic function f 
there exists a sequence of complex numbers cn which are zeros of finite partial 
sums (which converge to fin A) of the corresponding Laurent series off such that 
limBf(cn) = 0 provided 0 is not a Picard exceptional value off Below we extend 
Abian's theorem by dropping his provision, but by requiring that the isolated 
essential singularity off be of finite nonintegral order. A further extension by Edrei 
and some open questions are mentioned in Remark 2. 

Let a be an isolated essential singularity of an analytic function f and let 
-S-oo am(z — a)m be the Laurent series (around a) off. We recall that a is called 
an isolated essential singularity of finite nonintegral order of fif the entire function 
-£--Joflfm(z-fl)""m is of finite nonintegral order [2, p. 142]. Also, in what follows, 
for all nonnegative integers k and p we call the function Ztkam(z — a)m a finite 
partial sum of the corresponding Laurent series off. 

Based on the above notions we prove: 

Theorem 1. Let I«00amzm be the Laurent series of a function f which is analytic 
in the annulus A given by 0 < | z \ < r and let 0 be an (isolated) essential singularity 
off of finite nonintegral order. 

Then there exist a sequence of complex numbers cn and a sequence of finite partial 
sums Tn of the Laurent series,of f such that: 

(1) cne A for every ne co , and lim cn = 0 
n 

(2) Tn(cn) = 0 for every neco and lim Tn —fin A 

(3) limf(cn)-=0 
n 
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Proof. In what follows all annuli have their centers at 0 and are disks punctured 
atO. 

Also, for every positive integer n, 

(4) An denotes an annulus whose radius is \jn of that of A. 

Now, let n be a fixed positive integer. 
Since Zm>0amzm is an analytic function in annulus A and since it assumes 0 at 

z == 0, it is clear that given a nonnegative integer K„, there exists an annulus Bn 

such that 
(5) B„czAn and \Z%>Knamzm \ < n~l for zeBn. 

Since the order of the isolated essential singularity 0 offis finite and nonintegral, 
it follows from our earlier remark that E(w) given by 

£(w) = r :^ m w- w 

is an entire function of finite nonintegral order. So also is Et(w) given by 

E,(w) = (II iamw'm) wK» + ZK»amwK»-m, 

(where Kn is the nonzero integer appearing in (5)) which is obtained from E(w) 
by multiplying it by H**" and by adding a polynomial to the result. 

But then by [2, p. 155], outside every circle, E{(w) assumes the value 0. Thus, 
inside every annulus, E2(z) given by 

£ f~\ / v~~- ~ „m\ „~Kn i vKn~ „~(Kn-m) 
2(z) = (Z^.aoamz )z + Z0

namz 

assumes the value 0. The same holds for 

(E2(z))zK» = Z\amzm 

Hence, there exists bn such that 

(6) bneBn and bn is a zero of ZK^amzm 

From (6) and the fact that ZKn
o0amzm is a nonconstant analytic function in Bn, 

it follows that there exists a closed disk Dn such that 

(7) bneDn^ Bn and Z^a^ + 0 on the boundary of Dn 

and 
(8) \ZK?„amzm\<n-i for zeDn. 

But then, in view of the uniform convergence of the sequence (SK.ntamzm)t6to to 
-£*noo amZm on Dn and (6), (7), from Hurwitz's theorem [2, p. 162] it follows that there 
exists a nonnegative integer Mn > K„ and a complex number cn such that 

cn e Dn and cn is a zero of ZKunamzm. 
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Thus, 

(9) cneDn and Z%namc:~0. 

Denoting the finite partial sum X*n
Mri amf* of Laurent series Tt^a^ off by 

Tn(z\ from (9), (7), (5) we have 

(10) cneAn and Tn(cn) « 0 

On the other hand, from (5), (8) we obtain 

(") l l f . a . c r i - | f(cn) | <2iT1. 

Now, we let n run through 1, 2, 3, ... and we choose Kns to form an increasing 
sequence of nonnegative integers. But then (10), (4) imply the existence of a sequence 
of complex numbers cn in A and a sequence of finite partial sums Tn of the Laurent 
series of / such that lim cn == 0 and Tn(cn) = 0 for every new. Also, Iim Tn =»/ 

it n 

in Al since Afw > JSTW. Moreover, (11), (4) imply that lim/(c„) = 0. Thus, (1)> (2), (3) 

are established. 

Remark 1. Let b be any complex number. Let us replace f(z) in Theorem 1 by 
f(z) - b and let us change the origin of the z-plane to a. Also, let Kn be any pre-
assigned sequence of increasing positive integers. Then applying almost verbatim 
the proof of Theorem 1, we can establish the following: 

Theorem 2. Let lZ^am(z — a)m be the Laurent series of a function f which is 
analytic in the annulus A given by0<\z — a\<r and let a be an (isolated) 
essential singularity of f of finite nohintegral order. Moreover let b be a complex 
number and let there be preassigned an increasing sequence of nonnegative integers Kn. 
Then there exist a sequence of complex numbers cn and a sequence of nonnegative 
integers Mn such that: 
(i) cn e Anfor every neco and lim cn == a, 

n 

(ii) Z-Mnam(cn ~ aT = bfor every neco and lim Z*n
Mlffm(z - a)m =fin A, 

n • 

(Hi) lim f(cn) = b. 
n ' 

Remark 2. There are reasons to believe that any substantial extension of 
Theorem 2 will entail considerable theoretical and technical difficulties. This, is 
evidenced by a written communication [3] of Piofessor Albert Edrei in which 
he extends Theorem 2 to the case of functions with isolated essential singularities 
of finite order (instead of finite nonintegral order). Despite Edrei's significant 
result, our straightforward proof of Theorem 1 has its mathematical merits. 

A remaining open question is whether or not the statement of Theorem 2 is 
valid without making any restriction on the order of the essential singularity. 



Let d be a complex number (not necessarily equal to b). Another open question 
is whether or not the statement of Theorem 2 is valid without making any restric
tion on the order of the essential singularity, however, by requiring that 
lim/(c) - d. 
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