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OSCILLATIONS OF SUPERLINEAR DIFFERENTIAL 
EQUATIONS WITH DEVIATING ARGUMENTS 

CH. G. PHILOS, Greece 
(Received February 22,1980) 

The oscillation property of differential equations with deviating arguments has 
drawn a great deal of attention in the last ten years. An excellent survey of known 
results on the subject has been done by Mitropolskii and Sevelo [5], In particular, 
for superlinear differential equations with deviating arguments, we choose to refer 
to the papers by Kitamura and Kusano [3], Marushiak [4], Staikos [9], and the 
same author [8] and to their references. The purpose here is to study the oscillatory 
and asymptotic behavior of the solutions of strongly superlinear differential 
equations with general (retarded, advanced or mixed type) deviating arguments. 
The equations considered involve damping terms and the results obtained extend 
known fundamental oscillation criteria concerning superlinear equations without 
damping terms. 

The differential equations considered here are of the form 

(£, 5) tr(t) ^(r)] ("- 1 } + Sf(t; x f o W ] , .... *[£*,(')]) = 0, t£ t0 (S « ± 1), 

where r and gj(j = 1, ..., m) are continuous real-valued functions on the interval 
[f0, oo) and f is a continuous real-valued function defined at least on [V, oo)x 
x(JR+ u /?!!), R+ = (0, oo) and R_ = ( - o o , 0). The following assumptions are 
made: 

(i) r is positive on \t0, oo) and such that 

•? At 
J K0 

(ii) For every t^t09 

f(t;y)^0 forallyeR™, f(t;y)£Q forallyeRI 

and, moreover, f(t; y) is increasing with respect to y in R% u R1. 

(iii) lim g / 0 = oo 0 « 1 , . . . , m). 
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Note that the increasing character of real-valued functions defined on subsets of Rm 

will be considered with respect to the usual order in /P" defined as follows 

(yl> ..->ym) -§ Ul , . . . , Z J o y ! ^ Zi9 . . . ,y m . g zm. 

We consider only such solutions x(t) of the equation (E, S) which are defined 
for all large t. Sufficient smoothness for the existence of such solutions will be 
assumed without mention. The oscillatory character is considered in the usual 
sense, i.e. a continuous real-valued function defined on an interval of the form 
[r , GO) is said to be oscillatory if the set of its zeros is unbounded above, and other
wise it is said to be nonoscillatory. 

The oscillatory and asymptotic behavior of the bounded solutions of the 
differential equation (£, S) is well described by the following theorem, which is 
a special case of a result given by the author in [6]. 

Theorem 0. Let the conditions ( i ) -( i i i ) and the following one be satisfied: 
(C0) For every nonzero constant c either 

K ~ 2 l / ( * ; c ...,c)|d* = oo 
or 

? -~^ ](s - t)"-2 | / ( s ; c , ..., c)\dsdt = oo. 

Then for n even [resp. odd] all bounded solutions of the differential equation (ZT, -f-1) 
[resp. of the equation (K, —1)] are oscillatory, while for n odd [resp. even] every 
bounded solution x of the differential equation (E, +1) [resp. of the equation (E, — 1)] 
is oscillatory or such that x and (rx')ik~l) (k — 1, . . . , « — 1) tend monotonically to 
zero at oo. 

The purpose here is to study the oscillatory and asymptotic behavior of all 
solutions of the differential equation (E, S). For this purpose, we need the following 
lemma, which is originated in two well-known lemmas due to Kiguradze [1, 2]. 
This lemma is obtained here as a special case of a lemma given by the author 
in [7]. 

Lemma. Suppose that (i) holds and let h be a positive and differentiable function 
on an interval [T, OO), T ̂  tQ, such that rh' is a (n — I)-times differentiable function 
on [T, OO). If(rh'){n~l) is of constant sign on [T, OO) and not identically zero on any 
interval of the form [T' , OO), T' ^ T, then there exist a T^: x and an integer /, 0 g 
S I £ n, with n + / odd for (rh')in~l) nonpositive or n + I even for (rh'fn~l) 

nonnegative so that 

f / S » - 1 => (~l)l+JHj > 0 on [ r , oo) (J = /, ..., n - 1) 

1 / > 1 => Ht > 0 on [r , oo) (i = 1, ..., / - 1), 
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where 
H0 = h and Hk « (rA')(*-1). (k - i, ..., n - 1). 

Now, we shall formulate our results. For this purpose, we introduce the func
tions g9 Rt and R2 defined on [t0, oo) as follows 

gdt) = min {t9 gx(t)9 ..., gm(t)}9 

*i(0 - J -"J0}*'* & and R2(t) - J ^flds. 
£ K») io Ks) 

Theorem 1. Suppose that (i)~(iii) ho/d and let p9 <p9 \J/ be continuous functions 
subject to the conditions: 

(I) p is nonnegative on [f0, oo). 
(II) v. is increasing on R-{0} and has the sign property 

y<p(y) > 0 for all y e R - {0}. 

(III) if/ is positive and increasing on R+9 

(IV) cp\j/ is strongly superlinear in the sense that 

1 dy j T dy 
J / x // x < °o and J . r < oo. 

/ / 
(H) \f(t;y9 ...9y) \ £ p(t) | <p(y)\for all (t,y)s[tQ9 oo)x(R - {0}), 

(C) ' w * " " " »-*•«• 
then we have: 

a) For n even, all solutions of the differential equation (E9 +1) are oscillatory. 
P) For n odd, every solution x of the equation (E, -h 1) is oscillatory or satisfies 

!

limx(0 = 0 monotonically 

f-oo 

lim [r(0x'(t)fk~~l) = 0 monotonically (k = 1,..., n - 1). 
Theorem 2. Suppose that (i)~(iii) hold and let p9 q>9 tj/ be continuous functions 

subject to the conditions (I)-(IV). If(U) and (C) are satisfied, then we have: 
a) For n even, every solution x of the differential equation (E9 —1) is oscillatory 

or satisfies one of(X0)9 

(XJ limx(0 ~ oo and lim [r(0x'CO]**"1* - °° (fe « 1,..., n - 1), 
(X.J limx(0= -oo and lim[KO*'(it).l(*"1) - - » (fc - 1,...., n - 1 ) . 

f-»oo *-»oo 

P) For n odd, every solution x of the equation (E, — 1) is oscillatory or satisfies 
one of (XJ, (X.J. 
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Proof of Theorem 1. By (i) and (iii), we have lim i*i[g(0] = oo and con-
f ->00 

sequently 
-RilXO] iS 1 for all large t. 

Therefore, in view of (IIJ), we get 

^(Rilg(t)D ^ «K0 > 0 for all large t. 

Thus, 

MfW] g _J_ Ri(t) for ^ i iarge . 
<KKi[g(0]) " *(-) 

and so, by virtue of (I) and (C), we have 
00 

$R2(t)p(t)dt~ oo. 

Next, we consider an arbitrary constant c # 0 and we assume that 

]f-2\f(t;c,...,c)\dt<co. 
By (H), we obtain 

\f(t; c, ...,c)\t p(t) | q>(c) | for all t £ t0, 

where (p(c) # 0. Hence, 
CO 

}R2(t)\'f(t;c9...,c)\dt=co9 

i.e. 

i\f(t;c,...,c)\j Kl ^ dsdt = co. 

This, after some manipulations, gives 

J -—- J(s - tr2 \f(s; c,..., c)|dsd* = oo. 

Thus, condition (C) implies (C0) and hence, by Theorem 0, it suffices to prove 
that all nonoscillatory solutions of (E, +1) are bounded. 

The substitution w = — x transforms (E, 4-1) into an equation of the same form 
satisfying the assumptions of the theorem with the function $ in place of <p, where 
<p(y) = -~(p(—y) for all y in the domain of q>. Hence, with respect to the non-
oscillatory solutions of the equation (E9 +1) we can confine our discussion only 
to the positive ones. 

Let now x be a positive unbounded solution on an interval [t0 , oo), t0 > 
> max {0, t0}» of the equation (E, 4-1) and let T J> T0 be chosen, by (iii), so that 

.g/t)'^ T0 for every t £ T (j =* I,...» w). 
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Then, by virtue of (ii), (H), (t) and (U)f we obtain that 

-l*i)*«)T-1} ~f(n*bx(t)l .»• *&•#)]) fe 
£ f(t; min x[g/Q], •••> ™™ *l>/(0]) 2 K0<K min x[*/0]) fe 0, 

Igi^« igj&m l£J£m 

for all r £: T. Therefore it follows that the function (rx')(""'''l) is nonpositive on 
[r, OO). Moreover, (nc')0*"*1* is not identically zero on any interval of the form 
[T', OO), T' 2> T, since, because of (C), the same holds for the function p. Thus, by 
taking into account the fact that x is unbounded and applying the lemma, we 
conclude that there exist a T gg x and an integer /, 1 <£ / £ n — 1, with n -F / odd 
so that 

f ( - l)l+J [r(r) jt'ftXF"1' > 0 for every r £ F(f « /, ..., « - 1) 
1 [KO *'(0] ( l~ l ) > 0 for every t ^ T(i » 1, ..., / - 1), when / > 1. 

Next, by (iii), we choose a Tt *> IT such that 

gj(t) £ T for every t £ r t (J = 1, ..., m). 

Then, by taking into account (ii) and the fact that x is increasing on [T, oo), for 
t ^ Tt we get 

~L>(0*'(0]( ' ,-1) =/(r ; *0ri(0], . . . , x{gm(t)1) 2 

. £ / ( ' ; *IX0]. ...,*fe(0]) 

and so, in view of (H), (I) and (II), we have 

- [KO x ' (0 ] ( - 1 } £ P(0 <K*L>(0]) £ 0 for all t£Tt. 

If / = 1, by using the Taylor formula with integral remainder, for every t, u with 
Tt <; l <£ u we obtain 

K0*'(0 - ] l V - l ) ^ ("O0"1^) + -(jfr^T j<' ~ -)""a(«')<""1)(-).d* 

-'if ("rr
fi7 ( -"^^y^w+Tr^w f(--of,"E-("0D,"1)(<)]<-«is 

j = l U — AIl VH — ZF. r 

-- (w .! 2 ) ! j j ( s ~ f)B~2p(5)«?>(x[g(s)])ds. 

Thus, we have 

K0*'(0 £ (w i 2), ?(a - 0""2P(S) ?(*[«(«)]) ds, 

for all f S ri» provided that / = 1. Next, for every t, u with T. ^ f ^ « we 
derive 

(rx')(""2)(0 2 (rx')("~2)(u) + J As) <?»(*[*(*)]) ds fc ] pis) ̂ (x[g(s)]) ds 
t t 
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and coo&oiiiently 

(rx')("_2)(f) = J /*s) P(x[g(s)]) ds for a l l . = T.. 
f 

Furthermore, if / < n — 1, by applying again the Taylor formula with integral 
remainder, for t ^ Tx we obtain 

(rx'/'-'to - ' l (<f " ^ " ( r ^ - ^ t ) + 
j=, o — l)l 

1 " 2 

+ ,„ o n , K ' / 2 - s)"" 2 " '(rx') ( "- 2 ) (s)ds = (n - 2 - 1)1 , 

J"y*Ll—(_iy+Vx')w_I)(0 + 
jr, 2>-'(j - 0! 

+ r„ ? m J ( 5 - t/2)""2~'(rx')(""2)(s)ds = (n - 2 - />! , / 2 

-̂  7-- I /•• [ i ( s " '/2)""2"'dsl («')(""2)(0 = (n - 2 - ty. ,/ 2 

1 . " -^ ' ( rxT - 2 ^)^ 
2"-^"'(и - 1 - 0 ! 

1 

~ 2 " _ 1 - ' ( n - 1 - / ) ! 

Hence, we have 

(ř-TiY-^- гxT" 40-

(rxT" 1)(t/2) =

 1 -(t - T.)""»"' Jp(s) <p(x[g(s)]) ds 
2 (w — 1 — /)! t 

for every / ' ^ r t , if / < n — 1. But, this inequality holds also in the case where 
/ = n — 1. Now, if / > 1, by using the Taylor formula with integral remainder, 
for / ^ Tx we get 

(r*')(f/2) « I ° ? r ni"1 (^) ( <" i }(D + 
»-=i \' ~" v-

+ (/ 1 2)! "A*/- - s)'~VT""(-) ds = 
1 " 2 

( / - 2 ) ! т 
= т r = w ~ í C/2 ~ 5)'~2 d5" irx'f-l\tß) = 

• (í-гтy-ЧrxT-^o/г)^ 

• (í-т1y-Чr*')""1)(.y2). 

2 , _ 1 ( j - 1)! 

1 
- 0 i - i 2 , _ 1 (/ - 1)! 
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But, for / > 1 the function rx' is increasing on [7", oo) and so 

{rx') (0 = (rx') (1/2) for f S T , . 

Hence, we obtain that for every t >. T. 

1 
r (0x ' (0â 

2 " _ Ҷ Í - - l ) ! ( и - l - 0 ! 
(t-Гi)"~ 2Ыs)<Ҝx[g(s)])ds, 

provided that / > 1. We have thus proved that for all t i> Tt 

K 

(*) 

where 

K = 

x'(0 >= { 
í(s-0в-2p(s)<P(x[g(s)])ds, ifí = l 

r(t) І 

(t - Г.y_____ °° 
f 

K 

1 
(п - 2)! 

Қt) 

for / = 1, K = 

ÍP(s)<Kx[g(s)])ds, І f / > 1 , 

1 

T'\l- ! ) ! ( « - 1 - /)! 
for l > 1. 

Next, if n > 2, by the Taylor formula with integral remainder, we derive that 
for t ^ Tt 

r(0x'(0 ="1 (rXX'l![Jl) (t - Ttr
i + —i--— }(f-sr-3(rx')("-2)(s)ds = 

- 2 (rxr- 1 ) (T 1 ) / < „,__. (rx')(-"2)(T,) J,, „-3 = E 
A (* - 1)! 

. ( f _ ! _ ) ' - 1 -

"- ' (-x ')"" 1 ^) 
\k (fc -1)! 

(« - 3)! /, 

(t - т.)*-1 

J(/-s)п-3ds = 

and therefore 

ľ Ф)x'(0 . (rx')(,-2>(Г.) 
hm sup ———^Aг ѓ t-<n (ř - t0) (n - 2)\ 

The last inequality holds also in the case where n = 2. Thus, there exists a positive 
constant cct such that 

y t - 2 

x'(0 £ *i (* J°? for all t > Tt. 
r(t) "-" 

This gives 

x(0 rg xCTO + a, j (S *°f ds "g x ^ ) -f a ^ O , r £ 7\. 

Thus, since lim Riit) = oo, we conclude that for some positive constant a with 

a > 1 we have 
x(t) ^ ocRt(t) for every t J> J t . 

41 



For t ^ Tt we define 
1 (c _ T y - 2 ' r# __ a11-2 

**(r; T i ) = J " 1 — - 7 7 T — d s a n d ^ ( ' = r-> = J w l d s -
T, r W Ti rW 

Then, by the L'Hospital rule, we derive 

l i m % £ > = l Ok-1,2) 
f -00 ^ f c W 

and consequently there exist a fx > Tx and a positive constant /? such that 

Rk(t; T,) £ /?/?,(/) for all t ^ f x (k = 1, 2). 

Furthermore, we choose a T2 ^ f { so that 

g(t)^ tx f o r t ^ T 2 . 
Then we have 

**l>(0; T,-] z /?/?fc[g(/)], l ^ r 2 (k = i, 2). 

Now, we consider an arbitrary number t* with t* g T2. We divide both sides 
of (*) by q>{x(t)loi] <//[x(t)/a], for Tt ^ t ^ /*, and integrate it over [IT-, .*] 
obtaining 

At) 

M 

}t <p[x(t)lz]il,[x(t)lot] 

1 1 

dt _ ^ ? 7 ' áy 

^(r, ) / . øOO «AO0 
> 

, ФW0/«] •AWO/a] Kt) ,• 
í 0 - 0и-2p(s) <P(x[g(s)]) ds d/, if / = 1 

и 1 

T l <p[x(/)/a] ф[x(t)/ot] r(t) 

1 1 . 

{t Ti)" Jp(s)<p(x[g(s)])dsd/, i f / > 1 

^ í • r (лi i i r /,\i i ' —77Г í (s ~ 0" P(s)ф(x[g(s)])dsd/, if / = 1 ft ę[x(t)l<x]ф[x(t)/cc] r(t) , r w r v L 6 V ; J / ' 

1 (/ - T!)""2 " 
[Kl ę[x(t)l«]ф[x(t)lrx] r(t) 

K;í(l)
,
íм:,...ш._ i 

т, r, Kt) <p[x(0!«] ^[x(0/«] 
(/ - T,)"-2 4>(x[g(s)]) . 1 

Jp(s)<p(x[g(s)])dsd/, 

d/ds, 

i f / > 1 

if/ = 1 

Ҷ*У, *Ö <?[*(0A*] *[*(0/«] 
dt ds, if l > 1 

_> < 
r2 r, Kt) <*>[x(0/«] ^[x(/)/a] 

r_ r, Kt) <P[x(t)/«] «/'[x(0/a] 

But, for every /, s with Tt g / _S g(.y), T2 _ 5 S /* we have 
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xlg(s)l > x(t) _> x(t)/a, x(t)/a __ /?,(» = J?,[g(j)] 

and consequently, by (II) and (III), we obtain 

1 .. 1 »(*[_<-)•) -, . 
<p[x(í)/a] = ' ifr[*.0/<-] = ^(Ui[g(a)]) 

Thus, we derive 

* (* • ) /« dy 
a*(T,)l<~ <Ky)^(y) ~~ 

Hence, we have 
*«*)/« 

'• i 

*._ Ф(RЫ*)1) 
'* i 

K ŤІ " ÕШ-Ж т, 
'* K2[g(s);T.] 

* J ~T7Ъ г Í чт\~ P( s ) d s ' 

тг Ф(RЫs)l) 

Kll>(RЫs)l) PІ) ' ày 

9(лs) Гeísì - Л " " 2 

P(s)J п A

J dtds, 
Tl r w 

_»(*) /< __ -p y i-2 

P(s)í J_ľ dřds, Kt) 

i f / = 1, 

if /> 1. 

ifi = l 

if /> 1 

a f -TT77-T = * ? J , 5 ř 5 , ) ] , T , P(s)ds, 
*(T,)/« POOMO T*_ '/'(^lígíS)]) 

where R = R2 for / = 1, R = R, for / > 1. Therefore it follows that 

a 1 dy >KBl * [ g ( 0 ] rfrtdf 

which contradicts the conditions (IV) and (C). Hence, only bounded nonoscillatory 
solutions of (E, -hi) may exist and the proof of the theorem is complete. 

Proof of Theorem 2. Condition (C) implies (C0) and hence, by Theorem 0, 
it is enough to prove that every unbounded nonoscillatory solution x of the equa
tion (E, —1) satisfies one of (X^), (X^)- Furthermore, with respect to the non
oscillatory solutions of (E, —1) we can restrict our attention only to the positive 
ones. 

Let x be a positive unbounded solution on an interval [T 0 , OO), T0 > max {f0, 0}, 
of the equation (E, —I) and let T ^ T0 be chosen so that 

gj(t) _g T0 for every t ^ T 0 = 1 , ..., m). 

Then, as in the proof of Theorem 1, we can conclude that (rx ' ) ( w - 1 ) is nonnegative 
on [T, OO) and not identically zero on any interval of the form [T', oo), T' J> T. 
Thus, by the lemma, there exist a T ___: T and an integer /, 1 gi / <; n, with n -f / 
even (therefore / # n — 1) so that 

U < n - 1 => ( - i y + i (rjcOa"1} > 0 on [T, oo) (J - = / , . . . , « - 1), 
(/ > 1 => (rjO ( ,~1} > 0 on [T, oo) (/ = 1, ..., / - 1). 

We consider next the following two cases. 
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Case 1. 1 <J / < n — 1. The same arguments as imtfie proof of Theorem B Bead 
to a contradiction. 

Case 2. / = n. If n > 2, by using the Taylor formula with integral rearaindier,, 
.for every t §: T we obtain 

KO x'(0 ^l{t
(7

T)"\rx'r-lHT) + 7 - ^ 7 f(t - sf-*frx<r--*&)4s 2r 
*»i (fc - 1): (n — i)lT. 

^(rxT~2)(T) \ t ,__-.- ( r x ' / ^ C T ) , -v*-* 
= (n -3)! ? ( t~S> "* = ( . - 2 K ^ - ^ 

and consequently 
0 _ TT~2 

x'(t) £ yt ^—^ for ail v £ T, 

where yt = (rx')("~2) (T)/(n - 2)! The last inequality holds afeo if m = 2. By an 
integration, for t ^ F we get 

x(t)^x(T)^nr *' ds. 

Therefore it follows that there exist a t t > Fand a positive coostaat y with y g 1 
such that 

x(0 ;> y/?i(0 for all t ^ rt.. 

Furthermore, we choose a T2 § Tj such that 

g / 0 ^ Tt for every t £ r2 (j = 1, _ „ wt). 

Then, by taking into account (ii) and the fact that x is increasing on [X oo), for 
f ;> T2 we obtain 

[r(o xXt)T~l} = fO; *|>.(0] XTAXOD = 
= f(<; *TXO], - , *IXO]) = f(>; y^.lXO], - y-MXO])-

Therefore, by (H), it follows that 

rxo *'(O](B- ° = ,KO 9(y*,rxoD, f_ra. 
But, (IV) ensures that 

y-*oo y 

and hence 
<p(y) *> >#(y) for all large y. 

Thus, for some T3 ;> T2 and every t § T3 we have 
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and act, Uaecause tcff\(I) and <IIIJ, we obtain 

I W ^ - H Z j - I ^ ^ M , <±r3. 

By an ixdegration, the last inequality gives 

im*W-*y* (rxT-2H*>) + v / 4*[£l)])K s ) d y 

f©r every 11£ T3 . Thus, in view of (C), we get 

lim [K0*'<0]°,"2) = oo 
f->00 

and consequently the solution JC satisfies (X^). 
Now, let us consider the special case where r = 1, i.e. the case of the differential 

equation 
(E, S) x<*>(0 + 6f(t; x[gt(t)l ..., x[gjt)j) = 0, r £ r0, 

where there is no loss of generality to suppose that t0 jg 0. Then 

/?,(.) = K2(r) = - - J L - (i - <0)"-», . ^ <•„ 

and consequently for some constant n we have 

0 < ixtn~l g K^f) = /?2(0 £ tn~l for all large f. 

Thus, because of (iii) and (III), we obtain that for all large t 

wo] ^ ixor1
 (fe = 12) 

Hence, in the considered special case the condition (C) follows from the following 
one 

(C) f [ , g ( 0 r ' K0d t = oo, 

provided that (I) holds. From Theorem 1, by applying it for the differential equation 
(E, 5), we obtain a recent result of Kitamura and Kusano [3]. The method used 
here in proving Theorems 1 and 2 is originated in that of Kitamura and Kusano [3]. 

Next, we turn our attention to differential equations of the form 

(D) [ K O ^ O F " 1 * + <t)*(xtgt(t)l . . . , 4 ^ ( 0 ] ) - o, 

where a is a continuous real-valued function on the interval [f0> <x>) and # is 
a continuous real-valued defined at least on J?+ KJ Rm. The functions a and $ 
are .subject to the following conditions. 
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(iv) a is of constant sign on [t0, oo). , 
(v) # 15 increasing on R™ u Rl and has the sign property 

#O0 > 0 for all y€Rl, $(y) < 0 for all ye Rl. 

Under condition (iv), the equation (D) is of the form (E, d) with <5,= +1 for 
a = 0 or 5 == - 1 for a £ 0, and f(t; y) = | a(t) | <P(y) for all (t; y) e [t0, oo) x 
x dom <P. By applying Theorems 1 and 2 with 

p(t) = I *(0 I, / = t0; <p(y) = <J>(y, ...,;>), y # 0; r̂(y) = l ,y > 0 

for the differential equation (D), we derive the following corollary. 

Corollary. Suppose that (i), (iii), (iv) and(\) hold and let the differential equation (D) 
be strongly superlinear in the sense that 

7 dy * 7° dy (vi) J ——i < oo and J —,—- < oo. 
J #(y, ...,y) J #(y, . . , y ) 

77*£/t, wwder /h# condition 

(A) J R*[g(0] I a(() | dr = oo (fc = 1, 2), 

we Aave the following: 
at) For a nonnegative and n even, all solutions of(D) are oscillatory. 
Pi) For a nonnegative and n odd, every solution x of(D) is oscillatory or satisfies 

(X0). 
a2) For a nonpositive and n even, every solution x of (D) is oscillatory or satisfies 

oneof(X0),(XJ,(X.J. 
P2) For a nonpositive and n odd, every solution x of (D) is oscillatory or satisfies 

one of(X J , ( X . J . 
Finally, we remark that in the case where (D) is an ordinary or advanced 

differential equation the condition (A) becomes 

(A*) ]Rk(t)\a(t)\dt~oo (fe = l,2). 

Our corollary ceases, in general, to hold if (A) is replaced by (A*). This is illustrated 
by the following four examples of retarded equations, which fail to satisfy (A). 
However, they satisfy the rest of the assumptions of Corollary and the condi
tion (A*). 

Example 1. The equation 

[r1/3x'(r)]' + - ^ r5/V(r1/3) = 0, t^l 

has the nonoscillatory solution x(t) = t1/2, a contradiction to conclusion a t) 
of Corollary. 
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Example 2. The equation 

[^l/V(or + ^r«/vo i / 3) = o, tm 

has the nonoscillatory solution x(t) ^ tvi with limx(0 = oo, a contradiction to 
f-+oo 

conclusion Pt) of Corollary. 

Example 3. The equation 

[^(Or--^rV(i1 / 3)-o, ifci 

has the nonoscillatory solution x(t) ** tl/2 for which we have lim x(t) = lim tx'(t) = 
t-*O0 f-»00 

= oo while lim [rx '(0]' = lim [tx'(t)y = 0, a contradiction to conclusion a2) 
f-*oo l-*oo 

of Corollary. 

Example 4. The equation 

[r1/3x'(0r - ^ r 8 / Vo 1 / 3 ) = o, r = i 

has the nonoscillatory solution x(t) = t1/2 for which we have lim x(t) = oo while 
r-*oo 

lim tx'(t) = lim [**'(*)]' = 0, a contradiction to conclusion /?2) of Corollary. 
t-*ac r-*oo 

Final Remark. We have already noted that in the special case where r = 1 
Theorem 1 leads to a recent result of Kitamura and Kusano [3]. We now notice 
that our corollary extends and improves a recent result of Staikos [9] concerning 
also the special case r = 1. 

The same author [8], by using a similar method as in this paper, has proved 
Theorems 1 and 2 for the differential equation 
(E', d) [r(0 *<-*>(/)]' + 5f(t; x[gl(t)l ..... xQrm(*)]) = 0. 

It remains an open question if Theorems 1 and 2 can be extended for more general 
differential equations of the form 

[r(0 x^-N\t)r} + Sf(t; xtgl(t)l ..., *[gw(0]) = 0, 

where 1 = N ^ n - 1, or of the general form 

[ V i ( 0 [r .-aO [••- [>i(') *'( ')] ' . . .] '] '] ' + 5f(t; xtgi(t)l ..., x[gm(0]) - 0, 

where rf(/ = 1, .. . ,« — 1) are positive continuous functions on the interval [t0, oo) 

with J [l/r,(0] dt = oo (i = 1, .... n - !)• 

47 



REFERENCES 

âmu 
[1] I. T. Kiguradze: On the oscillation of soìutions of the equation h a(t) | u |" sgn u = 0 

åtm 

(Russian), Mat. Sb. 65 (1964), 172—187. 
[2] I. T. Kiguradze: The problem of oscillation of solutions of nonlinear differential equations 

(Russian), DifferenciaГnye Uravnenija 1 (1965), 995—1006. 
[3] Y. Кitamura and T. Кusano: An oscЩation theorem for a superlinear functional differential 

equatìon with general deviating arguments, Bull. Austral. Math. Soc. 18 (1978), 395—402. 
[4] P. Marushiak: OscШationpropertiesofsolutionsofn-th order differentialequations with time lag, 

DifferenciaГnye Uravnenija 14 (1978), 1186—1191. 
[5] Ju. A. MitropoГskií and V. N. Ševelo: On the development of the theory of osciilation of 

solutions of differentiaІ equations with retarded argument, Ukrain. Mat. Ž. 29 (1977), 313—323. 
[6] Ch. G. Philos: OscШatory and asymptotic behavior of the bounded solutions of differential 

equations with deviating arguments, Hiroshima Math. J. 8 (1978), 31—48. 
[7] Ch. G. Philos: Oscillatory and asymptotic behavior ofalî solutions of differential equations with 

deviating arguments, Proc. Roy. Soc. Edinburgh Sect. A 81 (1978), 195—210. 
[8] Ch. G. Philos: OscШatory and asymptotic behavior of strongly superiinear differential equations 

with deviating arguments, Ann. Mat. Pura Appl., 126 (1980), 342—361. 
[9] V. A. Staikos: Basic results on osciilation for differential equations with deviating arguments, 

Hiroshima Math. J., 10 (1980), Hiroshima Math. J. 10 (1980), 495-516. 

Ch. G. Philos 
Department of Mathematics 
University ofloannina 
loannina 
Greece 

48 


		webmaster@dml.cz
	2012-05-09T18:03:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




