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ARCH. MATH. 2, SCRIPTA FAC SCI. NAT. UJEP BRUNBNSIS 
XVIII: 65—76,1982 

ON A "LIAPUNOV LIKE" FUNCTION 
FOR AN EQUATION z~f(t,z) 

WITH A COMPLEX-VALUED FUNCTION f 

JOSEF KALAS, Brno 

(Received September 15,1981) 

1. Introduction 

In earlier papers [2], [3], [4], [5] and [6], the author studied the asymptotic 
behaviour of the solutions of an equation 

(1) z = G(t9z)[h(z)+g(t,z)l 

where G is a real-valued function and h, g are complex-valued functions of a real 
variable t and a complex variable z. The function h is supposed to be holomorphic 
in a simply connected region Q containing zero and the right hand side of (1) is 
assumed to be "close" to h(z). It is shown that the asymptotic properties of the 
solutions of (1) are similar to those of 

(2) z = /*(*). 

The technique of the proofs of the majority of these results is based on the Liapunov 
function method. On the assumption h'(0) # 0 and h(z) = 0 o z = 0, a suitable 
LiapUnov function W(z) is defined in the following manner: 

where 

W(z) = \z\ |exp[fr(z*)d 2*]|, 
0 

(zh'(0)-h(z) 

Қz) = ł 
zh(z) 

h"(0) 
2Һ'(0) 

whenever z e Q, z + 0, 

whenever 2 = 0. 

The purpose of the present paper is to give the definition and to describe some 
basic properties of a "Liapunov-like" function W(z) which is convenient for the 
investigation of the asymptotic behaviour of the solutions of (1) in the case 
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h(z) = Ooz = 0, h(n)(0) # 0, h(i)(0) - 0 for J = 1,..., n - 1, where n =- 2 is 
an integer. Notice that W(z) does not satisfy all the conditions usually required for 
Liapunov functions. Namely, W(z) is defined only for zeQ — {0} and there is 
no continuous extension of W(z) to Q. 

Some results dealing with the asymptotic behaviour of the solutions of (1) will 
be published in next author's papers. . 

Throughout the paper we use the following notation: 

C - Set of all complex numbers 
B — Conjugate of a complex number b 
Re b — Real part of a complex number b 
Imb — Imaginary part of a complex number b 
Arg z — Principial value of the multivalued function arg z 
Bd r - Boundary of a set F c: C 
CI r - Closure of a set F c C 
Int F — Interior of a Jordan curve % = z(/), t e [a, /?] whose points z form 

a set F cz C; F will be called the geometric image of the Jordan curve 
z**z(t),te[arfi] 

Q — Simply connected region in C such that 0 e Q 
3>t?(Q) — Class of all complex-valued functions defined and holomorphic in the 

region Q 
Ind/(0) — Index of the point z = 0 with respect to the equation z = f(z). 

' 2. Definitions and properties of W(z) and &(k) 

Let n = 2 be an integer. Suppose A(z)e'jf(fi), h(z) = O o z = 0, h(/)(0) = 0 
for j = 1,..., H ~ 1 and /^(O) # 0. Define 

a t = 1, 

n! ' - 1 ft(B+,-^(0) . H „ 

S - l + ( | < j . | ' - !)sgn|o.|, 

k -, [h<">(0) + (a„ - h(">(0)) sgn | a„ \]/(0nl), 

K-) = 
z^^Ol-лlKz)^/"1 

— J— for. z є Q, z ф 0, 
n\h(z)z" 

-an+l for z = 0. 

Lemma 1. JAt? function r(z) is holomorphic in Q. 
Proof. r(z) is holomorphic in Q — {0}. Using repeatedly L'Hospital's rule, 

we obtain 
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z"/.(n)(0)-n!/i(z)Xa,-y"1 

lim — — 1=±-. = 
z-o n! h(z)z" 

n\Ya- &—1- h(2n-J+l)(0) 

z-o (2n)\hln\0) 

_ -hinX0)(2n)\an+l __ a 

(2n)\h(n)(0) w + 1 ' 

Thus the singularity, at the point z = 0, is removable and r(z) is holomorphic 
in Q. 

Put 

w(z) = z ^ 2 * " 1 expf-fc*"l 1*—j]exp[fc* f r(z*)dz*], 
L i-i (n -j)zn JJ o 

where k* = n\k, and define 

W(z) = I w(z) | for z e O, z 9-. 0. 

Lemma 2. W(z) is a first integral for an equation 

(3) z = ifch(n)(0) h(z) 

on the set Q — {0}. Moreover, 

\dW(z)l2 \dW(z)-\2 

L^RezJ "^L3 1™2.] 
for zeQ ~ {0}. 

Proof. For z e Q — {0} we obtain 

[mпm^-
= W2(z) 11 a, | * © - V 1 + &*["ŽV'-"-1 + Kz)] I2 = 

= ff2(z) j k |2 | h(n>(0) |2 | h(z) r 2 . 
Hence 

Ш М * ° fo'"°-(("-
Further, if z(f) is any differentiable function, then 

A. w2(z) = ~tw(z)W)l - 2Re[V(z)^z")i] = 
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= 2W2(z)Re{fc*[£ a^-"-1 + r(z)]z} = 2W2(z)Rc{kh<n\0)h~i(z)z} 
j=i 

for all t for which z = z(t) eQ - {0}. Therefore, if z(t) is any solution of (3)? 

then 

W(z(t)) = ^ ( z ^ R e i k h ^ ^ h - H ^ i W ) = 

= W(z(t)) I k I2 I A(w)(°) I2 Re / = 0 

for all t such that z(0 7* 0. The proof is complete. 

Lemma 3. 1° cp^ is a characteristic direction for (3) if and only if <pM = 
= (n — l)" 1 [tin — Arg (/£)], where fi is an integer. 

2° There are positive numbers #, <5, rj (rj < 2, S < 2 arcsin (rj/2)) such that if \i is 
any integer and if a solution z(t) of (3) satisfies 

z(tl)eQ, = lzeQ:0<\z\<S, T J T " ^ M < 4 ' 

then 

(i) z(0 e Qpfor t S h or t = tj, and 

A-\z(t)\>0 or A | Z ( 0 | < 0 , 

respec/tWy; 
(ii) for the continuous determination (p(t) of Arg z(0 there hold the inequalities 

<p(t) > 0 whenever ^ + 3 < cp(i) < (p^ + 2 arcsin -~-, /can I K O I \ 

J sgn ^ J <p(t) < 0 w/ienet)er </>„ - 2 arcsin y < <p(f) < <p„ - 3. 

Proof. Denote /(z) = /B^^O) h(z), o(r) = | z(t)\. Then z(/) = e(t) eivU). It 
follows from the equation (3) that the functions g(t), <p(t) are solutions of 

ee'* + ige'op =f(Qe>*). 

Consider the corresponding system of two real equations 

( 4 ) 6 - Re [e-»f(Qe»)\ 
(?9> = Imfe-'Vfee")]. 

Taking into account that /(0) = ... _yt»-i)(0) = 0, /(B)(0) ^ 0, we can write 
the system (4) in the form 

( 5 ) Q = -ff Re [j(B)(0) ei("-1)p] + «KA 

•V 1 

fl» = - ~ ; p Im [/^(O)^"-"*] + o^""1). 
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Furthermore, we have 

(so « = IT [(~lf l/(w)(0)'+ o(1)] + 0{Qn)> 

Since Im [f(w)(0) c'("",)*] = 0 if and only if <p = <pM = (« - l ) " 1 [>* - Argf(rt)(0)], 
both the parts of Lemma 3 can be easily derived from the relations (5), (5'). 

Now, we are prepared to prove the following 

Lemma 4. Let F be any simply connected region such that f c Q, Oef. For 
M > 0 put 

(6) FM = {zeF: inf | z - z* | < M""1} u {z e F: | z | > M}. 
z*eBdT 

De/lole 
Â  = liminf W(z). 

M-*oo zefjtf 

Jf 0 < A < A +, then the set {z e F: W(z) = A} is the union of a certain nonempty 
system J£+ of geometric images of curves with the following properties: 

l°ifR*eJ£ + , then R = R* u {0} is lhe geometric image of a Jordan curve and 

(7) Int Re {zeF: W(z) < A}; 

2° ifR* e J£? + , R = R* u {0} awd 0 < A- < A, rhe/t lhe set {z e Int R: W(z) = 
= Aj} u {0} is the geometric image of a Jordan curve; 

3° if R* e J§?+, A < A2 < A+, then there ts a Jordan curve with the geometric 
image Rx such that R* cz Int Rx and W(z) = k2for z e Rt — {0}. 

Proof. Because of Lemma 2 the function W(z) is a first integral for (3) on 
Q ~ {0}. We shall show that there is no closed trajectory of (3) lying in F. If this 
is not true, there exists a trajectory of (3) which is a Jordan curve lying in F. Its 
interior must contain the point z = 0 with the index equal to 1. However, using 
Theorem 1 of [9], we have Ind7 (0) = n > 1, a contradiction. Hence there is no 
closed trajectory of (3) lying in F. 

The function w(z) is holomorphic in F — {0}. Since ai # 0, the function w(z) 
has an essential singularity at z = 0. Choose A, 0 < A < A+. In view of Picard's 
theorem, there is a zx e F — {0} such that W(zx) = A. 

Let zt be any point with the mentioned property. There is a unique trajectory 
of (3) passing through zx. This trajectory corresponds with a solution z(i) of the 
initial value problem (3), z(0) = zt. Clearly, W(z(t)) = A for all t for which z(t) 
is defined. There exists an M > 0 such that the considered trajectory is contained 
in the compact set F — rM. Suppose that the set of ct)-limit points or the set of 
a-limit points of the solution z(i) does not contain the point z = 0. Then, owing 
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to the Poincare — Bendixson theorem, the set of co-limit points or the set of oe-limit 
points of the solution z(t) is the set of points z on a periodic solution z = z0(t) 
of (3). The trajectory corresponding to this solution is a closed curve lying in F, 
and we get a contradiction. Thus the set of co-limit points and the set of a-limit 
points of the solution z(t) must contain the point z = 0. 

We claim that 
(g\ lim z(t) = lim z(t) = 0. 

f->00 f-> — oo 

If it is not the case, then the set of co-limit points or that of a-limit points of the 
solution z(t) of (3) consists of the point z ~ 0 and of the points of a certain 
nonempty system of trajectories {z : z = z0(t), te ( — 00,00)} such that the 
corresponding solutions z0(t) satisfy 

lim z0(l) = lim z0(t) = 0. 
t -> 00 t -> — 00 

([1, Theorem VIL4.2]). From the continuity it follows that W(z0(t)) = X for 
t e (— 00, 00), which, in view of Lemma 2, contradicts the implicit function theorem. 
This proves (8). 

In the following, £z(t) and <pz(t)(t) will denote the trajectory corresponding to z(t) 
and the continuous determination of Arg z(l), respectively. It is clear that Rz(t) u 
u {0} is the geometric image of a Jordan curve. By virtue of [1, Theorem VIII.2.1] 
and Lemma 3 we have 

lim <pm(t) = (p^, lim (pz(t)(t) = <p„2, 
f-+oo f-* — 00 

where <p t̂, <p^2 are characteristic directions for (3) such that <pili 7-= <pM2 (mod In). 
We shall prove that <pfll, cp^ are consecutive characteristic directions, i.e. that 

I (pflt — (pin I = n(n — l)""1. Suppose for the sake of argument that this assertion 
is false. Then there are solutions zr(t), z2(t) with the property zx(t) e F, z2(t) e F 
for t e ( - 00, 00), Zj(ty~* 0 as t -» ± 00 (j = 1, 2), 

lim (p2l(t)(t) = (pfi,, lim cpZi(t)(t) = c/>„4, 
t-+oo f-> —00 

lim <pziit)(0 =- (p„s, iim <pzm(t) = <pM, 
f-*oo f-> — 00 

4 2 ( 0 c Int [ # z i ( 0 u {0}] and | ^ - ^ 6 1 = n(n - l ) " 1 , 

where </>M3, c/?M4 are not consecutive characteristic directions. Let & be the set of 
all solutions u(t) of (3) such that u(t) -* 0 as t -> ± oo, 

lito cptt(o(0 = <pM3(mod 2w), lim <pm(t) = c/^mod 2n) 
f->00 f - * - 0 0 

and 
£a( f ) c Int [Ieu(0 u {0}]. 

For each u(t) e & there is a z* e £ < - ) f o r w h i c h M* I « max {| «(/) | : / e ( - 00, oo)}. 
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Denote by 9 the set of all such points z*. Put v = inf {\t*\:z*e 9}. Obviously, 
v > 0 and there exists a convergent sequence {z*}, z* e ^ (i = 1,2,...) such that 

lim z* ~ z0, where | z0 | = v. 

Because of Lemma 3 and the continuous dependence on initial values, every solu
tion u(t) of (3) for which w(0) ii close enough to z0, satisfies u(0 -> 0 as / -> ± oo, 

lim (pu(t)(t) = <p„3, l i m ę u ( t ) ( t ) = (pЏĄ9 
Г->-aò .' 

which contradicts the definition of v. 
We claim that 

(9) W(z) < A for z e Int [Rz(t) u {0}]. 

If this is not true, there exists a z0 e Int [&z{t) u {0}] such that A ^ W(z0) '= 
= A* < A+. The solution z0(t) of an initial value problem (3), z(0) = z0 satisfies 
z0(t) -> 0 as t -> ±oo, 

lim <pzo(,)(0 = <PM, > l i m <P*o(f)(0 = ^ 2 • 
t-* oo f - * — 00 

Let <5, ^ be as in Lemma 3. There are unambiguously determined points zt, z2£ Qm 
and z3, z4 6 Q^2 such that zt,z3e Rz{t) n {z : | z| = 5/2}, z2,z4e Jfio(0 n 
n {z : | z | = (5/2}. Let K* denote the set consisting of the points of the part 
of Rz{t) lying between the points zx, z3, of the points of the part of itzo(0 lying 

between the points z2, z4 and of the points of two disjoint arcs ziz2, z^zA of the 
circle | z | = 8/2. Clearly, K* is the geometric image of a Jordan curve. 

;ArgZ ; ^ fmod ^гr) 

lzi=cf/2 i/i^cf 

Fig. 1. 

In view of Lemma 3 and the maximum modulus theorem, all the points 
z* e CI Int K* with the property W(z*) = max { W(z) : z e CI Int K*} or W(z*) = 
= min {W(z) : z e CI Int #*} must lie on it s ( 0 or ^ 2 o ( f ) . Since *F(z) is not constant, 
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we have A < W(z) < A* for ze lntK* . Let & be the set of all solutions u(t) 
of (3) such that u(t) e F for t e ( — oo, oo), u(t) -» 0 as / -» ±00, 

lim <ptt(ř)(0 = (pЏí, Hm <pи(ř)(0 = <*> 

and 

,(f)W — <ř>i> ----- <ŕм(OlU — V,|2 

f->oo f-> — 00 

R2(t) cz Int [it t t ( f ) u {0}]. 

By virtue of Lemma 3 and the continuous dependence on initial values we infer 
that J5" ^ 0. If u(t)e3F, then W(u(0) < A for te(-oo, 00) and there exists an 
M > 0 such that ^ . ( t ) c F — FM for any u(0 e J*. Moreover, there is a z* e ^ t t ( f ) 

for which | z* | = max {| w(t) I : / e (— 00, 00)}. Denote by ^ the set of all such 
points z*. Put v = sup {| z* | : z* e &}. Obviously, v > 0 and there exists 
a convergent sequence {z*}, z* erS (j = 1, 2, ...) such that 

lim z* = z*, where | z* | = v. 
7-00 

F u r t h e r , 0 < W(zJ) = l i m ^ ^ W(z*) ^ X < Xr

+. Because of L e m m a 3 a n d the con
t i n u o u s dependence o n initial values, every solut ion u(t) of (3) for which w(0) is 
close e n o u g h t o z* satisfies w(t) -• 0 as t -+ ± 0 0 , 

lim q>u(t)(t) = <pM1, l im <pu(t)(t) = <pM2, 
f->oo f-> - 00 

which contradicts the definition of v. Therefore W(z) < X for z e Int \&z(i) u {0}]. 
Now, we want to prove that to any X2, X < X2 < Xr

+, there is a solution z*(t) 
of (3) such that W(z*(0) = A2 for te(-oo, oo) and R2(t) cz Int \RzHt) u {0}]. 
Suppose not. Denoting by J^ the system of all solutions u(t) of (3) such that 
W(u(t)) < A+ for te ( -00, 00) and R2(t) cz Int [.£M(r) u {0}], we observe that 

& ^ 0 and there is an M > 0 such that ku(t) cz F - FM for any w(t) e /F. Proceed
ing analogously as before and using Lemma 3 and the continuous dependence on 
initial values, we obtain a contradiction which proves the existence of the solu
tion z*(0 with the properties W(z*(0) = A2 for le(-oo, 00) and Rz(t) cz 
cz Int [Jt2*(f) u {0}]. 

Finally, we shall prove that to any Xt, 0 < Xt < A there is a solution z*(0 
of (3) such that £z.(t) c Int [Rz(t) u {0}] and W(z*(t)) = Xx for te ( - 0 0 , 00). 
It is sufficient to show that there exists a z* e Int \&Z(t) u M ] with the property 
W(z*) z% Aj. Putting <p* = (<pM1 + <pM2)/2, we obtain 

lim F^se'**) = lim | w(seiq>*) | = lim exp -fc* ? ' v „ . = 
s ^ 0 + $_»0 + ,-o + | L ( n - l ) s n - V ( n - 1 ) ^ J | 

= lim I exp[-fc* c«Af«(iS)-(fii+«)«/2]"| I = 

»-o+| L ( n - l ) s ^ 1 JI 

= lim exp U j fc* I — — - , 
- o + l L (n-l)sn lj\ 
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where e = - 1 or e = + 1. In view of (9), the second case is impossible, whence 

lim W(se1**) = 0. 

Thus the existence of z* € Int [Rzit) u {0}] with the property | W(z*) | << At is 
proved. The proof is complete. 

Quite analogously we can prove the following * 

Lemma 5. Let F be any simply connected region such that f c f l , OeT. For 
M > 0 put 

FM = {zeF: inf | z - z* | < M"1} u {ze F : | z | > M). 
z*eBdr 

Denote 
XL = lim sup W(z). 

M-+ao ZCTM 

If XL > X < oo, than the set {z e F : W(z) = A} w fhe uw/oAi 0/a certain nonempty 
system S£~ of geometric images of curves with the following properties: 

1° if R* e <£~, then R = R* u {0} is the geometric image of a Jordan curve and 

Int R cz {zeT : W(z) > X}; 

2° ifR* e <e~, R = R* u {0} andX< X{ < oo, then the set {z e Int R : W(z) = 
= Xx} u {0} is the geometric image of a Jordan curve; 

3° if fc* e&~, Xl < X2 < X9 then there is a Jordan curve with the geometric 
image Rt such that R* cz Int Rx and W(z) = X2for z e Rt — {0}. 

Let 3 be the system of ail simply connected regions F cz Q such that 0 e F. 
For any F e 3 put 

A+ = lim inf W(z)9 XL = lim sup W(z)9 
M->oo ZGTM M-*ao ZGTM 

where FM is defined by (6). Denote 

A+ = sup A+, A- = inf XL. 
TeE res 

Obviously, 0 < A+ z% oo ,0^A_ < oo. Moreover, in view of the implicit function 
theorem, Lemma 2, Lemma 4 and Lemma 5, the inequality X+ ?* X„ must hold. 
For 0 < A < A+ and A_ < A < oo, respectively, we define Jf+(A) = {z e F: W(z) = 
= A}, where F is any element from 3 such that X+>X and Jf ""(A) = {z e F: JV(z) = 
= A}, where F is any element from 3 such that A« < A. It follows from Lemma 4 
and Lemma 5 that X"*"(X)9 X"~(X) are well-defined. Indeed, if e.g. Jf+(X) is not 
well-defined, then there exist rl9 T2 e 3 satisfying A+* > X9 X

r+ > k ap4 #t = 

= Xrt(X) # Jf2 = jff2(X). Suppose for definiteness that there is a z* e $C\ 
so that z* $ jf2. Owing to Lemma 4 we conclude that there exists a set it which 
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is the geometric image of a Jordan curve such that z* e R c j f + u {0}. Let 0 
be a neighbourhood of the origin with the property 0 c Ft n F2. Clearly, W(z) < 
< A for z e 0 n Int R. Ifz*e® n Int ^ a n d W(z*) = A^ then, in view of Lemma 4, 
there is a j t t c F2 which is the geometric image of a Jordan curve such that z* e Rt 

and JF(z) = Aj for 0 =£ z e Rx. Using Lemma 4, we observe that there is a Jordan 
curve such that, for its geometric image R2, conditions R2 c jf2 u {0} and 
Rx — {0} c Int R2 are fulfilled. Considering Rx — {0} c Int R, we have £ 2 — 
— {0} cz R or R — {0} c ^ 2 , which is a contradiction, because of Int R c 
c {z e £ : W(z) < k} and Int £ 2 c {z e .0 : W(z) < k}. 

Let ^ + and 3"~ be the system of all geometric images of Jordan curves which are 
contained in Jf + (k) u {0}, 0 < k < A+, and Jf~(k) u {0}, A_ < A < oo, 
respectively. Consider the relation (p defined on«f + and $~~ in the following 
way: 

RxcpR2 o [ ^ - {0} c Int R2 or R2 - {0} c Int Rx or Rx = R2~\. 

It can be easily verified by means of Lemma 4 and Lemma 5 that cp is an equivalence 
relation. For decompositions 3~+/<p and <T~~/<p we obtain the following two 
statements: 

Theorem 1. ff^e^r+/(p, then <f = {R(k) : 0 < k < A+}, where 
1° R(k) is the geometric image of a Jordan curve for any A, 0 < k < k+; 
2° R(k) c X + (A)u {0}; 
3° R(kx) - {0} c Int R(k2)for 0 < kx < k2 < k+. 

Theorem 2. Jf Sf eZT'/cp, then 9> = {R(k) : A_ < k < oo}, where 
1 ° R(k) is the geometric image of a Jordan curve for any k, A _ < k < oo; 
2° £(A) c X " ( A ) u {0}; 
3° Jt(A2) - {0} c Int^(Ai)f0r A_ < kx < k2 < oo. 

Remark. It can be easily seen that the trajectories of (2) cut the curves R(k) 
with the constant angle *// such that 

| Re n£/i(n)(0)] | . , | Im [iHhw(0y\ | 
cosú = *=—, , J , s iné = - ~—, ^ / J I 

| f c | | h w ( 0 ) | |fc| | h w ( 0 ) | 

3. Examples 

In this section we shall illustrate the results of Section 2 by the following two 
examples. 

Example 1. Let Q = {z G C : a < Re \bz\ < p}, where beC, b *- 0 and 
- o o ^ a < 0 < j 8 ^ o o . Put h(z) = bz2. Then h'(z) = 2bz, hn(z) = 2b, hm(z) = 0. 
Further we obtain at = 1, a2 =- #3 = 0, B = 1, A: = h, r(z) = 0, w(z) = 
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= exp [-2&T 1], W(z) = exp {Re [~25z~l~\}. Moreover, 0 < A+ = 
= e x p [ - 2 | 6 | 2 / T 1 ] ^ 1 g exp [ - 2 | 6 | 2 a - 1 ] = A_ < oo. The sets £(A) u {0}, 
where 0 < A < A+ or A_ < A < oo, are circles with centres [ — Re b In - 1 A, 
ImMrT'A] and radii | In A | _ 1 \b\. 

ImJbĄ тQ 

У'Re[bz)zO 

Rez 

P(\),o<\<\. 

Fig. 2. 

Example 2. Let Q = C, b(Z) = b(Z - a) Z2, a e C, b e C, a # 0 *- b. Then 
A'(Z) = b(3Z - 2a) Z, h"(Z) = 2b(3Z - a), /T(Z) = 6b, A(4)(Z) = 0. Furthermore we 
have at = 1, a2 = a""1, a3 = a"2, <9 = | a | - 2 , k = a/2, r(Z) = [a(a - Z)]""1, 
w(z) = az(a - z)-1exp[-£iz"1], W(Z) = [a\ \z\ | Z - a r 1 exp {Re [-aZ"1]}, 
A+ = A_ = | a |. The sets R(X)y where 0 < A < A+ or A_ < A < oo, are sketched 
in Fig. 3. 

Imz 

lm[ãz]=0 

-<r\),\„<\<°o 

Җz)=!al 
K(K),0<\<\. 

Fig. з. 
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