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We shall deal with finite undirected graphs G = (¥, E) without loops and multiple
edges. V,(G) is the set of vertices of degree k in G. If G is connected, then d; denotes
the usual metric on ¥ and » being a positive integer G* = (V, E") is the n-power
(called the square for n = 2) of G, i.e. (x,y)e E"iff 1 £ d(x, y) S n. It is known
([8], [4)) that the 3-power is always Hamiltonian. Several papers [5], [1], [2],
[3] et al. were devoted to the question on hamiltonicity of the square of a connected
graph. In [2] an important role of Eulerian graphs has been discovered.

In this note, we are interested in so called Eulerian graphs arbitrarily traceble
from a vertex, which were introduced and studied by 0. Ore in [6] (we admit
no loops and no multiple edges, but this is not essential, in fact). These are such
Eulerian graphs, in which an Eulerian circle can be drawn starting from a suitable
vertex and obeying one rule only: to draw every edge only once. In [6] (see also
[7], chapter IV, 4.5.6) it is proved that every such arbitrarily traceble graph is
given by the following construction: we take a forest G, = (¥, E,) without one
vertex components and v non € ¥;. We add » to G, and we connect v by an edge
to each vertex from ¥, having an uneven degree in G,. So we get the Eulerian
graph G arbitrarily traceble from the vertex v. We shall prove that such a graph
has the Hamiltonian square. This assertion will be a corollary of an auxiliary sta-
tement on forests, generalizing the notion of the square for trees, which can be
of some interest by itself, '

Proposition. Let G = (V, E) be a forest. There exists such an ordering of ¥V in
a sequence vy, ..., v, (p = | V), for which

L. v, v,€ V,1(G),

2. for all idg(v;, v;44) S 2 or vy, V4, € V41(G). :

Proof (by induction on p). If p = 1, clear. Let p > 1. If G is no tree, we can use
induction for connected components of G. So let G be a tree.

a) Let there be two vertices v, w € ¥, which are neighbors 'and both of them of
degrees at least 3. Delete the edge (v, w) from G. After that G decomposes in G,
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and G, for yvhlqh V(G = V,(G‘) v V(G,). We can apply the mductnon assump-
tion to G, and ' G,.

b) If the assumption in a) is not valid in G (i.e. v, w do not exist) we take some
maximal (further non-prolongable) way in G with vertices x, ..., x,. So
dg(xi, x;41) = 1 and x,, x, € V{(G). From the sequence x,,..., x, select the
vertigay pelonging . to- V,(G) U V,(G) v V3(G).- We get the sequence
WXy, Xg,. 9 Pai= 1o Xjie s Xjamts Xjgatrs-ros Xj—1s Xj a1 -00> X Our as-
sumption b) implies j, + | <j, < ... Let x be a vertex from the sequence u
belonging to V3(G); Let G, be the part of the branch in G starting in x contained
in [G — {x;,...,x}]u {x} up to the first vertex (if it exnsts) of degree at least 3
in G (this vertex not mcludmg) Ie G.is a way x, x', x2, ..., x" in G which is
,Jlongest possible” such that x!, x?, ..., x"~! are of degree 2 in G, the degree of x"
is 2 or 1. Take now the sequence of vertices x,, ..., x;,—, and let x’, x”, ..., x™
be from V,(G) among them. Put H, to be the subgraph in G with the vertices
Xyt x. _ and those of G,.,.G,, ..., Gyom.
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Fig. 4.

H‘ 1s a gxaph of the. type (we put x = x')
Snmlarly H;, cers H,,H are defined. By [5] (and it is easily seen here) there exists
n ordemng of the set of verticés in H, in such a sequence that the first vertex is x,,
Qb.e 1ast vertex x;, _4 and the. netghbors in this sequence have in H, (i.e. in G) the
d{st,an.ce 3t most 2. Let us denote this sequence by z;. We get a sequence of such
S,equences Mgy My oonsTheyq . The end of m, 4, is the vertex X, and the end of 7, has
the distance 2 from the startmg vertex of 7;,,. Therefpxe the sequenge 7 =
= (m;, ®3,..., T,+,) Obtained by juxtaposition of the sequences =y, x,, ..., 1:,,“
Kas the property 1. and 2. from the Proposition Wes now delete %he'“verti'ces
participating in the sequence n and the edges incidert tothem from G."We get
the forest W such that V(W) < VI(G) By the induction assumgtidit we.can order
the set of vertices of Win a sequence: ¢ fulfilling 1. and 2, from’ tﬁc Pmposatlon
‘Then the sequence o = (n, Q\ isid requu'ed sequenoeu T T B AL AR

Com.lhry A Let. G = (V E) be a graph-wnth a vertex ) haymg thetfpllowmg
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H = G — {v} is a forest and u € V,(H) = the edge (u, v)
is in E. Then G? is Hamiltonian.

Corollary 2. Let G be an Eulerian graph arbitrarily traceble from a vertex.
Then G? is Hamiltonian.

Proof is an immediate consequence of Corollary 1. and Ore’s construction
of such graphs.
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