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We shall deal with finite undirected graphs G = (V9 E) without loops and multiple 
edges. Vk(G) is the set of vertices of degree k in G. If G is connected, then dG denotes 
the usual metric on V and n being a positive integer Gn « (V, En) is the n-power 
(called the square for n = 2) of G9 i.e. (x9 y) e En iff 1 gj d(x, j>) g «. It is known 
([8], [4]) that the 3-power is always Hamiltonian. Several papers [5], [1], [2], 
[3] et al. were devoted to the question on hamiltonicity of the square of a connected 
graph. In [2] an important role of Eulerian graphs has been discovered. 

In this note, we are interested in so called Eulerian graphs arbitrarily traceble 
from a vertex, which were introduced and studied by 0. Ore in [6] (we admit 
no loops and no multiple edges, but this is not essential, in fact). These are such 
Eulerian graphs, in which an Eulerian circle can be drawn starting from a suitable 
vertex and obeying one rule only: to draw every edge only once. In [6] (see also 
[7], chapter IV, 4.5.6) it is proved that every such arbitrarily traceble graph is 
given by the following construction: we take a forest Gx =* (Vi9Et) without one 
vertex components and v non e Vx. We add v to Gt and we connect v by an edge 
to each vertex from Vt having an uneven degree in Gx. So we get the Eulerian 
graph G arbitrarily traceble from the vertex t>. We shall prove that such a graph 
has the Hamiltonian square. This assertion will be a corollary of an auxiliary sta­
tement on forests, generalizing the notion of the square for trees, which can be 
of some interest by itself. 

Proposition. Let G -= (V9E) be a forest. There exists such an ordering of F in 
a sequence vx,..., vp (p = | V |), for which 

Lvi9vpeVt(G)9 

2. for all i dG(vi9 vi+i) £ 2 or vi91><+1 e Vt(G). 
Proof (by induction onp). lip -*= l, clear. Letp > 1, If G is no tree, we can use 

induction for connected components of G. So let G be a tree. 
a) Let there be two vertices v9weV9 which are neighbors and both of them of 

degrees at least 3. Delete the edge (v9 w) from (?. After that G decomposes in Gt 

m 



and G2 for jyi^h. V^(G) = Vi(Gi) u Vi(G2)- We can apply the induction assump­
tion to G! and G2. 

b) If the assumption in a) is not valid in G (i.e. v, w do not exist) we take some 
maximal (further non-prolongable) way in G with vertices xl9 ...9 xk. So 
dG(xi9 xi+1) = 1 and x^x^eV^G). From the sequence xl9...,xk select the 
vertiifq^^elongiriig to VX(G) KJ V2(G) U V3(G). We get the sequence 
\i : xj, x2, . ^ , j * ^ _ ; l , xyt.f i , , . . , xJ2_ X, xJ2 + 1 , . . . , */n-1 ? * / n + ! , . . . , xk. Our as­
sumption b) implies j 1 + i < f2 < • • • L e t * be a vertex from the sequence \i 
belonging to V3(G}. \$\ Gx be the part of the branch in G starting in x contained 
in [G — {x1 ? . . . , xfc}] u {x j^p to the first vertex (if it exists) of degree at least 3 
in G (this vertex not including). I.e. Gx is a way x, x1, x2, . . . , xr in G which is 
„longest possible" such that x1, x2, . . . , xr_1 are of degree 2 in G, the degree of x1. 

(wi) is 2 or 1. Take now the sequence of vertices xt, . . . , xjl^l and let x', x", . . . , x1 

be from V3(G) among them. Put Hx to be the subgraph in G with the vertices 
xyj.'.., x:i_X and those of Gx,, Gx„,..., GA.(m). 

ò ť 
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Fig. 4. 

.jSTj i$ a~ graph of the type (WQ put x = x') 
§HP^$r.ty H^9.... /Hn+1 are defi-ned. By [5] (and it is easily seen here) there exists 
^o rde r ing of the set of vertices in Ht in such a sequence that the first vertex is x19 

^?,Iast. vertex -fy-* and the neighbors in this sequence have in H1 (i.e. in G) the 
d̂ ŝ ajpice 3t most 2. t-Qt us. denote this sequence by nx. \Vp get a sequence of such 
t^guwces n,i, n2l , , . ' v ^ + 1 . T h e end of nn + 1 is the vertex xk and the end of ni has 
the distance 2 from the starting vertex of ni+1. Therefpje the sequence n = 
— (nl9n29 ...9nn+1) obtained by juxtaposition of the sequences nl9n2f ...9nn+1 

Kdsvitfte property 1. atld 2V from the Proposition! We now delete *he' vertices 
participating in the sequence n and thtf *b!ges inciderit to^them from &. W^ get 
the forest W such that VX(W) a VX(G). By the induction assum^tibrt wfcsCan order 
the set of vertices of W in a seqiierice o fulfilling I. knd 2> from tlie PirorjotHtion. 
Ihttk the*equenee er -=- {n9 Q) is.a required sequanoe.U ;«< • • - j t '; 

V.Cj&lW^^ be a graph .with a ^ r | e x u _ ^ ! ^ tbQ+fp}l<>w(ng 
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H = G - {v} is a forest and u e Vt(H) => the edge (w, V) 

is in £". Then G2 is Hamiltonian. 

Corollary 2. Let G be an Eulerian graph arbitrarily traceble from a vertex. 
Then G2 is Hamiltonian. 

Proof is an immediate consequence of Corollary 1. and Ore's construction 
of such graphs. 
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