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A FUNCTIONAL CHARACTERIZATION 
OF PARALLELOGRAM SPACES 

JAROMÍR DUDA, Brno 
(Received July 10,1980) 

This note may be considered as a contribution to work done by B. Csak&ny [1, 2], 
H. Peter Gumm [4] and F. Ostermann - J. Schmidt [6,7]. It is shown that a Mal'eev 
function commuting with itself is closely related with the geometrical structure 
introduced by F. Ostermann and J. Schmidt [6} under the name parallelogram 
space (Theorem 1). Further, similar investigations are realized for other well-
known ternary functions, i.e. for a Pixley function and for a majority function 
(Theorem 2). 

Firstly, let us recall some basic notions and notations using here: 
(i) A pdrallelogmm space (A, P) is a nonvoid set A with a 4-ary relation P on A 

such that the following four conditions are satisfied 
(PI) (a9 b,c,d)eP implies (a, c9b9d)eP; 
(P2) (a9 b, c, d) eP implies (c, d,a,b)eP; 

(P3) (a, b9 c,d)eP and (c, d9 e9f) e P imply (a, b, e9f) e P; 

а -

129 



(P4) For any a, b, c e A there is exactly one element d e A such that (a, b, c, d)eP. 
(ii) A MaVcev function p on a set A is a function p : A3 -> A satisfying x = 

= p(x,y,y) = p(y,y,x); 
(iii) A Pixley function t on a set A is a function t : A3 --> A. satisfying x = 

= f(x, y, y) = tC*, y, *) = t(y, y, * ) ; , 
(iv) A majority function m on a set /I is a function m : A3 -* /< satisfying x = 

= m(x, x, y) = w(x, y, x) = m(j>, x, x). 
The notation/?, f and m will be reserved for a Mal'cev function, a Pixley function 

and a majority function, respectively, in this paper. 
(v) Functions r : Am -» A and s : AT -+ A are called commutative if 

r(s(ati, ...,aln),...,s(aml, ...,amn)) = s(r(an, ..., aml), ...,r(ain, . . . , 0 ) h o l d s 

fkrf every elements aue A, 1 £ i £ m and 1 Sj S n (see [5] for this concept). 
Now, iwe are ready to state the main result of this paper. 

Theorem 1. Let* A be a nonvoid set. The following conditions are equivalent: 
(1) There is a MaVcev function p on A commuting with itself; 
(2) There is a 4-ary relation P on A such that (A,P) is a parallelogram space; 
(3) There is an abelian group (A, +a, -a, a> with arbitrary chosen neutral element 

aeA. 
• Proof, (1) => (2); Denote by P the 4-ary relation {(a, b, c, p(b, a, c)); a, b,ceA) 
on the set A. We claim that (A, P) is a parallelogram space. 

p(b,a,c)s 
=p<c,a,b) 

(PI) We show that p(b, a, c) = p(c, a, b): 

p(b, a, c) == p(p(a, a, b),p(a, c, c), p(c, c, c)) -= 

= p(pfa> a, c), g(a, c, c), p(b, c, c)) = p(c, a, b); 

(P2) We have to prove that 6 == p(p(b9 a, c), c,a): 

b = p(b, a, a) = p(p(b, b, b), p(a, b, b), p(c, c, a)) -
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= p(p(b9 a, c),p(b9 b9 c), p(b9 b9 a)) - p(p(b9 a, c), c, a); 

(P3) Assume d = p(b9 a9 c) and f = p(d9 c, c). Then 

f = p(d, c, c) = p(p(b9 a9 c), />(*, a9 c), p(a, a, *)) = 

= p(p(b9 a, a)9 p(a9 a, a)9 p(c9 c, e)) = />(*» «> *). 

i.e. (a, 6, c,f) € P which is to be proved. 
Finally, (P4) follows immediately from the definition of the relation P. 
(2) => (3): The proof of this part is a matter of the F. Ostermann's and J. Schmidt's 

paper [6], so we refer the reader to this material. 
(3) => (1): Let <A, +fl, — fl, a} be an abelian group. Then it is a routine to verify 

that the ternary function p(x, y9z) = x -~ay +az is a Mal'cev function on A com
muting with itself. 

Remark. The relationship between abelian groups and Mal'cev functions was 
investigated by H. Peter Gumm [4] in a more general situation and--as we noted 
above —the connection between parallelogram spaces and abelian groups is also 
well-known. However, the existence of neutral element of an abelian group needs 
the introduction of so-called parallelogram space with centrum, see [6]. Obviously 
the application of a Mal'cev function easily removes this defect. 

Simultaneously, we get that a Mal'cev function commuting with itself is 
characterizable by identities derived from the axioms (PI), (P2) and (P3): 

p(b9 a9 c) = p(c9 a9 b) 
p(p(b9 a9 c), c, a) = b 
p(p(b9 a9 c), c, e) = p(b9 a9e). 

So, a Mal'cev function commuting with itself is sufficiently described and a natural 
question raises: Are there similar results for a Pixley function or for a majority 
function? The following theorem answers this question in the negative. 

Theorem 2. Let r and s be arbitrary functions from the set {/>, t9 m}. Excepting 
the case r = s = p9 the following two conditions are equivalent for any nonvoidset A: 

(1) r commutes with s on A; 
(2) A is trivial, i.e. \ A \ = 1. 

Proof, (i) A Pixley function commuting with itself: 

x = t(x, y9 y) = t(t(x9 x9 x)9 t(y9 x9 x), t(x9 x9 y)) = 
= t(t(x, y9 x)9 t(x9 x9 x)9 t(x9 x9 y)) -» t(x9 x9y) « y; 

(ii) A majority function commuting with itself: 

x = m(x9 x9 y} = m(m(y9 x9 x)9 m(x9 x9 y)9 m(y9 y, y)) *» 
= m(m(y9 xf y)9 m(x9 x9 y)9 m(x9 y9 y)) - m(y9 xf y) « y\ 
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(iii) A majority function commuting with a Mal'cev function: 

x = m(y, x, x) = m(p(x, x, y), p(x, y, y), p(x, x, x)) = 
= p(m(x, x, x), m(x, y, x), m(y, y, xj) = p(x, x,y) = y; 

(iv) A Pixley function commuting with a majority function: 

x = m(x, x, y) = m(t(y, y, x), t(x, x, x), t(y, x, y)) = 
= t(m(y, x, y), m(y, x, x), m(x, x, y)) = t(y, x, x) = y; 

(v) A Pixley function commuting with a MaPcev function: 

x = t(x, y, y) = t(p(x, x, x), p(y, x, x), p(x, x, y)) = 
= P(*(x, y, x), t(x, x, x), t(x, x, y)) = p(x, x, y) = y. 
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