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TERM FUNCTIONS ON NON-ABELIAN GROUPS 
OF ORDER pq 

HANS LAUSCH, Clayton 
(Received July 30, 1981) 

The purpose of this note is to determine the number of all the different term 
functions in n variables over non-abelian groups of order pq, p9 q being distinct 
primes. In her paper [1], Coufalova proved a formula for the case n = 2, p « 3, 
q = 2, by a more or less explicit enumeration of the term functions. By a term 
function on a group G in n variables we mean a function t: Gn -* G of the form 
(gi> •• ..ft.) »-* ™(gi> -fgn)> gi e G9 where w(xi9 ..., xn) is an element of the free 
group freely generated by xl9 ...9xn. Coufalova also considered the case n = 3, 
p == 3, q = 2 and, for the same values of/? and g, provided a formula for any n. 
Her method consisted essentially of solving a system of congruences which led to 
elaborate calculations. As an alternative this paper is to offer a different approach 
based on Schreier's formula arising from his subgroup theorem (see e.g. [3]) 
which has the advantage of being structural and possibly open to further generaliza
tion, and moreover helps to explain Coufalova's formula. It should also be noted 
that B. H. Neumann [2] in 1937 gave an upper bound for the number of term 
functions on 53 in two variables, namely 63 . 34, which is only 18 times the actual 
value. 

Let us first observe that a law in a group G is a word w(xl9 ...9 xn) of some 
free group F having {xl9 ..., xn} as a subset of its free generating set such that the 
term function f: (gi9 ...,g„) »-* w(gi9 ...,&,) sends every n-tuple of elements 
(gi > •••»gn) e G* to the identity of G. Consequently, the number of term functions 
in n variables on G is just the order of the relatively free group FB(var G) of rank n 
of the variety var G generated by G. For the remainder of this note, let G be the% 

non-abelian group of order pq,p, q being distinct primes; we observe that q/p — 1 
and that every extension of an elementary abelian ^-ground by an elementary 
abelian #-group belongs to var G$ by virtue of being a subdircct product of groups 
isomorphic to either GxCqx ... x Cq or Cp x C€ x ... x C€. 

Theorem. There are exactly qnp^"l^H+1 different term functions in n variables 
ever the group G. 

219 



Proof. We have to show that | #;(var G) | « fgp-»++*. 
Let Fm be the free group of rank n> W <3 Fm such that FJ Wis elementary abelian 

of order q", and J? the least normal subgroup of W such that W/R is an elementary 
abelian p-group. Then FJR is an it-generator group in var G, and every it-generator 
group in var G is a homomorphic image of FJR, thus FJR g F^var G). By the 
Schreier subgroup theorem, Wis free of rank (n — \)qn*x

t hence JF/JR is elementary 
abelian of order /p-ir+t. Therefore | F„(var G) | = | FJW \ | W/* | -
- f l y - 1 } i " + 1

f Q.E.D. 
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