Archivum Mathematicum

Hans Lausch
Term functions on non-Abelian groups of order $p q$

Archivum Mathematicum, Vol. 18 (1982), No. 4, 219--220

Persistent URL: http://dml.cz/dmlcz/107147

Terms of use:

© Masaryk University, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

TERM FUNCTIONS ON NON-ABELIAN GROUPS OF ORDER $p q$

HANS LAUSCH, Clayton

(Received July 30, 1981)

The purpose of this note is to determine the number of all the different term functions in n variables over non-abelian groups of order $p q, p, q$ being distinct primes. In her paper [1], Coufalová proved a formula for the case $n=2, p=3$, $q=2$, by a more or less explicit enumeration of the term functions. By a term function on a group G in n variables we mean a function $t: G^{n} \rightarrow G$ of the form $\left(g_{1}, \ldots, g_{n}\right) \mapsto w\left(g_{1}, \ldots, g_{n}\right), g_{i} \in G$, where $w\left(x_{1}, \ldots, x_{n}\right)$ is an element of the free group freely generated by x_{1}, \ldots, x_{n}. Coufalová also considered the case $n=3$, $p=3, q=2$ and, for the same values of p and q, provided a formula for any n. Her method consisted essentially of solving a system of congruences which led to elaborate calculations. As an alternative this paper is to offer a different approach based on Schreier's formula arising from his subgroup theorem (see e.g. [3]) which has the advantage of being structural and possibly open to further generalization, and moreover helps to explain Coufalová's formula. It should also be noted that B. H. Neumann [2] in 1937 gave an upper bound for the number of term functions on S_{3} in two variables, namely $6^{3} .3^{4}$, which is only 18 times the actual value.

Let us first observe that a law in a group G is a word $w\left(x_{1}, \ldots, x_{n}\right)$ of some free group F having $\left\{x_{1}, \ldots, x_{n}\right\}$ as a subset of its free generating set such that the term function $t:\left(g_{1}, \ldots, g_{n}\right) \mapsto w\left(g_{1}, \ldots, g_{n}\right)$ sends every n-tuple of elements $\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ to the identity of G. Consequently, the number of term functions in n variables on G is just the order of the relatively free group $F_{n}(\operatorname{var} G)$ of rank n of the variety var G generated by G. For the remainder of this note, let G be the non-abelian group of order $p q, p, q$ being distinct primes; we observe that $q / p-1$ and that every extension of an elementary abelian p-ground by an elementary abelian q-group belongs to var G, by virtue of being a subdirect product of groups isomorphic to either $G \times C_{q} \times \ldots \times C_{q}$ or $C_{p} \times C_{q} \times \ldots \times C_{q}$.

Theorem. There are exactly $q^{n} p^{(n-1) q^{n+1}}$ different term functions in n variables over the group G.

Proof. We have to show that $\left|F_{n}(\operatorname{var} G)\right|=q^{n} p^{(n-1) q^{n+1}}$.
Let F_{n} be the free group of rank $n, W \triangleleft F_{n}$ such that F_{n} / W is elementary abelian of order q^{n}, and R the least normal subgroup of W such that W / R is an elementary abelian p-group. Then F_{n} / R is an n-generator group in var G, and every n-generator group in var G is a homomorphic image of F_{n} / R, thus $F_{n} / R \cong F_{n}(\operatorname{var} G)$. By the Schreier subgroup theorem, W is free of rank $(n-1) q^{n+1}$, hence W / R is elementary abelian of order $p^{\left(n-1 q^{n+1}\right.}$. Therefore $\left|F_{n}(\operatorname{var} G)\right|=\left|F_{n} / W\right||W| R \mid=$ $=q^{n} p^{(n-1) q^{n+1}}$, Q.E.D.

REFERENCES

[1] Coufalová, Y.: Polynomials over the permutation group of three elements, Arch. Math. XVI (1980), 67-79.
[2] Neumann, B. H.: Identical relations in groups I, Math. Ann. 114 (1937), 506-525.
[3] Neumann, H.: Varieties of Groups, Springer-Verlag Berlin-Heidelberg-New York, 1967.

H. Lausch,
Department of Mathematics, Monash University,
Clayton, Victoria, 3168.

