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ARCH. MATH. 1, SCRIPTA FAC SCI. NAT. UJEP BkUNENSIS 
XIX: 19-42,1983 

ON SINGULAR BOUNDARY VALUE PROBLEMS 
FOR TWO-DIMENSIONAL DIFFERENTIAL 

SYSTEMS 

B. L. SHEKHTER, Tbilisi 
(Received December 20,1981) 

§ 1. Introduction 

This paper deals with the two-dimensional system 

0) * '= / i ( t , * ,y ) , /=Mt,x9y) 

under the boundary conditions 

(2) x(a+) = 0, x(b-) = 0 

or 

(3) x(a+) = 0, y(b~) = 0. 

The case is considered when the functions / : ] a, 6[ x R2 -• R (i =1 ,2 ) may be 
nonsummable with respect to the first variable having singularities at the end 
points of the interval ] a, 6[. 

Let / be an open or half-open interval. By Lloc(I) we denote the set of functions 
x : / -» R which are summable on every (closed) segment contained within /. 

In what follows we assume that 
1. ] a, 6[ is a finite interval; 
2. the functions/(., x9 y) : ] a, 6[ -* R are measurable for x9 y e R; 
3. the functions ft(t9.,.) : R2 -• R are continuous for t e ] a, b\\ 
4. sup {!/,(., x9 y) | : | x \ + \ y \ = Q) ELloc(]a9 b[) for Q > 0 (i = 1, 2). 
(x9 y) is said to be a solution of the system (1) if x9 y : ] a, &[-• R are absolutely 

continuous on each segment contained within the interval ] a, A[ and satisfy (1) 
almost everywhere in this interval. The theorems which are proved here allow 
to reduce the question on existence and uniqueness for the problems (1), (2) and 
(1), (3) to the question on unique solvability of the corresponding boundary value 
problems for some classes of linear differential systems. Such method goes back 
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to the works by L. Tonelli [ l ] and H. Epheser [2] and was used in [3] where, 
in particular, the second order singular differential equation was investigated under 
the boundary conditions of the type (2) (for more detailed bibliographical remarks 
see [4] which is devoted to the regular problems). Other approaches in study of the 
singular problems (1), (2) and (1), (3) were realized in [3, 5]. 

With a view to indicate the class of linear systems 

(4) u' - gx(t) u + hx(t) v9 v' » h2(t) u + g2(t) v9 

we are interested in, put 

(5) ptf) - \ I ht(x) | dT, v<(0 - J | h£x) | dT 
a t 

and introduce the following definitions (cf. [3, 4,6]). 

Definition 1. Let k be an integer and 

hx e L([a9 b% h2 e LlocQ a9 b[)9 

(6) *2(0^l(0Vi(0 €£([*>]), 

(7) h3 6 L([a9 *]), h3(t) ^ 0 for a g / ^ *. 

Then (hx, h2, /*3) e 0*kx(a9 b) if and only if for all gt e L([a9 &]) (i = 1, 2) satisfying 
the condition 

(8) * i g2(t) - gx(t) | £ h3(t) for a £ t£ b9 

we have u(b—) # 0 and there exists S > 0 such that 

- Y - nk < ^(0 <Y"~nk for b - S < t < b9 

where (p : [a, b] -+ R is continuous, 

(9) tgp(.) = - ^ when u ( 0 * 0 , q>(a) = y 

afia* (u, v) is a solution of the system (4) under the initial conditions 

(10) u(a+) = 0, v(a+) = 1. x) 

Definition 2. Let k be an integer, 

ht e Ltoc([a, b[), h2 e LloeQ a, b]), 

(11) / . 2 ( 0 / * i ( 0 e - ^ ( M ) , A 1 (0v 2 (06^( ]a ,6 ] ) , 

and let (7) be observed. Then(ht, h2, h3) e ^k2(a, b) if and only if for allg, e L([a, bj) 

*) Lemma 1 stated below implies that such a solution exists. 
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( /= 1, 2) satisfying (8) v(b-) # 0 and there exists 8 > 0 such that 

-nk < (p(t) < n - nk for b - 5 < t < b9 

where <p and (u9 v) are the same as in Definition 1. 

§ 2. Lemmas 

This section is concerned with the linear singular systems (4). First of all we 
study behavior of solutions at the point of singularity (see also [3, p. 222] and 
[7, p. 443]). 

Lemma 1. Let hi,gie L([a, b]) (i = 1, 2), h2 e LlocQ a, 6]), h2(t) ^ ( 0 e L([a9 6]) 
where iix is given by (5), and let (w, v) be a solution of the system (4). Then 

(12) limt>(0 fix(t) = 0 
t-*a+ 

and the limit u(a+) exists and is finite. Moreover, if this limit is zero9 then there 
exists finite v(a+). 

Proof. Suppose that «„€]«, b"\ (n = 1, 2, ...) and an -* a when n -* oo. If 
(un9vn) (n = 1,2, ...) are the solutions of (4) under the initial conditions 

(13) u(an)~09 v(an)~l9 

then 

(14) | un(t) | <* k J | hx(x) | dT(l + J | h2(x) un(x) | dT) for an <£ t£ b9 
an an 

where 

(15) A = exp(J[lgi(t)l + lg2(t)l]dT). 
a 

Using this inequality and setting 

Y>n(t) = X{l + \\h2(x)un(x)\dx)9 
an 

we obtain 

wn(t) £ k{\ + J | h2(x) | ixx(x) wn(x) dx) for an & t£ b. 

By Gronwall-Bellman lemma (see e.g. [3, p. 49]) wn(t) <£ A0 on [an9 fr] where 
b 

(16) A0 = A exp (A J | A2(T) | JU^T) dT), 
a 

and according to (14) 

(17) I un(t) | g Aofil{t) for fl„ £ f £ b. 
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In addition, (4), (13) and (17) imply 

I vJLt) I g A(l + A0 J | h2(x) | ^(x) dx) for an £ t £ b. 
a 

Thus the sequences (w*)*-=i a n d (̂ *).f-=i> where 

«C(0 - "„(0, »*(0 = *>„(0 for an £ t £ b9 

u*(t) == 0, v*(t) = 1 fot a^t <aH9 

are uniformly bounded and equicontinuous on [a, b\ Therefore, they contain 
certain consequences which uniformly on [a, A] converge to the functions u0 and v0 

such that (w0, v0) is the solution of the problem (4), (10). 
Letcejtf, ft], 

(18) exp ( -J | gl(T) | dT) > A0X \ | h2(x) | ^(T) dT, 
a a 

and let (u, v) be the solution of the system (4) satisfying the initial conditions 
u(c) = 1, v(c) = 0. Then 

c . 

ti(0 = exp(-Jg1(T)dT) + 
t 

C S X s 

(19) + J h2(x)u(x) J ft,(s) exp (J gl(p) dp + J g2(p)dp) dsdx. 
t t S X 

Hence 
c 

I u(t) | g A + X J | fc2(O*0O I JU1VT) dT for a < tg c, 
t 

and taking into account (16) by Gronwall — Bellman lemma we obtain 

(20) |«(0I £A0 for a < t Sc. 

As it follows from this inequality and from the conditions of the lem.r$a, the right-
hand side of (19) tends to a finite limit when t -* a. Thus u(a+) exists apd according 
to (18) is not zero. 

' Furthermore, (20) yields 
c 

KOI ^-40A J | A2(T) | dr f o r f l < ^ c . 
t 

If t0 e ] 0, c], then 

(21) /ij(01 *01 Si M/*i (011 *aW Id* + J I *a(t) I n%(t) dx) for a < t£ c. 

Now taking into account that t0 is arbitrarily close to a, we obtain 
lim W) Px(t) ** 0. 
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Since (u09 v0) arid (u, v) ire linearly independent solutions of the system (4), 
each solution («, #) of this system may be represented in the form 

u(t) « dtu0(t) + d2tK0, v(t) » rftt?o(0 + d2$(t)9 

where ^ and d2 are certain constants. Thus tljtere fexists a finite limit w(a4-) and (12) 
is fulfilled. If, in addition, w(a+) =-= 0, then d2 = 0, and so v(a+) =» i^. This 
completes the proof. 

Remark. (21) is valid not only for fix defined by (5), but for any continuous 
nondecreasing function JUJ : [a, 6] -* [0, -foo[ such that A2(0.%(0e £([«*>*]) 
Therefore, if, in addition, yx(a) = 0, then (12) holds for all solutions of the 
system (4). 

Lemma 2. Let hX9gteL([a, £]), h2 eLl0CQ a, b[)9 

hi(i) £ 0, gt(t) £ 0 for a < t < b(i = 1, 2), 

and let (6) be fulfilled where fix and vx are defined by (5). TheH there exists a constant A 
such that for any point t0 e [a, 6] and any measurable functions hi09gi0: ] a, 6[~* R 
satisfying the inequalities 

(22) | hi0(t) | £ A,(0, I gi0(t) | g ft(0 for a<t< b(i =1 ,2 ) 

we have 

| ii(01. S -41 /(*<>. 01 for a^t^b, I(s9 t)m)\ hi0(t) | dt, 
s 

(23) 11<01 < A maxjl, " ^ 4 i/ « < ' < to <.»<* Ati(0 =1= 0, 

K 0 l £ ^ m a x | l , - ^ ^ j if t0<t<b and v^t) * 0, 

where (M, u) w the solution of the initial value problem 

(24) u' = g10(t) u + h10(t) v, v' = h20(t) u + g20(t) v, 

(25) ..(*„) = 0, v(t0) = 1. 

Proof. By Lemma 1 the problem (24), (25) has a solution (u, v) for any t0 e 
6 M ] . 

Set (15). If t0 ^ (a + b)/29 then applying the Gronwall- Bellman lemma to the 
inequality 

(26) | ii(01 £ A(/(*0, 0 + 11 A20(T) u(t) | /(T, 0 dT) for t0^t^b9 
to 
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we obtain 
b 

(27) | u(t) | £ XI(t0, 0 exp (X J fc2(t) vt(T) dT) for t0^t^b. 
a+b 

2 

Now let t0 < (a + 6)/2. Then the argument by which the estimate (16), (17) 
was established yields 

(28) \u(t)\£A0I(t09t) for t0£tS±j^-, 

where 
a + b 

2 

A0 = X exp (A J h2(T) ^X(T) dT). 

Hence it follows from (26) that for (a + 6)/2 ^ t £ £ 
a + b 

I «(01 <. A/(<O, 0 (l + ^o J fc2(t) /*lto ^ ) + A J ft.(T) vt(t) | U(T) I dT, 
a a + fc 

and using the Gronwall-Bellman lemma once again, we derive 
a + b 

| ii(r) | £ XI(t0, 0 (1 + A0 J A2(T) ^ ( T ) dT) exp (X J *2W VX(T) dT). 
a fl-f-fr^ 

2 

This inequality along with (27) and (28) implies 

| u(t) | £ Af*/(*0, 0 for 70 £t£b, 

where the constant _4* does not depend on the choice of hi0> gm and f0-
Let t e [to, *[ and vt(t) ^ 0. Note that 

(29) | v(t) I £ A(l + A* J | /I20(T) I /(*<>, T) dT). 

Thus 

K0I^A(l + ̂ i ^ jWt)»i(T)dt) if ^0^1 + L9 

11<01 ^ A(l + 4* J jr2(T) /I.(T) dT) if t0 < ~^- and , .< A + ± , 

g + & 

| K01 < Af 1 + A* J ft2(r)/».(-) dT + .4* - % £ J *aW V.(t) d t) 
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aЛ-Ъ 
2 ~ 

if t0 < — я — á t. 

It becomes evident from the obtained relations that there exists an independent 
on Af0, gi0 and t0 constant A for which the inequalities in question are valid in 
\t0, A[. The case of ] a, t0] may be treated in the similar way. 

Lemma 2 establishes in ] a, b[ an a priori estimate for v providing that 
Mi(0 vx(0 > 0 in this interval. In the general case (29) implies the following state
ment. 

Lemma 2'. Let the conditions of Lemma 2 be fulfilled. Then for any e e ] 0, b - a [ 
there exists a constant A = A(e) such that if measurable functions hi0, gi0: ] a, A[ -> R 
satisfy (22) and t0 e [a? b~\, then 

| v(t) \ ^ A for te[a + 8, t0] u \t0, b - e], 

where (u, v) is the solution of (24), (25). 
Lemmas 3 — 5 are essentially of comparison type. 

Lemma 3. Let k be an integer, 

(30) (hu, h2i, A3) e 0>ki(a, b) ((hu, h2i, A3) € &>k2(a, b)) (i = 1, 2), 

(31) hH(t) S hn.it) for a<t < b(i = 1, 2), 

and let the condition (6) (the conditions (11)) be fulfilled where the functions 
H1, vt(i =1 ,2 ) are defined by (5) and 

(32) ArfO s | M O I + |Aia(0l. 

Then 

(hi0, h20, A3) € 0>kl(a, b) ((A10, A20, A3) 6 0>k2(a, b)) 

for any measurable hi0 : ] a, A[ -• R satisfying the inequalities 

ha(t) S hi0(t) g Ai3_f(t) for a <t <b (i = 1, 2). 
Proof. We shall carry out the proof for the set 0>kl(a,b). For 0*k2(a, b) the 

argument is similar. 
Let gx, g2 e L(\a, A]) satisfy (8), and let (ut, v() (i = 0, 1, 2) be solutions of the 

systems 

(33) u' = gx(t) u + Au(0 v> v' = h2i(t) u + g2(0 v 

under the initial conditions (10). Assuming that a„e]a, A[(« = 1,2, ...) and 
an-» a when n -* oo, approximating (ut, v() by the solutions of the problems (33), 
(13) (cf. Proof of Lemma 1) and using Lemma 15.2 and Theorem 14.5 of [6], 
we can easily verify that 

<Pi(t) £ <Po(t) £ <PiO>) .fota£t<bf 
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where <pt(i = 0,1, 2) are the angular functions of the solutions (ui9 vt) defined 
by the conditions (pt(a) = n/2 (i.e. (pt : [a, b[ -* R are continuous functions 
satisfying the equalities similar to (9)). 

Hence it follows from (30) that for all r e ] a, b[ sufficiently close to b 

«-nk<<p0(t)<?r-nk, ?^<_*M<_ "»« 
T ~ ™ ^ ™K" ^ 2 nn" u2(t) = u0(0 = u.(0 * 

and so 

(34) W O I S [ j^ | + | i | | ]K ( 0 l . 
If u0(b~) == 0, then by (6) and Lemma 2 

| u0(t) | S Avx(t) for a£t Sb, 

where A is a constant. Considering this inequality, Remark to Lemma 1 and (34), 
we derive that v0(b—) = 0, i.e. (u0, v0) is the trivial solution, but it is not the case. 
Thus u0(b—) # 0 and the proof is completed. 

The following two lemmas may be proved in the similar way. 

Lemma 4. Let (hiyh2,h3)e^0i(a,b) and ht(t) ^ 0 for a £ t g b. Then 
Oho> ^2o> ^3) e ^oi(ti > t2) for any segment [tx, /2] c [a, b"\ and any measurable 
functions hi0 : ] a, b[ ~+ R (i = 1,2) satisfying the conditions 

t b t2 

M O J h10(x) dx J hi0(x) dT e L([a, b}), J hi0(x) dx > 0, 
a t *i 

0 £ hi0(t) £ hx(t), h20(t) = h2(t) for a < t < b. 

Lemma 5. Let c e ] a, b[, (hx, h2, h3) e &02(a, c) n 0>ol(c, b) and 

hx(t) = 0 for a St Sc, h2(t) ^ 0 for c £ t £ b. 
Then (hxo, h20, h3) e 0>O2(tx, t2) for any tx e [a, c], t2 e [c, 6] (tx < t2) and any 

functions hi0 GL1OC(\ a, b[) (i « 1, 2) satisfying the conditions 

t b 

M O I hi0(x) dx e L([a, c]), hi0(t) J ft20(T) dT e L([c, 6]>, 
a t 

0 £ A10(0 g ht(t), h20(t) £ h2(t) for a<t<.c, 

!»io(0 ^ !ti(0, 0 g A20(0 £ A2(0 for c<,t<b. 

Lemma 6. Let the functions gt : [a, b~\ -* [0, +oo[ 6e summable, 
(35) (/.„, /.2i, £. + #2) 6 ^ u ( « , b) ((hu, h2l, gl + g2) e 0>k2(a, b)) (i = 1,2) 

for a certain integer k, and let the inequality (31) xmd the condition (6) (the condition 
(11)) be fulfilled where the functions fit, vt, ht are defined by (5) and (32). Then there 
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exists a positive constant B such that for any measurable functions A.o, £.0 : 
] a, b[ -* R (i = 1, 2) satisfying the conditions 

(36) A„(0 £ *io(0 £ Ai3-i(0, I g,o(0 I -5 £<(0 fora<t<b 

the inequality 
I «0) I = 5 (| t>(*>) I = B) 

holds where (u, v) is the solution of the problem (24), (10). 
Proof. With a view to fix the idea, we shall carry out the proof for the set 

Assume that the lemma is not true. Then there exist measurable functions 
{(.. Co :]a,b[-*R (i = 1, 2; n = 1, 2, ...) such that 

*n(0 = U 0 Si hf3_.(0, I C(0 I = *.(0 for a < / < b, 

(37) \un(b)\k±, 
ft 

where (t/n, t?n) are solutions of the systems 

u' = Ci.(0 u + £ln(0 », *' = £2„(0 u + C2„(0 * 

under the conditions (10). The sequences {j iln{r)dx)nssl and (JCtaOOdT).̂ ,! 
a a 

(i = 1, 2) are uniformly bounded and equicontinuous on the segment [a, b~\ and, 
hence, without loss of generality we may hold that they are uniformly convergent 
on this segment. Furthermore, according to Lemma 2 there exists a constant A 
such that 

|u n (0 l^^jU l n (T) |dT for a&t&b (« = 1,2,...). 
a 

This implies that we may assume the sequences {vH)H
KL1 and 

(J «2«(t) *„(*) exp ( -J C2w(s)ds)dt)S.i. 
a a 

to be uniformly convergent on each segment contained in [a, 6[ and the sequence 
{un)n^i —uniformly convergent on [a, b"]. The latter becomes evident when apply 
the inequalities 

|uf
n{t)\SA\Cln(01 J i£I„(T)Idt + IZUQvJLt)Iv 

t * t for a <; t < 6, 
| ^ i ) | ^ A(l + A J K2W(T) | J KlB(s) I ds dt) 

a a 

where A is defined by (15). 
Cet un -*. u,vn-+v when n -> oo. According to Lemma 2.6 of [3] (w, i?) is a solu

tion of a certain system (24) with coefficients satisfying (36). Thus (35) and Lemma 3 
yield u{b) # 0 which contradicts to (37). This completes the proof. 
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The method of the proof of Lemmas 7 and 8 is essentially the same as that of 
Lemma 6, but instead of Lemma 3 one must use Lemmas 4 and 5 respectively 
(see also [4]). 

Lemma 7. Let the functions g( : \a9 A] -• [0, +<x>[ (i = 1, 2) be summable, 
(h% 9h29gx + g2) e 0>ox(a9 b), h e Ll0CQ a9 b\)9 

hx(t) £ 0, h2(t) <: h(t) for a < t < b9 

h(t) lix(t) vx(t) e L([a9 bj) where iix and vx are defined by (5). Then there exists 
a positive constant B such that for any t0 e \a9 b] and any measurable functions 
hioigto : ] a> b\ -> R (i = 1,2) satisfying the conditions 

0 £ hxo(t) £ hx(t)9 h2(t) S h20(t) S Kt)9 | gi0(t) i S gi(t) for a<t <b 

the inequality 
t i 

(38) \u(t)\^B\ $hX0(T)dx\ fota^tSb 
to 

holds where (u9 v) is the solution of the problem (24), (25). 

Lemma 8. Let the functions gt : \a9 b"\ -* [0, + oo[ be summable, h, ht e LlocQ a9 b\) 
( i = i,2), ce]a9b\9 

(hi ,h29gx + g2) e 0>O2(a9 c) n 0>O2(c9 b)9 

hx(t) ^ 0, h2(t) ^ h(t) for a < t £ c9 

hx(t)£h(t)9 h2(t)^0 for c <> t < b9 

h(t) fix(t) e L(\a9 c]), h(t) v2(t) e L(\c9 b)J) where ptx and v2 are defined by (5). Then 
there exists a positive constant B such that for any t0 e \a9 c] and any measurable 
functions hi09gi0 : ] a9 b\ -* R (i = 1,2) satisfying the conditions 

0 <: hxo(t) S hx(t)9 h2(t) ^ h20(t) g h(t) for a<t£c9 

hx(t) £ hxo(t) £ h(t)9 0 ^ h20(t) S h2(t) for c £ t < b9 

\gio(t)\^gi(t) fora<t<b 
the inequality 

v(t) £ B for c St S b 

holds where (u9 v) is the solution of the problem (24), (25). 

§ 3. Main results 

In this section we shall prove existence and uniqueness theorems for the problems 
(1), (2) and (1), (3). Remind that the class of functions/ under consideration as 
well as the idea of solutions of the system (1) were defined in § 1. 
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1. Existence theorems. 

Theorem 1. Let in ] a, />[ x R2 the inequalities 

-gi(t) \x | + An(0 I y I - »h(0 ^ fi(t, x, y) sign y = 

(39) £ gt(0 I x | + A1 2« | y | + ^ ( 0 , 

A22O) 1 * 1 - g2(0 I y I - >h(0 ^ f2(t, *, y) sign x <, 

= A21(0 I x | + g2(0 I >-1 + »j2(0 

Ao/d wAere n1,gteL([a, ft]), (6) is fulfilled, n2 e L,oc(] a, 6[), r/2(0 A*i(0 v.(0 e 
eL([a, A]), jHi, vl5 A( are defined by (5) and (32) and for a certain integer k 

(40) (hu,h2i,gl +g2)e&kl(a,b) 0 = 1,2). 

TAew /Ae problem (I), (2)"has at least one solution. 

Theorem 2. Let in ] a, b[ x /?2 rAe inequalities (39) Ao/d where g, 6 L([a, 6]), (11) 
is fulfilled, 

»i 6 iioc([a. b[), r\i(t) v2(t) e £,oc(] a, A]), 
f/2e£.»c(]a>l>]), '72(0/Ji(0e£Joc([a,6[), 

/ij , v2, hi are defined by (5) and (32) and for a certain integer k 

(41) (hu,h2i,gl + gl)e&k2(a,b) (/=1,2). 

JAew fAe problem (1), (3) Aa.y at least one solution. 

Theorem 3. Let in ] a, A[ x i?2 the inequalities 

-gi(t) \x | + Ao(0 I J I - Ao(0 ^o ^ fi(t, *, J) sign y S 

(42) £ g.0) | * | + At(0 I ;v |. + Ao(0 »/0, 

f20, x, y) sign x = A2(0 I * I - g2(0 \y\- n(t) 

hold where n0 e [0, +oo[, the functions A0, gi : ] a, 6[ -* [0, +oo[ (/ = 1, 2) are 
summable, 

(43) /0(a, 0 /o(', 6) > 0 for a<t< b, I0(s, t) = J A0(T) dx, 
* S 

*?(0 Mi(0 Vi(0 e L([a, b]), ^ and vt are defined by (5) and 

(44) (Ai, h2 ,gt +g2) e 0>Oi(a, b). 

Then the problem (1), (2) has at least one solution. 

Theorem 4, Let ce]a .ft[ , and /e* rhe inequalities (42) £e waffd z>i ]a, c[xi?2 

and the inequalities 

/i(t> *>» sign y ^ - ^ ( 0 | x | + hx(t) \y\- r\(i), 
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h0(t) 1 * 1 - g2(t) I y I - K(t) r\0 £ f2(f, x, y) sign x g 

. S* 2 (0 l* l"+ft (0 ly l+*o(Of lo 

toW w ] c, ft[xJR2 wAerf? f/2 e [0, +oo[, hteLlocQ a9 b[)9 the functions h09 gt: 
] #,£>[-» [0, +oo[(/ = 1, 2) are summable, (43) is fulfilled, 

n(t) nx(t) € L([a, c]), n(t) v2(0 e £ [c, 6]), 

/*i on*/ v2 are defined by (5) awd 

(45) , (ht 9h29gi+ g2) e 0>O2(a9 c) n ^02(c, b). 

!TAew fAe problem (1), (3) Aas #f /eas* owe solution. 
Proof of Theorem 1. Let an e ] a9 b[9 bn€*]an9b[ (n = 1,2,...) and an -» a, 

A„ -̂  fr when w -» oo. According to Lemmas 2,2' and 6 there exist positive constants 
A, An (n « 1,2, ...) and J? such that for any 10 e [a9 A] and any measurable 
functions hi0,gw ' ] a> b\-+ R (i = 1,2) satisfying (36) the inequalities 

| ut(t) I £ Ant(t)9 | w2(0 I £ -4v-.(0 for a = t = A, | W l ( A ) I = -8, 

I t>i(0 t £ 4 , f o r a g / g i , , |i;2(0l £ Am 

hold and on ] a9 b[9 in addition, 

for a„ < .• < * 

K(0I = if V l ( 0 Ф 0 , |» 2 (0I<-
V l ( 0 - — * ~' » — = * = ^ ( 0 

where («l51?0 and (w2, t;2) are solutions of (24) under the conditions 

(46) ux(a) « 0, ^(a) = 1; u2(b) = 0, v2(b) = 1. 
Set (15) and 

b bn b 

if Џl(t) Ф 0, 

ft -. (ĄPI(Þ) + AJЛ ^ j ^ ( т ) d т + A J ^ ( т ) ^ ( т ) d т + A r V i ( т ) ţ a ( т ) d т ] j 
B 

(4T> a řft-í 1 forí6[°-»-V-' „•rrt-
(47) ^ ( O - j o fone^^^y, ' - (0-

1 

2 -

0 

for 0 <, ŕ g QШ, 

for *?„<«< 2C(I, 

fOГ ťk.ІQn, 

(48) «r,(r, A:, J/) = <r0„(0 ̂ ( | x | + | y |),' 

/i„0, *, 7) = A u (0 ^ + an(t, x, y) [ft(t, x, y) - htl(t)y], 

f2«(U x, y) = h22(t) x + an(t, x, y) [f2(t, x, y) - h22(t) x\ 

( " = 1 , 2 , ...). 

Let n be a natural number. Suppose that (w10, r10) and («2 0, t>20) a r e nontrivial 
solutions of the system 

(49) 
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and u1Q(a) = 0, u20(b) * 0. For certain «, p e [-n/29 n/2] we have 

w10(an) sin a - v10(an) cos a = 0, u20(bn) sin J? - t?20(*,») cos j8 « 0. 

If j is a sufficiently large positive number, then (ju109jv10) and (—,A*io> —jvi0) 
are solutions of the system 

(50) x' ~fln(t9x9y)9 y ~f2n(t9x9y) 

on [an9 6J . The points (ju10(bn)9 jv10(bn)) and (-jul0(bn)9 -jv10(bn)) lie either in 
distinct half planes with respect to the straight line x sin fi - y cos ft » 0 or directly 
on this line. In any case, by the Kneser theorem ([7], p. 28) (50) has a solution 
(xn9 yn) on ] a9 6[ such that 

x(an) sin a - y(a„) cos a = 0, x(bn) sin /? — y(bn) cos /? = 0. 

Obviously, (xn, j„) satisfies (2). 
Using (39), it is easy to verify that (xn9 yn) is a solution of a certain system 

x' = gw(t) x + Aio(0y + rj10(t)9 y = A20(0 * +• g20(t)y +gl2o(t), 

where the functions gi09 hi09 rji0 : ] a9 &[-» -R are measurable, the inequalities (36) 
hold and 

I fjl0(f) I S -7,(0 for a<t <b (i -= 1, 2). 

Now let (wj, vx) and (w2, t>2) be the solutions of (24) satisfying (46) and let 
b 

A(t) = exp (J [g10(T) + g20(T)] dT), w = ut(b). 

Define in ] a, b\_ x ] a, 6[ a second order quadratic matrix 'S by the relations 

)(~U2{t fj(T) U 2 ( 0 « I ( T ) \ 

\-D2(f)l'l(T) v2(t « . ( T ) / 

/ - t . i ( 0 » - t o " I ( 0 « 2 ( T ) \ 

(so •(» .*)-^( : . 2 ^ : I ^ : T / : I ^ I 6 » * ^ 

^,r)=-^-f~l:i^:.z);( ?^:2^i *>- *<*• 
Lemma 3 implies1) 

(52) col (xn(t)9 yn(t)) = J &(i91) col fa10(T), >?20(T)) dT for a < t< b, 
a 

and by the definition of the constants X9 A, Am9 B and Qm we obtain 

(53) I xn(t) I + I yn(t) \£Qm for am<t < bm (m = 1, 2, ...). 

Thus the sequences (x»)£Li and (yX-si are uniformly bounded on eaclf segment 
\Pm> *m]* (w =-= 1, 2, ...). Simple arguments show that without loss of generality 

*) Here and in what follows col (., .) denotes a column vector. 
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we may assume these sequences to be uniformly convergent on each segment 
contained within ] a, b[. 

Let a* 6 ] a, b[. Then according to (52) in ~\a, a*[ we have 

Ix„(t)\S~^^iDh(t) + ftd)vt(x),2(T)]dx + fit(t)} r ^ - + Va(t)Ta(t)jdtj 
if Ait(a*)*0, 

i x B ( o i ^ - ^ - i ^ T > d T i f 0i<**)«°-

Since a* is arbitrarily close to a, and since /^(f) -> 0 when t -> a, these inequalities 
give 

(54) • sup {| xn(t) | : n = 1, 2, ...} -* 0 when * -* a. 

Similarly, 

(55) sup {| xn(t) | : w = 1, 2, ...} -» 0 when t -» 6. 

Hence, a§ it follows from Lemma 2.5 of [3], the sequence .t (*«)*« I uniformly 
converges on [a, b]. Furthermore, (53) and the definition offlw andf2n itnply that 
(xn,yn) (n = 1, 2, ...) are solutions of the system (1) on [an, bn~\. Thus, if 

(56) x(0 ~ lim xn(0, y(0 = -™ y»(0 for a < * < &, 
it-*co »-*oo 

then (x, y) is a solution of (1), (2). This completes the proof. 
The proof of Theorem 2 is quite similar. 

Proof of Theorem 3. According to Lemmas 2 and 7 there exist constants 
A 6 [1, + oo[ and B e ] 0, 1] such that if the measurable functions h10, gi0 : [a, 6] -» 
-> R (i = 1, 2) satisfy the inequalities 

(57) h0(t) <, hi0(t) S h,(t), | gi0(t) | S gt(t) for aSt^b 

and if (u, v) is a solution of the system 

(58) u' = gl0(t) u + A10(0 v, v' == h2(t) u + g 2 0(0 * 

under the initial conditions (25) where t0 e [a, 6], then (23) and (38) hold. (Note 
that (42) and (43) imply fit(t) vx(t) > 0 for a < t < b). 

Let a 0 , 6 0 e ] a , b[, ane"\a, a0[, bne']b0,b[ (« = 1, 2, ...), an~+a,bn->b 
when n ~» oo and 

t 7 0 (a 0 ,A 0 )>0. 

Set (15), (47), (48) and 

(59) вл -lў- (i + л ( ) ľ ( i + / o ( a > J / o ( b в > Ь ) ) [ > ; o + J A « * « > * > * : ], 
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/i.(-\ *> y) - *i(0 y + *«(>, *, J') C/ift *> *) - *i(0 y]> 

(60) /2„(', *, -V) = *2(0 * + (TB(t, X, J>) [f2(t, X, J>) - h2(t) * ] , 
(n-1,2, . . . ) . 

Let n be a natural number. Considering the system 

u' =-. A^O t>, t/ * A2(0 " 

instead of (49) and using the arguments carried out in Proof of Theorem 1, we 
verify that the problem (50), (2) has a solution (xn9 yn). At the same time, by (42) 
(xn> yn) is a solution of a certain system 

x9 = *io(0 x + hi0(t)y + >ho(0> / = h2(t) x + g2o(0^ + -»ao(0 + «0> 

where the functions hi0, <*, gi09 rji0 : [a, b] -> R (i = 1,2) are summable, satisfy 
(57) and 

(61) | ri10(t) | ^ Ao(0 *7G> I *ao(0 I £ *(0, « 0 *„(0 ^ 0 for a £ t £ b. 

Let s e ] a, ft[ and x„(s) ^ 0. Then there exist tx e [a9 s[ and t2
 € ] s> b"\ such 

that 

(62) xn(tx) « xw(t2) = 0, *„(*) * 0 in ] tt, t2[. 

Lemma 4 implies 
t2 

(63) col (x„(0, y„(0) - J 9(t9 T) col fa 10(T), I|20(T) + «T)) dT for tt<t<t2, 
. 1 

where the matrix 9 is defined by (51), 
t 

(64) 4(f) = exp ( - J [g10(x) + g20(T)] dr), w - -ff2(f,.), 

(wf, 1?̂ ) are solutions of (58) and ut(ti) = 0, vt(ti) = 1 (i = 1, 2). 
Taking into account (61), (62) and Lemma 7, we conclude that the terms 

( "! ) I + 1 "3-*(0 J Ulx) «T) ii(T) dT (i - 1, 2) 

are nonnegative for tx < t < t2 if ^n(r) < 0 and nonpositive otherwise. Thus, 
applying (15), (61) and the definition of the constants A and B9 from the first 
component of the equality (63) we obtain 

(65) | xn( ) | £ 1 [11,(0 x2(t) - I I , ( 0 * I ( 0 ] -̂  
IV 
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(«6) l-Jl«^)«T)M(t)dT|gx<(0 + 
u 

where 

uЦt) 

иэ-i(0 
*з-i(0 . 

(67) «XO - I JI ?<(*) f IO(T) + «M *lio(r) I A(t)dr | for /. < t < tt(i - 1,2). 
fi 

The last estimate along with the second component of the equality (63) gives 

m \yn(t)\ £ 6i3ff + w ^ ['••+ i * « *!«•»»*] for '* <%<**-

B*I0(a9t)I0(t9b) * 

Now let s e ] a, ft[, *,,(-?) = 0, and let there exist tt and f2 such that 

ti e [a, J[, /2 6 ] s9 6], ^(0 = 0 for tx £ t £ t2. 
If [t%»*i] is the maximal segment with these properties, then for each natural 
number m we have one of the following possibilities : 

(i) there exist Sj e [am9 Am] (j = 1,2,...) such that xH(sj) 5* 0 and either Sj -* tt 

or sj -• t2 when j -> oo; 
(ii) [ W a ] 9 [<*•>*J-
Let (i) occur. Then | ̂ (to) | S. Q*(t0) where t0 € [aM, 6 j is either / | or f2 and 

Q*(t) is the right-hand side of the inequality (68). 
Now let (ii) take place. Then, since [am, fc J 3 [a0, £0], the first of the inequalities 

(42) implies the existence of f0 e [am, ftj such that | yn(t0) \ ^ IJ0. 
In both the cases from the inequality 

Iy;(01 ^g2(0Ifl,(0'I + n(t) for h<t<t29 

which is due to the second of the conditions (42), we obtain 

IwtOI S [!>>n('o)l +W)dT]exp(5g2(s)ds) 
•m m 

for t € [tx, f2] n [am, bm] (m » 1, 2,...). 

Thus considering (59), (65) and (68) we conclude that (53) is fulfilled for all 
s e Im where Im is a certain set dense in [am, bj. Therefore (53) is valid for all 
se[am,bm], and without loss of generality we may assume that the sequences 
(xn)nmi and (yn)HSni arc uniformly convergent on each segment of ]a, b[. 

Suppose that a* e ] a, b[9 3/0(a, a*) < /0(a, b) and s e ] a, a*[. If xm(s) & 0 
for a certain natural number n9 choose tx e [a9 s[ and f2 6 ] s9 b~\ satisfying (62). 
Then from (15), (23), (38) and (63) we obtain 

l*.(s)l % •—^ j[/io(t)i»o + ^i(t)iKt)]dT, 
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when tj g a*, and 
A2X < 

4 
*Л») I S ̂  I [*o« >lo + ЏiW «(•)] * + 

when f2 > a*. These inequalities give, (54). Moreover, by the similar ar 
we can show that (55) also holds. Thus the sequence (xn)n

xLi uniformly co 
on the segment [a, ft]. 

Using (53) and the definition of/lrl,/2rt, we establish that (x,y) with ; 
given by (56) is a solution of the problem (1), (2). This completes the pre 

Proof of Theorem 4. By virtue of Lemmas 2, 7 and 8 it is easy to vei 
there exist A e [1, + oo[ rnd 2?e]0,1] such that for any points tt e [a, 
e [c, ft] and any measurable functions hi0,gi0 : ]a, ft[ -* R (i m 1,2) sa 
the conditions • 

h0(t) £ hi0(t) g ht(t), h20(t) - A2(t) for a < t < c, 
(69) hi0(t) = /̂ (O, Ao(0 ^ h20(t) £ h2(t) for c < t < ft, 

I £<0(0 I -* Si(0 for a < t < ft 
we have in ] a, ft [ 

*i I /iOi , 4 1 2 1 «i(0 I 2 -4 I /i('i ,01, "2(0 * By 1t>2(0 I g A[nt 

for f ^ c, 

I "i(0 I & A[v2(t)Y\ vt(t) }>B, B\ I2(t2, ;) | £ | v2(t) \&A\ I2(i 
for / | c , 

1'Жj [^(OI^Amax^l, „;,,}• forf<t., I »i<015-4- for t J 

I «i(01 .£ .4 for f £ t2, | «2(01 £ ^ max | l , / ^ ; ) ° 1 for t: 

where 

/ ^ 0 - j M t ) d t ( . -1 ,2) , 

(«i, *>i)> (tt2, 2̂) absolutions of the system (24) and 

(70) uM) - 0, vt(t%) - 1; «2(r2) « 1, t>2(*2) - 0. 

L e t ^ ^ ^ n * 0,1,...) be the same as in Proof of Theorem 3 and 

Io(<*o,c)r0(c9b0) > 0. 

Put (15), (47) and (48) where 



9A412 / 1 1 \ 
Qn - - ^ - ( 1 + ft(<0)d + Va(c))( 1 + V + A

 V)X 
B 3 \ io(«»«ii) h\Pn*o)j 

c b 

x Oo + J Mito *(*) d* + J v2(t) iKt) dT] (n = 1, 2,...), 
« . c 

For a natural number n consider the system (50) where the functions fi„,f2n are 
defined by (60). Just as it was carried out in the proof of the previous theorem, 
we can show that the problem (50), (3) has a solution (xn,yn) which, at the same 
time, satisfies the system 

x' = £io(0 x + A10(0y + i»io(0 + £i(0> 
/ = A20W x + g20(t) y + r\20(t) + £2(0 

under the conditions (69) and 

WO = 0, {2(0 *„(0 ^ 0, | fj10(0 I % *o(0 flo, I Vio(0 I -S >K0 for a < t g c, 

£i(0y„(0 ^ 0, £2(0
$ = 0, | 9 l o (0 | S V(t), I f?2o(0 I S hQ(i)n0 for c g t < b. 

Let se]a, c[ and xn(s) # 0. Then there exist ti e [a, s[and t2
e!k>*] such 

that either 
(i) t2 <; c and (62) holds 

or 
(ii) *2 £ c, xn(tt) = >>„(*2) = 0, xn(t) ± 0 on ] t t , c] and yrt(0 # 0 on [c, *2[ (if 

r2 > c). 
Note that since (hi,h2,gx + g2) e &01(a, c) ,the case (i) has been studied in 

Proof of Theorem 3. Thus we obtain 

I *„(01 £ 4 r (i + "t(c» l>o + J .% to *to <»T] 
(71) " for *•.. < t < f2. 

l^0|g-^f^[.O + f^)^)dT] 
J3 /0(a, 0 a 

Now consider the case (ii). From Lemma 5 it follows that 

(72) col (x„(0, yJLt)) - J *(f, T) col (,10(T) + ^ ( T ) , J,20(T) + «2(T)) dT 

for tx < t < t2 

where the matrix 9> is given by (51), (64) and (ut, vt), (u2, v2) are the solutions of 
(24) satisfying (70). 

When set t = c in (72) and compare the signs of the functions ut, vt, {• with the 
signs of xn(c) and yn(c), we obtain 

X £ ! ^ | | x,(c) + x2(c) if xn(c) yn(c) fc 0, 
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x^l^->c1(c) + x2(c) if xn(c)yn(c)<0, 
V1\C) 

where xt are defined by (67) and 

Z» j W t K l t o M t t d t . 
c 

Furthermore, from the first component of (72) by the analogy with (66) we have 

Xi(t) ^ *M + ^r^**-&) + 1 7 # r X for h < t < c, 

where 

Xi(0 = I JI ut(x) £2(t) | il(t) dt | for *4 £ r S <2 0' - 1, 2). 

Considering the estimates established above and applying the definition of the 
constants k, A and B, we conclude from (72) that on ] t t , c] 

B2 

| x.xo I < TJr-[ua(t)x1(0 + «,(<)(xa(0 + z)] Š 

(1 + ^(c)) (1 + va(c))[tío + J f t to i í tod t + Jv2(t)»j(T)dT], 

| yn(t) | = y i y [| t>2(0 I (^(0 + Xl(0) + I Vt(t) I (*,(*) + Xl(t) + *)] £ 

^ 9Al4A(l + ^i(c))(l + v2(c)) r f M M , , f / w u l 

B3I0(a,t) 

From these inequalities and (71) we may derive by the method used in Proof 
of Theorem 3 that | *„(*) | + \yn(t) \ g gm on [am, c] (m = 1, 2, ...) and (54) 
holds. Moreover, it may be similarly shown that | xn(t) | + | y„(t) I £ Qm

 o n [c» A«] 
(m = 1, 2, ...) and 

s u p d ^ O I :w = 1,2,...}->0 when t ->6. 

Thus without loss of generality we may assume that the sequences (xn)n= x and 
(yn)n^t are uniformly convergent on each segment contained within [a, b[ and 
]a, b} respectively and so (x, y) defined by (56) is a solution of the problem (1), (3). 
This completes the proof. 

2. Uniqueness theorems. 

Theorem 5. Let the inequalities 

-* i (0 I *i - *a I + htl(t)\yt - y2 I S 

-* [/i(t, * i , yi) - /i(t, x2,y%)1 sign 0 4 - y2) g .^(0 I *i - *2 I + A12(f)1 yt -y2|, 
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(73) A22(t) \xx - x2 | - g2(t) | yx - y2 | & 
& [/2ft xx, yt) - /2(t, x2, j>2)] sign (xx - x2) £ A21(0I *i - *2 I + £a(0 I Ji - J>2 I 

hold in ]a, b[ x U2 and let the conditions (40) Ae fulfilled for a certain integer k. 
Moreover, suppose that (6) with \ix, vx and h{ defined by (5) and (32) is valid. Then 
the problem (1), (2) Aa$ at most one solution. 

Theorem 6. Let the inequalities (73) hold in ]a, b[ x R2 and let the conditions (41) 
be fulfilled for a certain integer k. Moreover, suppose that (11) with fix, v2 and ht 

defined by (5) and (32) is valid. Then the problem (1), (3) has at most one solution. 

Theorem 7. Let the inequalities 

~gi(t) I xx - x21 + Ao(0 \yt-yz\£ [/ift xt, yx) - fx(t, x2, y2)] sign(yx - y2) £ 

(74) . £ g l (0 I *i - x2 | + Ax(0 I * - * I, 

[/aft *i>>>i) - Aft *i, ^2)] sign (xx - x2) £ A2(0 I *i - x2 | - £2(t) 17i - y% I 

AoW w ]a, A[x.R2 and /ef *A* condition (44) be fulfilled where h0,gteL([a, 6]), 
Ao(0 iS. 0 /<w a^tlLb and A0 differs from zero on a set of positive measure. Then 
the problem (1), (2) Aas at most one solution. 

Theorem 8. Let ce ]a , A[ and let the inequalities (74) with h0(t) & 0 be valid 
in ]a, c[ x H2 a/id the inequalities 

[/ift *i»J>i) - fiit, x2, y2)] sign (j^ - y2) £ -gx(t)\ xx- x2\ + hx(t) \ yx - y2 |, 

-*a(0 I ^i ~ J>2 I ̂  [/2ft *i, JVi) - /aft *a> J>a)] sign (xt - x2) % 
£ h2(t) I *! - *2 I + *a(0 I J>i - yi I 

hold in ]c,b[xR2 where h\eLloeQa,b[), gteL([a,b]) (i « 1,2) and (45) fe 
fulfilled. Then the problem (1), (3) Aos at most one solution. 

Proof of Theorem 5. Let (xi9 y() (i = 1, 2) be solutions of the problem (1), (2). 
Set 

(75) x(t) = xx(t) - x2(0, y(t) = yx(t) - y2(t). 

It immediately follows from the first inequality (73) that 

-* i (0 I *(0 I + *n(0 i y(t) I g x'(t) sign^O = *i(0 I x(t) I + A12(0 I y(t) I 

in ]a, A[ and, since ft is continuous in the last variable, 

-gx(t) I JC(0 I £ x'(t) £ gx(t) I x(0 I when y(t) * 0. 

The second inequality (73) implies the analogous relations for y'. 
Thus (x, y) is a solution of a certain system (24) with measurable coefficients 

hio>gio : ]#> b[ -> R satisfying (36). But according to Lemma 3 this system has 
not nontrivial solutions under the conditions (2). This completes the proof. 
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The proof of Theorem 6 is quite similar. 
Proof of Theorem 7. Let (xi9 yt) (i « 1,2) be solutions of the problem (1), (2). 

Set (75). 
Using (74) we easily verify that (x9 y) is a solution of the system 

(76) x' « gi0(t) x + hl0(t) y9 yf « A2(0 x + g20(t) y + t(Q 

where measurable functions h10,gi0>i : ]a, &[ ~* .R (i == 1,2) satisfy (57) and 

(77) $(t) x(t) £ 0 for a < t < b. 

Let x(s) ^ 0 for a certain 5 e ]a, £[. Choose tx e [a, $[ and t2 6 ]s> b} such that 

x(h) = x(r2) - 0, x(t) * o in ] ^ , t2[. 

If Aio(0 = 0 almost everywhere on [ti9 t2], then (76) implies x(t) m 0 on 

lh,hl 
Now assume that At0(0 # 0 on some set of positive measure from the segment 

[ti > t^\. Then according to Lemma 4 we have1) 

col (x(t)9 y(t)) - i & s L col (tit(0, ̂ (0) + | ^ - col («2(0, ̂ a(O) + 

+ J^T)COl(0f«T))dT 
St 

in Jij, J 2 [ for all .ŝ  6 ']ti, t2[, s2 e ]st, t2[ sufficiently close to ti912 respectively 
where the matrix &> is defined by (51), 

t 

(78) A(t) m exp(-J [g10(T) + g20(T)] dT), w - -«2(s.) 
Si 

and (ui9 vt) are solutions of (58) under the conditions 

«<(*<) ~ 0 , vfyd = l ' ( * - l , 2 ) . 

Hence, as (77) holds and ut(t) 2* 0, u2(t) g O o n the segment [r!, ,y2], we obtain 
on this segment 

mйi^UÁ0+п°ąUl{t). 
«<i(s2) « 2 (» l ) 

By Lemmas 2 and 7 there exist independent on the choice of sx and s2 posi
tive constants A and B such that 

I x(01 £ ~ (I xfo) | + | xfo) |) for s, £ f :g s2. 

') Note that in general we may not use the Green formula on the whole [tlt t2]. 
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Taking into account the unrestricted closeness of sf to tt (i = 1, 2), we conclude 
that x(t) = 0 on [ti, f2] and thus on [a, b\ 

(76) gives h0(t) y(t) = 0 for a <* t S b, but since h0 is not equivalent to zero, 
y necessarily vanishes in some points of ]a, b[. On the other hand, according to (74) 

(79) \y'(t)\^g2(t)\y(t)\ 

on [a, b]. Therefore y(t) = 0. This completes the proof. 

Proof of Theorem 8. Let (xi9 yt) (i = 1, 2) be solutions of the problem (1), (3). 
Set (75). 

Suppose that x(c) =£ 0 and that tt is the largest zero of x on [a, c]. Furthermore, 
denote by t2 the smallest zero of y on [c, b\ 

From the conditions of the theorem it follows that (x, y) is a solution of the 
system 

*' = *io(0 * + Ko(t)y + £i(0, / = *2o(0" * + «ao(0y + fa(0 

where g|0» *̂o> £* : ]#> &[-*-/?(/ = 1,2) are certain measurable functions satisfying 
(69) with h0(t) = 0 and 

(80) il(t) = °' il(t) X(t) = ° f ° r * < ' = c ' 
£i(0 y(0 = 0, {a(0 = 0 for c = t < b. 

Thus by Lemma 5 

col(x(0, y(t)) = - i ^ I c o l ( M l ( 0 , *i(0) + - ^ - c o l ( u 2 ( 0 , v2(t)) + 

+ J Җt, т) col (^(т), <?2(т)) dт foг s. g / š s2, 

where st e ] ^ , c[, s2 is c, if y(c) = 0, and is an arbitrary point of ]c, t2[ otherwise, 
9 is the matrix defined by (51), (78) and (ui9 v() are solutions of (24) under the 
conditions 

"iCsi) = 0, vx(st) = 1; «2(s2) = 1, v2(s2) = 0. 

This equality and (80) imply 

\x{e)\S^^ux(c) + ^ ^ u M when x(c)y(c) = 0, 
vx(s2) u2(sx) 

I Ke) I ^ - L ^ r ^^^ + -ITT^r! ^^c> • when ^)^)<°-
Vl(S2) ti2(Sx) 

Now taking into account Lemmas 2 and 8 as well as the unrestricted closeness 
of st to tt (i aa 1, 2), we conclude that the first inequality gives x(c) = 0 and the 
second one yields y(c) = 0. These contradictions show the falsity of the assumption 
x(c) & 0. We may analogously verify that y(c) = 0. 
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Because of (45), (hx , h2 > £i + g2) e @*0i(a, c). If x(s) # 0 for some s e ]fl, c[» 
then repeating word for word the corresponding argument from Proof of Theorem 7, 
we get x(t) = 0 for a ^ / ^ c. Hence (79) is valid on [a, c] which, since y(c) = 0, 
gives y(t) = 0 on this segment. Similarly, | x(t) \ + \ y(t) | s O on [c, b\ This 
completes the proof. 

In the case whenfx (r, x, y) == y, from Theorems 1,3,5,7 we obtain I. T.Kiguradze 
existence and uniqueness theorems [3] for the singular problem 

x" = f(t9 x, x% x(a) = x(b) == 0. 

Moreover, in [3] the effective conditions under which (l,h,g)e 0>kx(ayb) are 
given (see also [4] and [8]). 

The necessity of the main conditions of Theorems 1 —8 is discussed in [4]. 
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