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GLOBAL TRANSFORMATIONS OF LINEAR 
DIFFERENTIAL EQUATIONS 

AND QUADRATIC FUNCTIONALS, I 

VLADIMIR KA&OVSK*. Brno 
(Received January 15, 1982) 

In the present paper the unified approach to study of extremal properties of 
quadratic functional of the type 

0 

is introduced, where q(t)e C^0tB] and y(t) are A-admissible functions on [0, B"]: 
i)y(OeC[°o,B];y(0) = y(^) = 0, 

ii) y(0 is absolutely continuous and y'2(0 is integrable on each closed subinterval 
of the interval (0, B\. 

The method is based on Bor&vka's theory of global transformations of second 
order linear differential equations. 

Throughout the paper only Lebesgue integral is used (briefly L-integral). At the 
end of the paper there is given a new explicit class of quadratic functional which 
achieve absolute minimum equal to 0 on A-admissible functions i.e. 

(I) lim inf J(y) \l^0 
£-•0 + 

for each A-admissible function y(t) on [0, 5] . If the lowest limit of (I) exists, then 
it is zero since y(t) = 0 for t e [0, B~\ is also A-admissible on [0, 2?]. Further on 
this lowest limit will be called the minimal nonnegative limit of the considered 
quadratic functional. 

The problem was systematically studied mainly by Leighton. Since 1936 he 
has written several extensive papers, where he found sufficient and necessary 
conditions for the existence of the minimal nonnegative limit by means of classical 
methods depending on the type of admissible functions y(t) and the form of 
functional [8], [9], [10], [11]. 

Recently the problem has been partially studied by W. A. Coppel [2], who has 
extended some of Leighton's results to functionals of higher orders. It was also 
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Krbila [4] —[7] who dealt with the quadratic functionals. Using Bor&vka's theory 
of transformations he studied special properties of regular quadratic functionals. 
In his considerations he used mainly Riemann integral. 

In the present paper a new approach to mentioned problems is introduced. This 
approach to the study of arbitrary quadratic functionals is based on the basic 
result of Bor&vka's theory consisting in the fact that each linear differential equation 
of the second order on its whole definition interval can be globally transformed 
to the equation y" = —y on a. suitable interval. First by classical means of direct 
evaluation there are derived properties of one special functional corresponding 
to Euler equation y" 4- y = 0 and then by means of global transformation the 
results are extended to general functionals. 

Functional of the type (—I) 

Notation. Functional of the type 

J(y) ~ J \Y'\T) + Q(T) Y2(Ty] dT9 
o 

where Q(T)eC^0tB} (fixed); Y(T) are A-adissible on [0,5] and corresponding 
L-integral is taken on an open interval (0, B), is denoted by (Q). The associated 
Euler equation ((E-equation) to the functionals (Q) is denoted by (Q). 

Then (Q): Y"(T) = Q(T) Y(T) is defined on the the open interval (0, B). Specially 
the functional 

^ ) = }[/2(0-y2(0]df 
o 

is denoted by (-1) and E-equation by (-1) . 
Thus the equation 

( -1 ) / ( 0 = -3<0 

is defined on the interval (0, b). 
Since Euler equations (Q) and (— 1) are defined on open intervals (0, B) and (0, b)9 

we use all notions from Borflvka's theory of transformations [1]. Let us mention 
some of the most important notions used in this paper. Each ordered couple of 
linearly independent integrals u9 v of the differential equation 

(q) y\t)~q(t)y(t), tej = (a9b) 

is called the base of the equation. Let t ej and u denote an arbitrary integral of (q) 
with the property u(t) = 0. The number x ej is called conjugate to the number t 
if u(x) =s 0. The first zero x to the right of t is called the first conjugate point to t. 
The function assigning the first conjugate point to t is called the basic central 
dispersion of the first kind and is denoted by q>. 
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Let Rt (Sx) denote the set of all numbers t ej to which there exist conjugate 
numbers to the left (to the right). If Rt u St = 0, the equation (q) is called dis-
conjugate. All the integrals of (q) are of the same oscillatory character, i.e. they 
have either finite or infinite number of zeros inf. In the first case the equation (q) 
is of finite type and by the type of (q) is meant the integer m defined as follows: 
The equation (q) has an integral with m zeros inf but none of its integral has m + 1 
zeros inf. In the second case the equation (q) is of infinite type and we assign oo 
as its type. More in detail (q) is called oscillatory from the left or from the right, 
or both side oscillatory if the zeros of its integrals accumulate to the left end a, 
or to the right end 6, or to both ends a, b of the interval j , respectively. 

For each equation (q) we can define its kind: general or special. The equation (q) 
is of general kind if there exists a base (u, V) such that u, v have exactly m — 1 
zeros inf. If there is no such a base, the equation (q) is of special kind. The couple 
consisting of the type and the kind of an equation is called its character. 

A phase of the base (u, v) is a function a(f) continuous on j satisfying 

« > • ! 

everywhere ony with the exception of zeros of denominator. The phase a is called 
normal if it has a zero inf. Evidently each equation (q) admits a phase with an 
arbitrary given zero. Consider equation (q), tej and equation (Q), TeJ. The 
phase a of (q) and the phase A of (Q) are called similar if a(j) =-= A(J). This situa
tion occurs exactly if 

lim a(0 = lim A(T) and lim a(0 = lim A(T). 
t-*a+ T-M + t->6- T—B-

If equations (q), (Q) are of the same character, then to each phase of the first 
equation there exists a similar phase of the second one. 

Lemma 1. ([3] p. 426) 
The function 

and 

1, С08ЛГ, С08 2лг, ... (* ) 

sinx, sin2x, ... (**) 

form complete orthogonal system in the space L2[ — n> fl]. Each system (*) and (**) 
is orthogonal and complete on the interval [0,7t]. 

Lemma 2. ([3] p. 448) 
If a function f with period 2% is absolutely continuous and its derivation belongs 

to L2[—n> ft], then Fourier series of the function f converges to the function f uniformly 
on the whole real axis. 
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Lemma 3. ([3] p. 335) 
V ^n (*) ^ 0 and 

CO 

£ J^„(*)d/i< oo, 
n = l -4 

oo 

then the series £ W*) converges almost everywhere on A and it holds 
n**І 

J(lW*))a>--E J *-(*)<-.-. 
.4 n » l B-»1 A 

From these assertions follows immediately the following lemma. 

Lemma 4. 
Let y(t) be an A-admissible function on [0, b]. Then there exists one and only 

one denumerable system of real numbers 

K.-4f>)sin(^)d, 

such that Fourier series of the function y(t), i.e. 

!**(x') 
converges uniformly to the function y(t), and Fourier series ofy'(t) is of form 

f^X.oo.^), te(0,bl 

Now we give the main theorem of the first part of the paper. 

Theorem 1. Let y(t) be A-admissible functions on [0, b]. Then 
b 

(II) lim inf J [/2(0 - y2(0] dt = 0 
e-*0+ e 

for each function y(t) if and only if 0 < b <£ n. If b < n, then the equality in (II) 
occurs exactly for y(t) == 0. If b -= n, then the equality in (II) occurs exactly for 
the systen\ of functions y(t) = k . sin t, where keR.Ifb > n, then the relation (II) 
fa not satisfied for all A-admissible functions on [0, £]. 

Proof. From Lemmas 3, 4 it follows 

Urn inf J( /2(0-/(0)df«-

--f&<[(*H 
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From this there follow immediately the assertions of Theorem 1, and the proof 
is complete. 

Corollary 1. The relation (II) is satisfied if and only if the associate E-equation 
(—1): y( t) = — y(t) is of the type 1 (disconjugate) on the open interval (0, A). 
If b < n9 then (—1) is of the type 1 and general. If b = n, then ( -1) is of the 
type 1 and special. If b = n, then the integral of the equation (—1) sin t extended 
continuously to the closed interval [0, n] is A-admissible function on [0, ft], for 
which the functional (—1) achieves its minimal limit equal to zero. From the 
properties of integrals of the equation ( — 1) it follows immediately that this solu
tion up to its constant multiple is the only one of the above property. 

Functional of the type (Q) 

Assumption 1. Assume associate E-equations of functionals (—T) and (Q), i.e. 

( -1) / ( ' ) = ~y(0, tef = (0,6), 

(Q) Y»(T) = Q(T) Y(T), TeJ=(0,B) 

are of the same character, i.e. they are globally transformable on their whole 
intervals of definitions. 

Remark 1. By [1] there exist functions X(t), M(t) for t e (0, b) transformating 
the equation (Q) to ( — 1) on the whole intervals of definitions, i.e. for each integral 
Y(T), Te (0, B) of (Q), the function * 

y(t) = M(t) Y(X(t)), where M(t) = c . | X'(t) |"1/2, ceR 

is an integral of the equation (— 1) on (0, b). The function M(t) is called a multiplier 
of the function M(t) and the function X(t) is called a kernel of the global trans
formation (Q, -1) . 

Similarly there exist functions x(T), m(T) for T e (0, B) such that for each integral 
Xt), t e (0, b) of ( -1) the function 

Y(T) = m(T) y(x(T)), where m(T) = ^ * . T 

is an integral of (Q) on the whole interval (0, B). The function m(T) is a multiplicator 
and x(T) a kernel of the transformation ( - 1 , 0 . 

O. Borflvka [1] has shown that as a kernel of the global transformation (Q9 — 1) 
there can be taken a function 

Z(t) = A~xa(t) for te(0,b), 

where A(T) and a(t) are similar normal phases of the equations (Q) and (—1), 
respectively. The transformation (—1, Q) given by kernel 
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x(T) = ot"xA(T) for Te (0, JJ) 

is inverse to the transformation (Q, — 1). 
Each kernel X(t) or x(T) is of the following basic properties X(j) = / ; X(t) e C]; 

JT'(0 96 0 for all t ej or x(T) = f; x ( r )e Cj; x'(T) * 0 for all TeJ, respectively. 
If the equations (q), (Q) of the same character are of the finite type or oscillatory, 
there exist their global transformations with increasing and decreasing kernels. 

Lemma 5. Let Assumption 1 be fulfilled and X(t) be an arbitrary increasing kernel 
of a global transformation (Q, — 1) continuously extended to the closed interval [0, 6]. 
Further let Y(T) be an arbitrary A-admissible function on [0, B\ Then 

,* YX(t) 
y(t) = X'(t)112 

is A-admissible function on the interval [0, 6]. 
Similarly if we consider a transformation t = x(T), where x(T) is the kernel of 

the inverse transformation ( — 1 , 0 continuously extended to the closed interval 
[0, 2?], then the function 

*• ;
 Lx'(D1/2-

is A-admissible function on the interval [0, 2?] for each A-admissible function y(t) 
on [0, 6], In this way a certain one-to-one mapping of the set of all A-admissible 
functions Y(T) on [0, 2?] onto the set of all A-admissible functions y(t) on [0, 6] 
is defined. 

Proof. From the properties of the function X(t) and from A-admissibility of Y(T) 
it follows: 

a) If Y(T)eC°0,Bl9 Y(0) - Y(B) =- 0, then 7[X(0]. [ T O ] " 1 ' 2 e Cc
0
0tB]; 

YX(0) . [r(oxr1/2 = Yix(by]. \x'(b)y112 = o, 
b) If Y(T) is absolutely continuous and Y'2(T) is L-integrable on each closed 

YX(i) subinterval of the interval (0, 2?], then — v ' is absolutely continuous and 

r Yxu) T 2 V*'(0 
I ' J is L-integrable on each closed subinterval of the interval (0, b\ 

V4x'(i)\ 
The assertion a)( follows immediately. The assertion b) is valid due to [3] p. 414 

and 378. The second half of the assertion can be proved similarly to the first half 
of the assertion of Lemma 5. The mapping is one-to-one due to properties of the 
functions X(t\ x(T), the kernels of global transformations (Q, —1) and ( — 1,0). 
The proof is complete. 

Corollary 2. Due to [1], Corollary 1 and Lemma 5 it follows immediately: 
If U(T) is an integral of the equation (Q) vanishing at 0, then 
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U[X(0] . r(0~1 /2 = k . sin t, keR, 

i.e. the integral of the equation ( -1) vanishing at zero. Analogously the function 

U(T) = sin [x(T)] . [x'(T)]-1/2 

is an integral of the equation (Q) vanishing at zero. If the equation (Q) is dis-
conjugated and special on (0, B), then this integral U(T) can be continuously 
extended to [0, 5] such that it is an A-admissible function on [0, 2?]. 

Recall one of the results from [1]. 

Lemma 6. Let (Q) and (— i) be of the same character. Then a function X(t) is 
a kernel of the global transformation (Q, — 1) if and only if X(t) is a solution of 
Kummer equation 

-{X,t} + Q(X(t)).X'2(t)= - 1 , 
where 

SY t\ l X'"W 4. 3 ^ O 
— \A, 11 = —---• — . 

1 ' 2 X'(t) 4 X'\t) 
Lemma 7. Let Assumption 1 be satisfied. Then there exists a one-to-one mapping 

of the set of A-admissible functions y(t) on [0, b~\ onto the set of A-admissible functions 
Y(T) on [0, 5] such that for each two corresponding A-admissible functions y(t) 
and Y(T) it holds: 

(III) lim inf J [/2(t) - y2(0] dr = lim inf J (Y'\T) + Q(T) Y2(T)} dT 
e->0+ e £-+0+ E 

Proof. Consider the one-to-one mapping described in Lemma 5. Then from 
Lemma 5 and Lemma 6 we get: 

J[/2(0-y2(0]dr = 
e 

= J [Y'2(X(t)) + Q(X(t)) Y2(X(t))] X'(t) dt - r ^ 5 -
e 2X (t) 

where X(t) is an increasing kernel of the transformation (Q, —1). From the 
properties of the functions Y(X(t)), X(t) it follows immediately 

e-.oД 2X2(t) } '(t) 

Substituting T = A"(0, we get 
a) dT = X'(t) dt, 
V X(b) = B;X(e) = E and if e -> 0 + , then E -> 0 + . 
c) X(t) satisfies all requirements of the substitution method for L-integral: 

X(t) is finite, continuous, increasing, mapping the interval [e, b] on the interval 
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[is, B] and it has a finite nonvanishing continuous derivative x'(t) > 0. After 
substituting we get immediately the relation (III). 

Remark 2. If one side in (III) is greater than or equal to 0, then the same is true 
also for the other side. Equality (III) can be obtained also by substituting t = x(T) 
to the right side of (III). 

Definition. Let the equation (q): y"(t) = q(t)y(t) be defined in the interval (0, d) 
and choose b: 0 < b < d. Let a point at e (0, b) be such that there exists cp(a^)9 

i.e. the first conjugate point to ax. Then the first conjugate point to 0 is defined 
as lim q>(a). If q>(a) does not exist for any a e (0, b), we say that the point 0 has 

a-+0.t. 

not the first conjugate point on the interval [0, d). 

Remark 3. If the first conjugate point to 0 coincides with the point 0, then the 
function q cannot be continuously extended to the point 0. 

Introduce without proof two theorems from [11] (Theorems 2.2 and 2.3). 

Lemma 8. If the point 0 does not coincide with its first conjugate point9 then there 
exists a solution W of E-equation (q) of the functional (I) such that W(T)^0 and 
for each solution Z(T) independent of W(T) it holds 

v W(T) A 

^ . - zm" 0 -
Any solution with this property is linearly dependent on the solution W(T). The first 
conjugate point to 0, if it exists, is the first positive zero of the solution W(T)9 and 
the first positive zero of the solution W(T). if it exists, is the first conjugate point 
toO. 

Lemma 9. If there exists the minimal nonnegative limit of the functional (I), then 
the interval [0, B) does not contain the first conjugate point to 0. 

Now we can give the necessary and sufficient condition for the existence of the 
minimal nonnegative limit for functional of the type (Q). • 

Theorem 2. Let Y(T) be A-admissible functions on [0,5] and Q(T) e C(°0B] 

be a fixed chosen function. Then 

B 

(IV) lim inf J IY,2(T) + Q(T) Y2(T)] dt^O 
£-•0+ E 

for the functions Y(T) if and only if the associated E-equation 

(Q) Y\T) = Q(T) Y(T) 

is disconjugate on the open interval (0, B)9 i.e. it is of type 1. If it is of type I and 
general, then the equality in (IV) occurs exactly for the integral Y(T) s 0. 
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If it is of type 1 and special, then the equality in (IV) occurs exactly for the integral 
Y(T) of(Q) continuously prolonged on the whole interval [0, .2?] with Y(0) =* Y(B) « 
= 0 and for integrals depending on Y(T). If E-equation (Q) is not disconjugate 
on (0, B), then the relation (IV) is not satisfied for all A-admissible functions Y(T) 
on [0, B]. 

Proof. => follows immediately from Lemmas 8, 9. <= immediately from 
Corollaries 1, 2, Lemma 7, Remark 2. 

Corollary 3. By [1] Theorem 2 is equivalent to the assertion: The minimal non-
negative limit of the functional (Q) exists if and only if there exists an increasing 
phase A(T) of (Q) such that 

lim A(T) = 0; lim A(T) £ n. 
T-+0+ T-+B-

If lim A(T) < n, then the equality in (IV) occurs just for Y(T) ss 0. 

If lim A(T) = n, then the equality in (IV) occurs exactly for the functions 

UcD^i^HSl, where KeR. 
yjA'(T) 

Lemma 10. ([1] p. 140 or [12]) 
Let y"(t) = q(t)y(t) be defined for tej = ( — ao, oo) with the basic central disper

sion of the first kind (p. Let x be a fixed first phase of(q) and fan arbitrary it-periodic 
function of the class C^-,,,, TO) with the following property 

/(0) = E(0) = 0; J « P ( - - / ( * > ) - i da . o. 
o sin a 

Then all the differential equations with the same basic central dispersion of the 
first kind if/ are exactly the equations 

(qt) f = {q +" [f "a + / ' 2 a + 2/'a cotg a] a'2} y. 

Corollary 4. The solution of (qt) determined by y(0) == 0, y'(0) = 1 can be 
expressed in the form 

1 e/g('lsin a(Q 
y i ( 0 "|« ' (0 ) | 1 / a |a'(0l1/2 ' 

where the function/satisfies the properties of Lemma 10 and a(t) is a fixed phase 
of (q) with zero at 0, i.e. a(0) = 0. 

Proof. From the assumption that <x(t) is a phase of (q) it follows immediately 

, ( 0 1 J ^ + 3 4 ( 0 - ^ ( 0 . 

Choose y(i) ^ . 

I«'(0II/2 
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By direct evaluation we get 

/ ( 0 - At)112 y{t) / ' a (0 + «'(01/2 • * » cos a(0 - ^ g I 
2a(f) ' 

^ = [-^ + ^ - ^ » ] , o + 
+ [/MO + / ' M O + 2/ '«(0cotga(0a'2(0]y(0. 

Assuming a(0) = 0, we get immediately 

yi(0) = 0; X(0) = 1. 

Lemma 11. ([19] Theorem 3.6) 
Each Solution of a differential equation (q) is periodic or half periodic with period c 

(c > 0) having exactly n zeros in [t0, t0 + c) if and only if 

q=_ i r — n — T + i r - ^ — T - (pr+*™itfi 
L2 LP' + enn/cJ 4 [P ' + enn/c] 

where P(t + c) = P(t), P e C3, P'(0 + enn/c ^ o, e = 1 or s = - 1 . 

Corollary 5. All differential equations (qt) with the basic central dispersion 
of the first kind <p(t + b) = ^>(0 are given by the relation 

(qi) m _ {_^i+[ / :(i,)+r (« , ) + *-(^, ) -_ , ( | , ) ]^ 
Then 

liminf J [ / 2 ( 0 + «i(03'2(0]--0 
e-*0+ e 

for each A-admissible function X 0 o n [0, * ] . This functional achieves its absolute 
minimum equal to zero exactly on the integrals 

r , / (x-t) . n 
yKt) = Ke " / sm —f, 

ib 

where JSTe JR and the functions/satisfy the conditions given in Lemma 10. 

Remark 5. Using Corollary 5 and Lemma 11, we can also determine the class 
of functional (Q) having the nonnegative minimal limit. However, Lemma 11 
cannot be used for direct evaluation of A-admissible functions X 0 o n which these 
functionals (Q) achieve their absolute minimum equal to 0. 

Remark 6. The base of the described method is the global transformation (Q, —1) 
or its inverse (—1,Q) which transforms globally not only the corresponding 
Euler equations (Q) and ( -1) but also the corresponding functionals (Q) and (—1) 
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together with the classes of A-admissible functions. The method given in the 
paper may be extended to more general one, e.g. of the type 

(p.q) ! [ K 0 / 2 ( 0 + ?(0y2(0]d<, 
0 

where (p(t) > 0, q(t))eC°0,Bi a r e fixe(* a n c * X 0 a r e A-admissible (even more 
general) function on [0, JB]. 

F. Neuman [14] extended Borftvka's global transformation of linear differential 
equations of the second order to equations of the n-th order, n 2; 2. Using it, 
it would be possible to extend this unified method to investigating extremal 
properties of more general functional whose associated Euler equations is a linear 
differential equation of the 2n-th order. 
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