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HAMILTON EXTREMALS 
IN HIGHER ORDER MECHANICS 

DEMETER KRUPKA and JANA MUSILOVÁ, Brno 
(Received May 16,1983) 

1. INTRODUCTION 

The geometrical and physical significance of the problem of a generalization 
of the Hamilton equations of classical mechanics to higher order mechanics and 
field theory ranks it still in the field of interest of mathematicians and theoretical 
physicists. One possible approach to this problem consists in assigning to the 
Euler — Lagrange equations of a given lagrangian a new system of extended equa
tions, having more solutions than the initial ones, in such a way that (1) to each 
extremal (= a solution of the Euler —Lagrange equations) there corresponds 
a solution of the extended equations, and (2) in case that the lagrangian satisfies 
a regularity condition, the correspondence between the extremals and the solutions 
of the extended equations is bijective (see [2]). The possibility of constructing the 
extended equations is based on the existence of a Lepagean equivalent of 
a lagrangian proved independently in [3] and [6]. An important feature of the 
extended equations is that for regular lagrangians of order one they may be 
interpreted as the Hamilton equations of the given lagrangian. 

The purpose of this paper is to discuss the Hamilton equations of higher order 
integral variational problems of one independent variable, and to give a geometric 
interpretation of these equations in terms of a certain distribution. To this purpose 
we use the theory of Lepagean differential forms developed in [5], [6], and [7], and 
we closely follow the general ideas of the paper [2] such as the extension idea 
by means of a Lepagean form, and the regularity condition. For further results 
in this direction, we refer to [ l ] and [4]. 

As the basic underlying structure we choose a fibered manifold over a one-
dimensional base manifold. Within this framework, we construct, under a regularity 
hypothesis, the Hamilton (one-dimensional) distribution, which corresponds to 
the so called Hamilton vector field from the variational theory of curves, and whose 
integral sections are precisely the solutions of the extended equations. We also 
express this distribution in terms of linear differential forms, which allows us to 
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take into account general (not necessarily regular) lagrangians; the distribution 
corresponding to a general lagrangian is then shown to be completely integrable 
if and only if the lagrangian is regular. 

2. LEPAGEAN FORMS IN HIGHER ORDER MECHANICS 

In this section we recall main definitions and facts of the theory of Lepagean 
differential forms. Our exposition is adapted to the case of variational problems 
whose underlying fibered manifolds have one-dimensional bases. 

Throughout this paper, X is a one-dimensional manifold, n : Y -> X is a fibered 
manifold, and we denote m = dim Y - 1. T(n) denotes the set of local sections 
of.rc, nr :fY -• X is the r-jet prolongation of n9 and nr^s :fY-*fY9 0 ^ < r, 
is the natural projection of jet spaces. If (V9 $), ty = (t, qa), 1 ^ <x ^ m, is a fiber 
chart on Y, then the fiber chatt on fY9 associated with (V, ij/), is denoted by 
(Vr, \l/r), \l*r = (t, gf), where 1 g <x <; m, 0 ^ i g r. The r-jet prolongation of the 
fibered manifold ns: fY -> X is denoted by (ns)r: f(fY) -> X. In accordance with 
the above notation, the chart on f(fY), associated with (V9\l/)9 is denoted by 
{{V8)r, ($s)r), (tfa = (t9 q

a
itj), where 1 g o <, m90 £ i S s,0 < j g r, and qit0 =-=?,.. 

The module of p-forms (resp. ^-horizontal jp-foims, resp. 7tSt0-horizontal 
/>-forms) o n / 7 is denoted by Qp(fY) (resp. Qp

x(fY)9 resp. QP
YQSY)). Let r\eQp()sY) 

be a form. There exist unique forms h(r\)e Q£()s+iY) and p(r/)e QpQs+iY) such 
that for each yeTfy), fy*r\ =f+iy*h(r\)9 such that 7ts*+ltS*/ = h(rj) + p(r\); the 
mapping IJ -+ ft(*f) is called the n-horizontalization. A form q e Qp(jsY) is ^-hori
zontal if and only if n*+itSr\ = h(rj); r\ is called contact if n*+itSr\ = p(r\)9 

i.e., Aty)" as 0. For p ^ 2/y is obviously contact. 
The following definitions slightly differ from the ones introduced in [6]. Let 

p ^ 1. A form r\ e Qp(j5Y) is called 1-contact, if (1) it is contact, and (2) for each 
^-vertical vector field f on fY9 the form itf is ars-horizontal (0-contact); if k ^ 2, 
fj is called k-contact, if tyf is (fe - l)-contact. We denote by Qp'k(fY) the module 
of ife-Contact p-forms on fY. Each form r\e Qp(fY) admits a unique decomposi
tion 

(2.1) fls*+i,s>J=Mo + 'h + ... + v 

where , k 6 f l^( / + 1 n 
Let Q e Ql(fY) be a form. There exist uniquely defined forms Ee Q2,i(f+iY), 

FeQ2>2(j'+iY) such that 
(2.2) n*+UsdQ = E + F. 
We say that Q is a Lepagean form if Ee Q\'i(f+iY), i.e. if £ is rc5+lt0-horizontal. 

Let Q e Ql(fY). In a fiber chart (V, $), if* == (t9 q°), n*+itSQ has an expression 

0-3) ' •«: + i . r f - /odf+f- / i i : V. 
1=0 
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where 
(2.4) c*f«d$f~<?f+ 1dj. 

It can be easily verified that Q is Lepagean if and only if 

*"o ' d<* 8qi+k 

(2-5) / < _ £ ( _ ! ) * . J _ _ Ł , i ś . / í í . . 

This implies, in particular, that if a form Q e iQ1(jsr) is Lepagean, then the form 
A = h(Q) is 7c5+1>fc-projectable for some k <£ (s + l)/2. 

A lagrangian of order r for u is by definition an element A 6 Qx(]
rY). h Lepagean 

equivalent of a lagrangian A e QxQ
rY) is a Lepagean form g € QlCfY)9 where- .y is 

an integer, such that fc(e) = A. Writing in a fiber chart (V, ^) , ^ -= (r, #*), 

(2.6) A = L dt 

and using (2.3) and (2.5) we easily obtain that there exists exactly one Lepagean 
equivalent of A which we denote by 0k and call the Poincare - Car tan equivalent 
of A; we note that for dim X > 1 there exist more Lepagean equivalents than one. 
Substituting/o = L in (2.5) we obtain the coordinate expression of 0k for the 
fiber chart (V, ^). Obviously, /^+ 1 = /i+10,«o> €i> •••> €_r-i-i) which implies 
that in general, the Poincari-Cartan equivalent 0A of A is defined on j2rm,xY. 
Consider the decomposition (2.2). We have 

(2.7) n*2Ft2r„id0k~Ek + Fk9 

where 
*d* ÕL 

(2.8) £я - Eв(L) dq« Л dí, Ea(L) -= £ ( -1 ) a 

r - l 2 r ~ l - i з / t + l 

(2.9) F д - 2 : £ -^-.fflřAюГ. 
І__O ks=o oq^ 

3. HAMILTON E X T R E M A L S 

Recall that a section b e r(7t2 r-i) is called a Hamilton extremal of a lagrangian 
Ae QxijrY) if for each 7t2r_1-vertical vector field £ on j 2 , _ 1 y 

(3.1) 5*J.doA = 0. 

Let I: _ ' ( j 2 , _ 1 r ) -» Q_G102,~1-0) be the n^-.-horizontalization. Then (3.1) 
is equivalent to the condition 

(3.2) jl6*h(Ud&x) = 0, 

where j 1 , is the 1-jet prolongation of 5. 
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Consider a lagrangian A € .Qi(jT) and its chart expression (2.6) with respect to 
a fiber chart (V, ̂ ), ^ = (t, q°), on Y. In this fiber chart, the Poincare - Cartan 
equivalent &x of A has an expression 

(3.3) 6 ) A - = L d / + ^ / ; + V , 
i = 0 

where 

(3-4) fiJ'fi-if^^L-, lg^2r-l. 
k=o dr dqj+k 

The following is a direct consequence of (3.2). 

Theorem 1. A section 5 e r(n2r-1) is a Hamilton extremal of the lagrangian A 
if dnd only if along jlS 

2 r - l - » flfk+l 

(3-5) I - ^ V ( « * , i - ^ + i ) = 0> r g « g 2 r - l , 
*-=0 ~(/j 

r~1 / dfk+i dfi+i \ 2r'^i dfi+i 

£ (-^V-i^VJ(«I.i-«I+i)- I -^V«i-^v
+i)=~o, 

1 ^ j = r - 1, 

r - l ^ f c + 1 2 r - l dfi 

EM + £ 4 V ( « M - «;+i) - Z ^ffev,i - «z+i) = o. 
*=-o dql *=o dqk 

Proof. There exists one and only one form Hxe Q2(ji(j2r~iY)) such that for 
each ^2r-1-vertical vector field £ on 22r~1Y, ij^Hx = H^d0x). Condition (3.2) 
implies that 8 is a Hamilton extremal of A if and only if Hx vanishes along /<5. 
But in the fiber chart (F, i/0, 

(3.6) H.J^F^dqUdU 
i = 0 

where the functions Fi+i are precisely the left-hand side expressions (3.5). This 
proves Theorem 1. 

The form Hx (3.6) is called the Hamilton form of the lagrangian A [8]. 

4. REGULARITY 

A Hamilton extremal 8er(n2r-i) of a lagrangian Xe Qx(jrY) is said to be 
regular, if 8 = j2r~"1y for some extremal y e r(n) of A. 

A sufficient condition of regularity of a Hamilton extremal can be deduced 
from equations (3.5). Notice that the first two of these equations form a system 
of linear, homogeneous equations for the unknowns qv

ktt — qv
k+t, 0 ̂  v g m, 
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0 ^ k ^ 2r - 2; the number of the equations is m(2r - 1), and is equal to the 
number of the unknowns. Let us consider the matrix of this system. Labelling 
rows (resp. columns) by i = 1, 2, ..., 2r - 1 (resp. qv

0ti - q\9 ,.., qv
2r-2,i - qlr-i) 

we obtain for this matrix 

Sfl 

(4.1) 

ðq2r-2 

õqvr 

õq'r 

õfl 
H\r-

where by (3.4) 

(4.2) àfl •dť. 
dq'2r-k dql 

= (-!)' r-k e2L 
dq'rdql 

\.<k<,r. 

Hence a necessary and sufficient condition that (4.1) be a regular matrix (at a point) 
is that the matrix (82L/5q^8qv) whose elements aie labelled by a and v, is regular 
(at this point). Since the regularity of (4.1) is a sufficient condition for the first 
two equations (3.5) to have the trivial solution only, we have the following result. 

Theorem 2. Let ̂  : U -+j2r~iY be a Hamilton extremal of A, defined on an 
open set U c X. Assume that to each point xe Uthere exists a fiber chart (V, \\t)9 

ty = (U <la)> on Y such that 8(x) e V2r-i and 

(4.3) det W sq;J ФO 

at 7r2r-i,r<5(.x), where the function L is defined by the chart expression A == Ldt. 
Then S is regular. 

Proof. Consider the Hamilton extremal 8 of Theorem 2. Let xe U be a point, 
(V, \\f) a fiber chart on Y foi which the assumptions of Theorem 2 are satisfied. 
Since d satisfies (3.5) and the matrix (4.1) is regular, we have at &(x) 

(4.4) 

that is, 

(4.5) 

í î . Г - « - + i - ° . ' 0йkй2r-2, 

ЯІ+iШ = (±(qlo ,5)^= ... = (-^-(qloð^. 
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This implies that 8(x) = fjr~'1y, where y «= n2r-1,o° <5, and, since the point x 
is arbitrary, S = j2r~1y. It remains to show that y is an extremal of X. This follows, 
however, fiom the third equation (3.5) which coincides, alongj2ry, with the Euler -
Lagrange equation of A. 

We note that the condition (4.3) is independent of the choice of the fibered 
chart (V, fa; in this paper we call it the regularity condition. If the regularity 
condition is satisfied at each point of/Y, then every Hamilton extremal is regular, 
and the system (3.5) is equivalent with the Euler — Lagrange equation. 

4. THE LEGENDRE TRANSFORMATION AND 
THE HAMILTON EQUATIONS 

9 

In this section we assume that we are given a lagrangian X e Qx(fY) satisfying 
at each point of/Y, the regularity condition (4.3). 

Let (V, fa9 \j/ = (t9 q
a)9 be a fiber chart on Y, X = L dt the expression of X for the 

fiber chart (Vr, fa), ̂ r = (t> ql), 0 = k = r. Put 

(5.1) Prw^qo, ...,<?;), 

where by (3.4), fj = dL/dq*. Obviously, the regularity condition (4.3) guarantees 
that (Kr, <Fr), Vr = (t9q

9
j9p

r
a-

l)9 1 £j £ r - 1, is a chart on /T . Consider the 
fiber chart (V2r-l9 ihr-i)> ^Air-i = (t, q°k)9 0 <; k ^ 2r - 1, on j2r~lY9 associated 
with (V9 fa, and put 

(5.2) /'J'1 - fr^, <Zo, . - , qU,\ 1 = 1 = r - 1. 

As before, the regularity condition guarantees that (V2r-i, ¥2r~d> ^2r-i = 
= (*\ <l)>P% - -S v = m, 0 < / k = r - 1, is a fiber chart on j2r~\Y (over jrY). 
We call the coordinates (t9q),pk

y) the Legendre coordinates on V2r-i, and the 
transformation 5/

2r-iir'2~r
1-i of coordinates is called the Legendre (coordinate) 

transformation. 
Let us consider the condition for Hamilton extremals (3,2) in the Legendre 

coordinates. In these coordinates, 

(5.3) 0 A = -tfd*+ rx>;d<??, 
i = 0 

where 

(5.4) -H = L+'J:p0qUu 
i-=0 

and H is considered as a function of the Legendre coordinates. Computing now the 
exterior derivative d0A, the form i{ d0A, where £ is any fl2r-i-vertical vector field 
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on J21""1 F, expressed in the Legendre coordinates, and the Hamilton foim Hv 

(see the proof of Theorem 1) one obtains 

<5-5) - ' - r j . ( - f - ' t , )« + ( -^ + * , »H A * 
where the functions p*,;1, qa

ui are the coordinates of the coordinate system 
((V2r_ Oi, (y2r-1)1), (^2r-1)1' = (', ll Pllli, P*''). onjl(j2r-lY). Consequently, 
a section d of j 2 r ~ l Y is a Hamilton extremal if and only if it satisfies the Hamilton 
equations 

5«f dt dp, dt 

To interprcte geometrically these equations in a canonical manner, as in the first 
order variational theory, we introduce the fallowing definition. We shall say that 
a vector field £ on j 2 r - 1 Y i s a Hamiltonian vector field, if 

(5.7) i{doA = 0. 

Let us express this condition in the Legendre coordinates. Let f.be a vector 
field on j2r-1Y, 

By (5.3), 

(5.9) / . d 0 / l =
 / _ l V d i f + - ^ - C o ) d . + 

• • • £ [ ( ^ + c M £ H 4 
Hence C is a Hamiltonian vector field if and only if* 

(5.10) C?«-f-fc° , ? - - - ^ - C ° , . O S i i S r - l , ' 

or, which is the same, C = C° • Co> where 

(5 11) C -±+Y(J±±-^L±\ 

Let zlA denote the one-dimensional (regular) distribution on j2r~lY, locally 
generated by the vector fields £0 (5.11). We have the following result. 

Theorem 3. Let 8 e r(rc2r-i). The following three conditions are equivalent: 
(1) 5 is a Hamilton extremal of A. 

27 



(2) For each fiber chart (V, ^), ^ = (t, q*\ 8 satisfies the Hamilton equations 
(5.6). 

(3) 8 is an integral submanifold of the distribution Ax. 
Proof. Since 8 is a Hamilton extremal of A if and only if the Hamilton form Hx 

vanishes along the first jet prolongation/^ of 5, conditions (1) and (2) are obviously 
equivalent. 

Assume that (2) holds. Then, in fiber coordinates, for each point x e X and 
each tangent vector £ e TXX9 <* = ^0(d/dt)x 

(,12) r,,i--e[i+%^^ + ^i^)]. 
Since 8 satisfies the Hamilton equations (5.6), the vector Tx8 . £ e THx)j

2r~iY 
obviously belongs to the subspace Ax(8(x)) c T8(x)j

2r'i Y. The converse is obtained 
by reversing the arguments. 

6. THE E U L E R - L A G R A N G E DISTRIBUTION 

Let XeQl
x(fY) be any lagrangian. By definition, a section 8er(n2r„1) is 

a Hamilton extremal of X if and only if it is an integral submanifold of the ideal 
of forms on;2r""17, generated by the linear differential forms iid0x (3.1), whe
re £ runs over all 7c2r-rvertical vector fields on j2r'iY. We shall now study the 
problem as to under what conditions these linear differential forms define a distri
bution ony2r~1:r. 

Let (V, \j/)9 \j/ = (*, qff)9 be a fiber chart on F, and consider the Poincar6-Cartan 
equivalent &x in this chart (3.3). Let £ be a 7T2r_rvertical vector field on j2r~%Y 

2 r - l g 

k% dqi 
By a direct computation 

(6-2) i«d©A« Sff i j i , 

where 

(6-3) '•=(i? ~ #)d ' ' A i ^ -"zff-d,!, 
\8q0 oi j k=o 8q0 *=o cqk 

^ _ W - _ _ _____W_ v JLE—OÍ, 
n' kh\ dql dql ) *% dql " 

2 r - l - i zrk + l 

l i - I -%-«-» '-'-S-r-.l . . 

1 _ i S r - 1 

*=o дq"t 
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Since the expression (6.2) is independent of the choice of fiber coordinates and the 
transformation formulas for the components of the vector field £ are linear, the 
transformation formulas for the forms (6.3) are also linear. Consequently, these 
forms define, in a well-known sense, a distribution (i.e. a vector subbundle of the 
tangent bundle Tj2r~lY); the distribution is singular in the sense that the 
the dimension of the vector subspace may vary from point to point. We call this 
distribution the Euler - Lagrange distribution, associated with the lagrangian A, 
and denote it by Ak. 

If the assumptions of Theorem 2 are satisfied, then the Euler-Lagrange 
distribution is spanned by the forms 

\дq'0 * ) 

2 r - 1 

(6-4) l - ^ - ^ . ď - E ^àąlM. 0śiй2r-2. 
*=o õqk 

This follows from the fact that the second and the third equations (6.3) have the 
matrix equal to (4.1) which is by assumptions a regular matrix. Since the coefficient 
at dql^t in (6.4) is equal to df1Jdql^i == ( - l ) 1 " 1 . d2Ljdq9

r Bqv
r (4.2), the 

Euler —Lagrange distribution A k is in this case regular, and its dimension is equal 
to one. 

In fact, there are no other lagrangians on fY, whose Euler-Lagrange 
distributions are regular, and of dimension one. 

Theorem 4, Let A e Qx(fY) be a lagrangian. The following two conditions are 
equivalent: 

(1) The Euler-Lagrange distribution Ak is regular, and its dimension is one. 
(2) To each point fxy efY there exists a fiber chart (V, $), $ == (t, q°), on Y 

such that jry e Vr and 

(6.5) det í—ì*° 
at jr

xy, where L is defined by the chart expression A == L dr. 
Proof. Assume that Ak is regular and its dimension is one. Since Ak is generated 

by the forms (6.3), all of these forms are linearly independent, that is, the rank 
of the matrix of the system (6.3) is (r + \)m = d i m / F - 1. Writing out this 
matrix explicitly, as in (4.1), one obtains that (6.5) must hold at each point, which 
implies (2). 

Conversely, if (2) holds, then the matrix (4.1) is regular, and the rank of the 
matrix of the system (6.3) is maximal, i.e., equal to d i m / F - 1. Hence (1) holds. 

Obyiously, if either of the two equivalent conditions of Theorem 4 is satisfied, 
then Ax is an integrable distribution, for its dimension is one. It is readily verified 
that in this case Ak coincides with the distribution, generated by the vector fields Co 
(5.11). To check it, one has to find, in the Legendre coordinates, linear 
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diffcential rforms co on j^r-i y for which 

(6.6) *V> = °» 
and then to express these forms in the canonical coordinates. It immediately 
results that the forma co define the same distribution as the forms (6.4). 
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