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ON SOME MINIMAL PROBLEM 

VfTfiZSLAV NOVAK, Brno 

(Received June 23, 1983) 

It is known that not any cyclic order has a linear extension. The corresponding 
counterexample in [2] is constructed on a 13-elemented set. This paper deals with 
the problem of the minimal positive integer n with the property: There exists 
a cyclic order on an w-elemented set which has no linear extension. 

1. TERNARY RELATIONS 

1.1. Definition. Let G be a set. A ternary relation T on the set G is any subset 
of the 3rd cartesian power of G, i.e. T s G3. 

1.2. Definition. Let G be a set, T a ternary relation on G. This relation is called: 
asymmetric, iff (xt, x2, x3)e T=> (x3, x2, xt) # T 
strongly asymmetric, iff (xt, x2, x3)e T => (xh, xh, xh) 4 T for any odd permuta

tion (it,i2,i3) of (1,2, 3) 
cyclic, iff (xi,x2,x3)eT=>(x2,x3,xi)eT 
transitive, iff (xi, x2, x3) e T, (xt, x3, x4) e T => (xt ,.x2, x4) e T 
complete, iff xl9 x2, x3 e G, xt ?- x2 # x3 ^ xx => (xit, xh, xh) € T far some 

permutation (it, i2, i3) of (1, 2, 3). 

1.3. Notation. Let T be a ternary relation on a set G. We denote the cyclic hull 
of T with Tc, i.e. Tc — {(xl9 x2, x3)e G3; there exists an even permutation 
(-'i, ii, 13) of (1, 2, 3) with (xh, xh, xh) eT}. 
Evidently, Tc is the least cyclic ternary relation on G containing T. 

1.4. Lemma. Let T be a ternary relation on a set G. Then it holds: 
(1) If T is cyclic, then T is strongly asymmetric iff it is asymmetric 
(2) If T is strongly asymmetric, then Tc is asymmetric. 

Proof. (1) Let The cyclic. If Tis strongly asymmetric, then it is asymmetric. 
If T is asymmetric and (xlf x2, x3) e T, then (xz, x3, xt) e T, (x3, xi9 x2) e T so 
that (x3, x2, xx) e T9 (xt, x3, x2) e T, (x2, xt, x3) e Tand Tis strongly asymmetric. 

(2) Let T be strongly asymmetric *nd (xt, x29 x3) e Tc. Suppose (x3, x2, xx) e 
e Tc. Then there exists an even permutation (it, i2, i3) of (1, 2, 3) with (xh, xh 9 xh)e 
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П) (дľi, x2, л:3) є T, 

(2) (x^, x2, xъ) e T, 

(3) (xi9 x2, x4) e T, 

(4) (x^, x2, x4) e T, 

e T and an even permutation (j\,j2,h) of (3, 2,1) with (xJt, xJ2, xj3) e T But 
then (jitjzfh) IS a n <* °^d permutation of (ii9 il9 /3) which contradicts the strong 
asymmetry of T. 

1.5. Lemma. Let T be a strongly asymmetric ternary relation on a set G, let 
(xt, x2, x3) e T. Then xt # x2 ^ x3 # xx. 

Proof. Suppose (xi9 xl9 x3) e T and card {xi9 xl9 x3} £ 2. If xx = xl9 then 
(xl9 xi9 x3)e T, if Xi == x3, then(x3, x2, xt)e T, if x2 = x3, then(xi, x39 x2) e T. 
This contradicts in all cases the strong asymmetry of T. 

1.6. Theorem. Let T be a cyclic ternary relation on a set G. T is transitive iff 
one of the following equivalent condition^ holds: 

(*i > x39 x4) e T => (xt ,x29x4)eT 

Oi , x 3 , x 4 )eT=> (x29 x3, x4) e T 

(x2, x3, jc4) e T => (xx, x2, ;x:3) e T 

(x2, x3,x4)eT=> (xt,x3,x4)eT 

Proof. [3], Theorem 1.6. 

1.7. Remark. Let T be a transitive ternary relation on a set G. Then Tc need 
not be transitive. 

1.8. Example. Let G = {x, y, z9 u}9 T = {(x9 y9 z), (x, z, u), (x, y, u)}. Evidently t 
is transitive. But (z, u, x) e Tc, (z, x9 y) e Tc

9 (z9 u, y) $ Tc so that J'cis not transitive. 
In what follows, we shall deal with asymmetric, cyclic and transitive ternary 

relations. To see that a given ternary relation T (on a finite set) is asymmetric 
and cyclic is very simple. But it is often not easy to show that T is transitive. The 
following theorem gives a method which simplifies this problem. 

1.9. Theorem. Let T be a strongly asymmetric ternary relation on a set G. Tc is 
transitive iff the following condition holds: 

For every four elements xt, x2, x3, x4 e G: 
(1) either there exists no permutation (it, i2, h, i4) of (1,2,3,4) with 

(T) (xh, xi2, xh) e Tc
9 (xh, xh, xu) e Tc, 

(2) or there exists a permutation (it, i29 /3, i4) of (I, 2, 3, 4) with (xh, xh, xh) e 
e Tc, (XJI , xh, xh) e Tc, (xh, xh, xh) e Tc

9 (xh, xh, xi4) e Tc. 

Proof. The necessity of the condition (T) is clear with respect to 1.6. We shall 
prove its sufficiency. Note that Tc is asymmetric by 1.4. Let (xt, x2, x3)e Tc, 
(*i» x3, x4) e Tc, (xt, x2, x4) e Tc. Then it does not hold (1) and thus a permuta
tion (ilf i2, /3, i4) of (1, 2, 3, 4) must exist with (xik, xh, xh) e Tc, (xh,xh,xi4) e 
eTc, (xh, xh, xi4) e Tc, (xh9 xh, xu) e Tc and with the property that no even 
permutation of sequences (ii9i2,i3)9 (/i,/3 ,/4), ( i i , / 2 » ^ (iifhrU)'™ equal 



to (1, 2, 4). Thus some of these sequences is an odd permutation of (1, 2, 4) and 
by a simple counting of all possibilities we get a contradiction to the asymmetry 
of Tc. Let us show the case when (ix, i3, /4) is an odd permutation of (1, 2, 4). We 
have the possibilities: 

O'I > h > U) = (4, 2, 1) => (ix, i2, i4) = (4, 3, 1), i.e. (x4, x3, xx) e Tc 

(ix, i3, i4) = (2, 1, 4) => (i2, i2 > U) = (3, 1, 4), i.e. (x3, xx, x4) e Tc
9 

(x4, X3, Xx) 6 Tc 

(h, h > h) = (1, 4, 2) => (ix, i2, i4) = (1,3, 2), i.e. (xx, x3, x2) e Tc
9 

(x3, X2, Xx) € T . 

1.10. Example. Let G = {x, y, z, u, v, w}, T = {(x, y, z), (x, u, w), (z, y, n), 
(u, v9 w), (x, y, w), (v, x, y), (v, z, x)}. 
T is strongly asymmetric and it is easy to see that the only quadruplet with the 
property (2) of (T) is {x, y, z, v}, namely (z, x, y) e Tc

9 (z, y, v) e Tc, (z, x9 v) e Tc
f 

(x, y9 v) e Tc. Thus Tc is transitive. 

2. CYCLIC ORDERS AND THEIR E X T E N S I O N S 

2.1. Definition. Let G be a set, C a ternary relation on G which is asymmetric, 
cyclic and transitive. Then C is called a cyclic order on G and the pair (G9 C) is called 
a cyclically ordered set. If, moreover, card G = 3 and C is complete, then C is 
called a complete (linear) cyclic order on G and (G9 C) is called a linearly cyclically 
ordered set or a cycle. 

From 1.4 and 1.9 we obtain directly. 

2.2. Theorem. Let Tbe a ternary relation on a set G which is strongly asymmetric 
and has the property (T). Then Tc is a cyclic order on G. 

2.3. Definition. Let Cx, C2 be cyclic orders on a set G. If Cx £ C2, then C2 is 
called an extension of Cx and the cyclically ordered set (G9 C2) is called an extension 
of(G, Cx). An extension C2 of a cyclic order Cx on a set G is called a linear extension 
°f Ci if C2 is a linear cyclic order on G. 

Of course, a cyclically ordered set (G, C) can have a linear extension only when 
card G ^ 3. In [2] there is constructed a cyclically ordered set (G, C) with card G = 
= 13 which has no linear extension. Let us denote Nx the set of all positive integers 
n ^ 3 with the property: Any cyclically ordered set (G, C) with card G = n has 
a linear extension, and Nt = {3,4,...} — Nt. 

2.4. Theorem. IfneNi9 then n + 1 e Nt. 
Proof. Suppose neNi9 n + leNt. Then there exists a cyclically ordered 

set ((?, C), where G = {xl9..., xn}9 with no linear extension. Choose an element 
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xn+i $ G and put G' = {xx,..., xn, xn+1}. As n 4- 1 e Nj, the cyclically ordered 
set (Gf, C) has a linear extension (Gf, D). Then D n G3 is a linear extension of C 
on G which contradicts our assumption. 

2.5. Corollary. N, is an initial segment of {3, 4, . . .} . 
Denote i0 the minimal element of N(; from [2] it follows /0 <; 13. But we shall 

show: 

2.6. Theorem. /0 g 10. 
Proof. Put G = {x, y, z, a, b, c, d, e,f,g}, T = {(x, z, a), (y, a, b), (z, b, c), 

(a, c, d), (b, d, z), (c, z, y), (d, y, x), (z, x, e), (y, e,f), (x,f, g), (e, g, b), (f b, x), 
.(g, x, y), (b, y, z), (x, e, a), (e, z, a), (x, d, g), (d, y, g), (y, c, b)}. Evidently T is 
strongly asymmetric and by a simple counting we find that T satisfies the condi
tion (T) of 1.9. Thus, Tc is a cyclic order on the set G. Let C be any extension of Tc 

on G. Suppose (x, y, z) e C. Then (x, z,a)eTc^ C implies (y, z,a)eC and by 
transitivity of C we get successively (z, a, b) e C, (a, b, c) e C, (b, c, d) e C, (c, d, z) e 
€ C, (d, z, y) e C, (z, y, x)e C which contradicts the asymmetry of C. If we suppose 
(z, y, x) e C, then we obtain analogously (y, x, e) e C, (x, e,f)e C, (e,f g) e C, 
(f, g, b) 6 C, (g, b, x) € C, (b, x. y) e C, (x, y, z) e C, a contradiction. Thus, (x, y, z) e 
e C, (z, y, x)e C can hold in no extension C of Tc and Tc has no linear extension 
on G. As card G = 10, it is 10 e Nf and /0 <J 10. 

We can formulate also another minimal problem: Denote j0 the minimal positive 
integer n g> 3 with the property: There exists a cyclically ordered set (G, C) with 
card G = n and an ordered triplet (jcl9 x2, x3) e G3 such that xx # x2 ^ x3 ^ xXr 

(*3* x2, xx) e C and (xx, x2, x3) e C for any linear extension C of C on G. 

2.7. Theorem. j 0 £ 7. 
Proof. Put G = {x, j^ , z, a, 6, c, J}, T = {(x, z, a), (y, a, b), (z, b, c), (a, c, d), 

(b, d, z), (c, z, y), (d, y, x)}. Then Tc is a cyclic order on G and by the same argumen
tation as in the proof of 2.6 we see that (x, y, z) e C caa hold for no extension C 
of Tc. As card G = 7, we have j0 <; 7. 

2.8. Remark. TTie cyclically ordered set (G, Tc) from the proof of 2.7 has a linear 
extension, namely the cycle (a, b, y, c, x, d, z). 

IS. Problem. Find the explicit value of /0 > jo • 
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