Archivum Mathematicum

Erich Barvinek
Antiprojectors with applications in the spectral theory

Archivum Mathematicum, Vol. 20 (1984), No. 3, 141--147

Persistent URL: http://dml.cz/dmlcz/107197

Terms of use:

© Masaryk University, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/107197
http://project.dml.cz

ARCH. MATH. 3, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS
XX: 141148, 1984

ANTIPROJECTORS WITH APPLICATIONS
IN THE SPECTRAL THEORY
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§ 1. Intreduction

Trying to state a sensible analogue of the spectral theorem for normal operatqrs
on a real Hilbert space —see e.g. [1] p. 165—we meet necessarily antiprojectors.
Moreover on finite —dimensional spaces the operator need not be normal but
merely diagonalizable. Basic concepts for vector spaces are taken from [1].

1.1. Let K be the field R of all real numbers or the field C of all complex numbers.
Let ¥~ over K be a vector space, I the identity on ¥~ and £(¥") the space of all
linear operators on ¥".

If N is an index set, then operators T, e £(¥"), ve N will be called pairwise
disjoint if T, T,, = 0 = T,.T,. whenever v’ # v" € N.

Lemma 1. Let 8, < ¥ for v = 1,..., t be subspaces and R,e L (V") projectors
on 8, i. e R? = R, and 8, = im R,. Then the projectors R, are pairwise disjoint and

satisfy Z R, =Iif and onIy ifY = Z L, and R, is the projector on 2, along Z fUN
=1 tdt=1
Sor every v =1, ..., t (where by X the direct sum of subspaces is meant).

The followmg remark will be useful. If ¥~ = Z -Q_and R, e Z(¥")is the projector

on £, along z L7, then for any partition {1, ..., ¢} = {t’} u {t"} the sum } R,
Er=1 L4
is the projector on Z -Q.. along Z 2.

Let dim ¥ =n (e N); let y,, ..., v, € K be all the proper values of Ce L)
which are pairwise distinct; let 2 ={xe?| Cx = y,x} be corresponding proper

subspaces. Then C will be called diagonalizable if Zdlmﬂ = n. Certainly,
=1
C is diagonalizable iff ¥~ = Z Q..
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Theorem 1. Let ¥~ over K be a vector space of dimension n(e N). An operator
C e L(¥) is diagonalizable if and only if there exist pairwise distinct numbers y, € K
and pairwise dz.s'jomt projectors 0 # R.e (V") (for t = 1,...,1) such that I =

= Z R, and C = Z 7.R.. Moreover, the number t, the set {y.}.- 1. ., the projectors
R, are determmed umquely and R, = p,(C) where

I1 G-y
(D) = ﬂ*_fl___
H =77

t;ét 1

1.2. If ¥", over R is a vector space, then its complexification is the vector space
¥ =¥, +i¥, over C understood as ¥ o x ¥, with addition (x, y) + (%, §) =
=(x + & y + ) written as (x + iy) + (£ + i) = (x + %) + i(y + §) and with
multiplication (x + if) (x+iy) = (ax — ﬁy, Bx + ay) written as (x+if)(x +iy) =
=«ax — By) + i(Bx + ay), where x, &, y, 7€ ¥, and a, f € R. Notice that every
ze? has a unique representation z = x + iy where x, y€¥,.

Assume that ¥~ over C is the complexification of ¥, over R. If € < ¥ is
a subspace over C and 8, < ¥, a subspace over R then £ is the complexification
of 8, iff & = &, + i8; then &, = € ¥, and thus any € has at most one
decomplexification £, such that &, < ¥",.

To every ze?¥", z = x + iy we can assign the vector Z = x — iy e ¥~ which
may be called the conjugate of z; certainly z = z, 2z, + 2, = Z; + Z,;, yz = yz
for z,z,,z,€¥ and ye C.

For any Cy e £(¥,) we can put Cz = Cyx + iCyy for every z = x + iye¥V’;
then Ce L(¥"), C[V", = C, so that C is the unique linear extension of C,on ¥~
and may be called the complexification of C,. On the contrary, an operator
Ce Z(¥) has a (unique) decomplexification C,e L(¥",) iff ¥, is invariant
under C; then C, = C/¥",, ker C, and im C, are decomplexifications of ker C
and im C, respectively.

To every Ce Z(¥") we can assign an operator C : ¥ — ¥ such that Cz = Cz
for every ze¥". Then C e £ (¥") and we may call it the conjugate of C; certainly
C=CC,+C,=Cy +C,, yC =3C, C,C, = C,C, and Cz = C% for C, Cy,
C,e £(¥), ze¥ and ye C.

Lemma 2. Let ¥ over C be a complexification of ¥ o over R. Then Ce £ (¥")
has a decomplexification Co€ L (V") if and only if C = C. '

1.3. Let ¥ over C be a complexification of ¥, over R and C € £(¥") a complexi-
fication of Coe L(¥ ). It is clear that any Hamel basis {a,},cn of ¥ over R
is at oncea Hamel basis of ¥~ over C.
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If y € R is a proper value of C and € £ ¥~ the corresponding proper subspace,
then y is a proper value of C, and the corresponding proper subspace £, & ¥
is the decomplexification of £.

If ye C\ R is a proper value of C and € g ¥ the corresponding proper sub-
space, then y is an other proper value of C and the corresponding proper subspace
is @ = {Ze ¥ | z e 8}. Certainly, if {c,},.y is a Hamel basis of £, then {¢,},v is
a Hamel basis of €, and {¢,},en U {C,},cn @ Hamel basis of the direct sum £ + .
If we put ¢, = a, + ib,, where a,, b, € ¥, then the set {a,},ex U {By}ven is
linearly independent over C and thus a Hamel basis of € + €; we shall call it
the induced real basis.

Assume dim ¥", = n (e N) and the complexification C of C, is diagonalizable.
Let y4,...., 7, € R be all real and pairwise distinct proper values of C, and
%6 7. €C\Rfor t = t, + 1, ..., t be all non-real and pairwise distinct proper
values of C.

Fort=1, ..., tlet 8 < ¥ be the proper subspace of (o correspondmg to
the proper va]ue y. € C so that

¢y V= Zﬂ+ Z (8, + L)
t=to+1
To every Ty = to + 1, ...., t there are two distinct proper values y,, y, with proper .

subspaces £, 8,; if {c,} represents a basis of £ where ¢, = a, + ib, with
a,,b, €, then {a, } u {b,} represents the induced real basis of £ + €,. Let
2% < 77, be the subspace generated by the set {a, } U {b, } over R; then £? is the
decomplexification of £, + €, although £? is no proper subspace of C.

To every T = 1,..., t, we have the proper value y, (¢ R) with the proper sub-
space £, which has a decomplexification £2 £ ¥, being the proper subspace of C,
(corresponding to y,). Hence

t
@ Yo=Y 20
t=1

Lemma 3. Fort =1, ..., t let R,e L(¥") be the projector on L, along the direct
sum of the other subspaces in (1). Then the linear projector of ¥~ on R, along the
direct sum of the other subspaces in (1) is R,.

According to Theorem 1 we have then

3 . I= Z&‘F Z (R + Ry,
t=to+1
where I is the identity on ¥~ and ’
to t
@ C=Y 1R+ 2 R + 7R,
= r=ito
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Clearly R, = R, for 1 = 1,...,1, so that R, has a decomplexification R?
= RV o € L(¥ o) which is the pro_]ector on £° along the direct sum of the othcr
subspaces in (2).

For any » =ty + 1,..., ¢ there are two disjoint projectors R,, R,‘ so that
R, + R,e #(¥") is the projector on £, + €, along the direct sum of the other
subspaces in (1) and its decomplexification RS e £(¥ ) is the projector on £2
along the direct sum of the other subspaces in (2).

If we put «, =Rey,, P, =1Imy,, then y,R, + ¥R, =a(R, + R) +
+ iB (R, — R,) where S, = i(R, — R,)e £(¥) has a decomplexification SO e
€ L(¥ o). If {c,,} represents a basis of €, and {a,,} u {b,,} the induced real basis
of 8, + &,, then Sla, = -5, , S%,_ = a,, whereas SJc = 0 for every ce @0

whenever 7 # %, te{l,...,t}. Hence --S°2 = R?, im S? = im R?, ker S? =
= ker R? and we get the formula
) Co = Z 7R} + Z @RS + B.S7)

x= to+l

representing a real spectral decomposition of C, which may be considered as
a starting point to a real spectral theorem.

§ 2. Antiprojectors

Let ¥ over K be a vector space, Q € Z(¥") and [ the identity on ¥". Then
—Q? = Pis a projector iff Q>( + Q%) = 0 and then PQ = —Q = QP,imP g
< im @, ker Q < ker P.

Definition 1. Let ¥~ over K be a vector space. An operator Q € L(¥") will be
called antiprojector if —Q?* = P is a projector and im P = im Q, ker Q = ker P.

If Qe #(¥) is an antiprojector, then ¥ = ker @ + im Q@ but Q/im Q is not
the identity on im Q whenever im Q # 0; the Q may be called an antiprojector
on im Q along ker Q.

Let Qe Z(¥) be such that —Q? = P is a projector; then the assertions (i)
Q is an antiprojector (ii) im P = im Q (iii) ker Q = ker P are equivalent.

Following lemmas are easily prouvable.

Lemma 4. Let ¥ over K be a vector space. Then Q € ¥ (¥") is an antiprojector
if 00 + @) =o.

Lemma 5. If N is a finite set and Q,€ L(¥"), ve N are pairwise disjoint :ami-

projectors, then Y Q, is an antiprojector on ) -im Q, along () ker Q,.
veN veN ) veN

Lemma 6. Let Pe £(¥") be a projector, Q € £(¥") an antiprojector and R =
= — Q2 If P and Q commute, then P'and R commute as well, PQ is an antiprojector,
and im PQ = im PR, ker PQ = ker PR.

144



Every antiprojector Q € £(¥") determines uniquely the projector P = —Q3
On the contrary, let P e Z(¥") be a projector, let {d,} be a Hamel basis of ker P
and {c,} a Hamel basis of im P. Then for any antiprojector Q € £(¥") such that
~Q? = P, the {d,} is a Hamel basis of ker Q, {c,} a Hamel basis of im Q, and
Q/im Q is a linear bijection such that 7 + Q% = 0 on im Q.

In particular, if dim im P = nand K = C, then all the antiprojectors are obtained
by means of all bases {c,} by putting Qc, = *ic, with all variations of signs and
completing Q@ = 0 on ker P.

If dimim P = nis odd and K = R, then there is no antiprojector Q (such that
~Q? = P).Ifdimim P = n = 2kis even and K = R, then all the antiprojectors Q
are obtained by means of all real bases {a,, b,} of im P by puting Qa, = —a,b,,
Qb, = o,a, with all variations of signs ¢, = +1 and completing @ = 0 on ker P.

§ 3. The real spectral theorem

Let ¥~ over C be a complexification of ¥, over R, let I denéte the identity on ¥~
and I, the identity on ¥",.

If T, T, € £(¥") (where v € N, N finite) are complexifications of Tp, T € L(¥ ),
respectively, then: T, are pairwise disjoint iff T° are pairwise disjoint; im 7" and
ker T are complexifications of im T, and ker T, respectively; T'is a projector iff T,
is a projector; T is an antiprojector iff T is an antiprojector.

Assume dim¥ ", = n (e N) and let Ce L(¥") be the complexification of C, €
€ Z(¥ o).

3.1. If C is diagonalizable then according to 1.3 we have the formula (5) where
0 # R® (for z = 1,...,¢) are pairwise disjoint projectors, 0 # Sy (for x» =

=1t,+1,...,¢t) are pa1rw1se disjoint antiprojectors commuting with all R? and
such that S°2 R}.

Put @, =y, also for 1= 1,..., 4. If {aq}a=1.....r = {“t}c=1.....n where a, are
pairwise distinct, and if {ﬂ,}, 1ot = {Bulx=to+1,...» Where ﬂ,, are pairwise
distinct, then to every ¢ there is a unique set {z,} of all 7€ {1, ..., ¢} satisfying
%, = a,, and to every o there is a unique set {x,} of all k€ {t, + 1, ..., ¢} satisfying
Ex = ﬂa

If we put P = 2 R, Z Sy, then 0 # P_ are pairwise disjoint projectors

satisfying I, = ZP° and 0 # Q, are pairwise disjoint antiprojectors commuting
with all P? and such that
r s |
©) Co= TPl + ¥ A0
e. o=

The set of all indices o is empty iff the set of all indices » is empty iff the numbers
a, € R are all the proper values of C iff C, is diagonalizable.
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3.2. Let there be given a non empty set {x,},-q,. . of pairwise distinct real
numbers, a set {fs}o=1,...s Of pairwise distinct positive numbers, pairwise disjoint

prOJectors 0 # P € (¥, satisfying I, = Z , and pairwise -disjoint anti-

projectors 0 # Q%e ¥(¥,) commuting W1th all P° Let C, be defined by
formula (6).

We wish to show that C, has a diagonalizable complexification Ce Z(¥").
We may assume that the set {8,},=;, ., is not empty.

Then to every o there is at least one g such that P2Q0 # 0. Thus the domain
of all the ordered pairs (g, 6) such that PfQﬁ # 0 can be enumerated by % =
=ty + 1,..., ¢t where ¢, is still unknown.

In this domain the mapping (g, 6) > PoQ? is an injection and thus we can put

P°Q,, Y« = @, + if, and denote &, = Re y,; B = Im y,; then the operators
S° (# 0) are pairwise disjoint antiprojectors commuting with all P,g, Qg, and also
the corresponding projector (0 #) R? = —S%2 are pairwise disjoint and com-
muting with all Pg, Q3.
t

If for every g the P;’(Io -y R?)'= 0, then we put z, = 0. Otherwise the

x =tg+1
t
domain of all g such that P2(J, — Y. R}) # Ocanbeenumeratedby: = 1,..., &.
x=tg+1 t
In this domain the mapping o P°(Io -y RY) is an injection and thus we can
x=to+1
put R} = P, - Z R)) and put &, = a,; then the operators R{ are pairwise

x=to+1
disjoint projectors commuting with all P;, Q;.

Moreover, .all the projectors R (t = 1,...,t) are pairwise disjoint and for
t
t=1,...,t; % =1ty + 1,..., t we have a) PR} # 0 iff P2(I, — Y R2) =R

x=to+1

iff POR® = R® b) P°R? # 0 iff there exists exactly one o such that SO = P2QC
t

iff PORY = R) c) I, = ¥ R} d) every R} commutes with every Sy and R?S? = S,
=1

iff 1 = x while R®S? = 0ifft # x¢) Q°R? = 0f) QOR? # 0iff there exists exactly

one g such that S = P2Q? iff Q2R? = ). }

It hOldS {ag}ps 1,005r = {& }t 150009t and {Ba}a=l,:-:s = {ﬂx}x=t0+l.,..,t- FOI’ every (4
let {,} be the set of all Te {1, ..., t} satisfying @, = a,, and for every o let {x,}
be the set of all x€ {t, + 1,. t} satlsfymg B = B,. Then PR, = R? while
POR? = 0iff 7 ¢ {,} and thus P° Y R? . Similarly QOR) = s° while Q°R® =0
iff x ¢ {x,} and thus Q0 = Z So..

Hence we obtain the formula (5) and we are to show that its complexification is
exactly the formula (4). Indeed, if R,, 4., B, e L(¥") is the complexification of
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R?, R, S2, respectively, then O # R,, A, # O are pairwise disjoint projectors
commuting with all pairwise disjoint antiprojectors B, # 0, and we have -B} =

= A, RB, = OAB,‘..—Olﬁ'x # x",A,B, = B,. IfweputR———(A —iB),
then R, and R, = (A + iB,) are projectors, A, = R, + R,, B, = i(R, — R))

and the formula (4) is valid; moreover, the numbers y, = &, € R, y, = &, + if, €
€C\ R,y,eC\ Rare palrwxse dlstxnct the pro_]ectors 0 # R,, R, # 0 are pairwise

disjoint and satisfy I = Z R, + Z (R, + R).

x=tg+1
According to Theorem l the operator C is diagonalizable and the y, € R are all

the real proper values of C, y,, 7, € C\ R are all the non-real proper values of C,
and R, is the projector corresponding to y,. Hence the sets {&¢,},_1,....rs {Bs}oct,..ss
the corresponding projectors Pg and antiprojectors Q° are determined uniquely.
This yields the asked real spectral

Theorem 2. Let the vector space ¥~ over C be the complexification of a vector
space ¥ o over R where dim¥ o = n (€ N). Let C e L(¥") be the complexification
of Co€ L (V). Then C is diagonalizable if and only if there exists a non empty set
{2} e=1,...r Of pairwise distinct real numbers, a set {B,},_1,...,s of pairwise distinct
positive numbers, a set of pairwise disjoint projectors 0 # Py e L(¥ ) satisfying
Y P? = I, and a set of pairwise disjoint antiprojectors 0 # 0% € #(¥ ) commuting

e=1
with all Pg such that

™ Co= 3 0P + 3 .08

The sets {a,}, {#,}, the projectors P? and the antnpro;ectors Q? are determined
uniquely.

It is worth noting that the Jordan representatlon yields a visible form of
Theorem 2, see [2].
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