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ON x-OPERATORS IN AN ARBITRARY SEMIGROUP 

BARBARA PILECKA-OBORSKA and STANISLAW SERAFIN 
(Received September 30, 1982) 

Abstract. In this paper there are defined one-sided and two-sided partial jc-operators in an 
arbitrary semigroup, and the theorem on existence of ^-extension (left, right) of a partial x-ope-
rator (left right) is proved. 

Key words: general closure operator, closure operator, modification of a closure operator, 
semigroup, left (right) partial jc-operator in a semigroup, partial x-operator in a semigroup, 
x-extension (left, right) of a partial x-operator (left, right). 

This note presents an extension of some results of the paper [1] on nonabelian 
semigroups. 

We introduce the notions of left, right (and two-sided) partial x-operators in 
an arbitrary semigroup and investigate their properties (s. sections 2, 3). In 
section 4 we receive the theorem on existence of x-extensions of partial (left, 
right) jc-operators. 

Following [1] we accept the convention: if /, P are sets and {At}i€l cz 2P, 
then for I = 0 

|J At = 0, f| At = p-
iel iel 

1. We recall after [1] some definitions and theorems on general closure operators. 

1.1 Definition. Let P be a set and 

z :2psA^Aze2p. 

The mapping z is a general closure operator in P iff for all A, B e 2P it holds: 
(0 AcAz9 

(ii) A c B=> Az c Bz. 
If moreover 

(iii) Az = Azz for A e 2P
9 then z is called closure operator in P. 

1.2 Definition. For general closure operators zl9 z2 in P we put 

zx ^z2: o AZi c AZ2 for every A <= P. 

We say that z2 is coarser than zx. 
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1.3. Corollary. The relation ^ is a partial order in the set of all general closure 
operators in P. 

1.4. Definition. Let z be a general closure operator in P. The modification of z 
is the least (in the sense of ^ ) closure operator in P coarser than z. 

1.5. Definition. Let P be a set, z a general closure operator in P. Using transfinite 
induction for an ordinal I; we define the general closure operator z$ as follows: 
i f M c P , then 

MZl:=Mz 

\(M2t)2 for { = ri + 1 > 1 
(J Mz for a limit ordinal Q. 

~Q<n<z 
1.6. Theorem. There exists an ordinal £ > 0 such, that z$ is the modification of z. 

1.7. Definition. Let z be a general closure operator in P and peP. A set U cz P 
is said to be a z-neighbourhood of p provided it fulfils a condition p $ (P — U)z. 

1.7. Theorem. Suppose that p eP9 M cz P and z is a general closure operator in P. 
Then it holds: peMzo'UnM+0 for every z-neighbourhood U of p. 
2. In this section S = (5;.) will denote an arbitrary semigroup. 

2.1. Definition. Let J cz 2s and y : J -> 2s. A mapping y is said to be a left 
(right) partial x-operator in S iff: 

(a) A cz Ay9 for every As J, 
( b ) ^ c By => .A, c jBy, for A9BeJ9 

(c) a . ^ cz J9y =-> a . Ay cz By9 for ae S9 A9 Be J9 

(A . a cz By => Ay . a cz By9 fox a e S9 A9 B e J). 
A mapping y is a partial x-operator in S iff it is a left partial x-operator in S and 
a right partial x-operator in S and moreover it fulfils the condition 

(d) a . A . b cz By=> a . Ay . b cz By9 for a, be S9 A9BeJ. A partial (right, 
left) x-operator in S with property v 

(e) J = 2s 

is said to bs an x-operator (right, left) in S. 

2.2. Corollary. If S is atelian, then every partial right (left) x-operator in S is 
a partial x-Qperator in S. Evidently it holds 

2.3. Corollary. If y is an x-operator in S (right, left) then y is a closure 
operator in S. We shall prove now 

2.4. Corollary. If y is a right and a left x-operator in S, then it is an 
x-operator in S. 

Proof. By supposition and (2.3) y is a closure operator in S. Let now a9beS9 

A,B c= Sfa.A.b c By. Then (a . A .b)y c Byy = By. Since a . A . b cz (a. A . b)y 

and y is a left x-operator in S we obtain a. (A . b)y c: (a . A . b)y. 
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Analogously from Ab a (A . b)y we have Ayb c (Ab)y and consequently 
a . (Ay . b) cz a . (A . b)y, which completes the proof. Evidently we have also: 

2.5. Corollary. If S is a semigroup with the identity element, then the condition (d) 
of (2.1) implies (c). 

The following example shows that y: S -+2s being a left and a right partial 
x-operator in S must not be a partial x-operator in S. 

2.6. Example. Let X = {a, b, c}, 0 £ Xx X. Consider the semigroup (S,.) where: 

5 : = X x X u { 0 } , 
0 

x / x f(*> 0> when v -= z c , v (*,>>) .(z, O - H n u ^ for x,y,zt teX (0, when y ^ z 

and 0 . s = s . 0 = 0 for s e S. 
It is a special case of the Brandt-semigroup. Moreover let 

A = {(a, a), (b, c)}, 

S = {A}, 
Ay = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), 0}. 

It is elear, that 
A . s cz Ay => Ay . s cz Ay, for s e S, 

and 
s . A c Ay=> s . Ay cz Ay, for s € 5. 

Thus y is a left and a right partial x-operator in S. But ,(<;, b).A.(a, c) = (c,b). 
. {(a, c), 0} = {0} cz Ay and (c, b).Ay. (a,c) = (c, b). {(a, c), (b, c), 0} =-= {(c, \c), 0} * 
tfc A., and the condition (d) of 2.1 is not fulfilled. 

2.7. Definition. Let x be a closure operator in S. We say that the operation „." 
in the semigroup (S,.) is right (left) weakly continuous iff for each a, be S and 
^-neighbourhood V of a . b there exists an x-neighborhoodu of 6(an x-neighbour-
hood of a) such that a . U cz V(Ub cz V). 

2.8. Theorem. Lef x be a closure operator in S. Then the following statements are 
equivalent: 

(a) x is a right x-operator in (S?.), 
(b) the operation ,,." is left weakly continuous, 

(c) ( I U ) * - A ^({JAt.A^for each A,At <zS(ieI), , 
tel iel 

(d) [( U At)x . A-]x - [ (J 04,. X ) J „ /or eacft A, A, c S (i 6 / ) . 

The proof is like that of the theorem 2.4 in [1] (see [1], p. 480). 
It is evident that we have also the dual. 
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2.9. Theorem. Let x be a closure operator in S. Then the following statements 

are equivalent: 
(a') x is a left x-operator in (S,.), 
(b') the operation ,,." is right weakly continuous, 

(c') A.(\J At)x cz([)A. Ai)xfor each A, A{ c S, (iel), 
iel iel 

(d')[^.(U^)J, = [U(^-^)xL. 
iel iel 

From 2.8 and 2.9 it follows 

2.10. Theorem. If x is a right (left) x-operator in S, then 

1 ° A c S, a e S => Ax . a c (A . a)x, (A c S, a e S => a . Ax c (a . A)x), 

2° A, B c S => Ax . B c (A . B)x, (A, B c S => A . Bx c (A . B)x), 

3° A, B c S=> (Ax . B)x = (A . B)x, (A, B c S => (A . Bx)x = (A . B)x). 

Moreover if x is an x-operator in (S, .), then 

4° A,BczS~(Ax.Bx)x = (A.B)x. 

We shall prove the 4° only, since the statements 1°, 2°, 3° follow immediately 
from 2.8 and 2.9. Suppose that x is an x-operator in (S,.) and A, B c S. By 2.1 
x is a right and a left x-operator in (S,.) and from 2° we have Ax . B cz (A . B)x. 
Then a . B c (A . J5)x for each a e Ax, hence according to (c) of 2.1 there is a . Ax c 
c (A . B)x for o e 4 , which leads to Ax. Bx c (A . 2*)x. Using (b) of 2.1 we 
conclude that 

(Ax.Bx)xcz(A.B)x. 

On the other hand there is 

then 

and 

А с Ах, В <= Д х ) 

(/1 .5), <-(Л х .Я х ) х 

and the 4° is proved. 
It can be easily verified, that we have 

2.11. Theorem. If x is a closure operator in S and the following statement 

ae S,A c S=> Ay.a cz (A . a)y, 

(aeS,AczS=>a.Aycz(a. A)y) 

holds, then x is a right (left) x-operator in (S,.). As in [1] (see [1], lemma 3.1, p. 484) 
we obtain 

2.12. Theorem. Let x be a general closure operator in S with property 

a 6 S, A c S => a . Ax c (a . A)x (ae S, A c S=> (Ax . a) c (A . a)x). 
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Then the modification of x is a left (right) x-operator in the semigroup S. 
3. S = (S,.) is an arbitrary semigroup. 
As in [1] (see [1], def. 2.3, p. 479) for a given closure operator x in S we can 

introduce the operation „o" in 2s as follows A o B = (A . B)x for each A, Be2s. 
I(S) will denote the image of 2s in the mapping x. For a mapping 

V : 2 S D / - > 2 S , 

we can introduce the sets 

E(y):={seS: \s.Ay<zAy}, 
AeS 

(y)E:^{seS:AkAy.sciAy}. . 
AeS 

The theorems 2.8, 2.9, 2.10 of [1] (see [1], p. 481) hold for such defined sets 
E(y), (y)E. If y is a partial right (left) x-operator in S then for the sets E(y), (y) E 
the theorem 2.11 of [1] holds. The theorem 2.12 of [1] takes now the form: 
Let x be a left (right) x-operator in S. Then the following statements are equivalent: 

(a) the semigroup (I(S), o) contains a left identity element (a right identity 
element). 

(b) Ase(E(x).s)x, (Ase(s.(x)E)x). 
seS seS 

If (S(S), o) contains the identity element J, then J = E(x) = (x) E. 
The theorems 2.15, 2.16, 2.17 from [1] hold for each x-operator in the sense 

of definition 2.1 of this note. 
4. For the sequel we assume, that S = (S,.) is an arbitrary semigroup. 

4.1. Definition. For A c S, se S we introduce the sets: 

A I s :— {xe S: x . s e A}, 
A I s : = {x e S: s . x e A}. 

4.2. Definition. Let y: 2s 3 J -> 2s. We define now the mappings: 

z 4 : 2 s - 2 s , vi:2
s->2*9 / = 1,2,3 

as follows: for A a S we put 

AZi: = A\J \J{By: BeJ,B c A} \J [J{s . By: Be J,se S,s . B a A}, 
AZ2: = AKJ \J{By:Be?iJ,B <z A} KJ U l ^ - * : Be S,se S, B .s c A}, 
AZ3: = Au \J{By: Be f,B c A} u[J{s. By : Be Jf,seS,s. B a A} u 

u \J{By . s: B e J, s e S, B. s c: A} u 
V Ufri sy -s2 : BeS,sx,s2eS,st. B.sx c A}, 

AVi = (\{By : BeS,By => A} nf\{Byils :seS:BeJ,By => A.s}, 
AVJ = f){By : Be J, By 3 A} n f){By/ s :seS,BeS, By z> s . A}, 
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A, -= C\{B, :Bef,A^By}n f\{By / s : Be J, By => A . s} n 

n f\{By \ s : B e f, By . s => A} n 

n(){(B,\sí)ls2:BeS,šl.A.s2cB,}. 

4.3. Corollary. Let 5 be abelian semigroup. Then A2i = A2l = AZ3, AVi = A^ = 
AV3 for each .A c S. 
Using definition 4.2, corollary 2.4 and theorem 2.12 we conclude that it holds 

4.4. Theorem. The mappings zt (i = 1,2,3) are generalized closure operators 
in S with following properties: 

(a) a . A2i c (a . A)2i, for a e S, A c S, 
(b) A2la c (A . a)2l, for a e S, A c S, 
(c) z3 fulfils both above conditions (a), (b), 
(d) Ay c A2<, for A e J, i = 1, 2, 3, 

(e) the modification of the operator 2 3 ^ , z2) is an x-operator (left, right) in S. 

4.5. Theorem. The mapping v3(v2, vt) is an x-operator (left, right) in S. If y is 
a partial x-operator (left, right) in S, then 

AVi = Ay, for A e J, i = 3, 2, 1. 

We shall prove the case of v3 only. First we shall verify, that v3 fulfils the supposi
tions of theorem 2.11. By definition 4.2 for each A c S there is A c AV3 and 
AV3 c AV3V3. Moreover, 

(*) Av3v3 = r\{By:Bef, AV3 c By} n {\{By j s :BeS,seS, AV3. s c By} n 

n (\{By \s:BeJ,seS,s.AV3 c By} n 

n f]{(By \sl)/s2:BeS,s1,s2eS,sl . AV3 . s2 c By}. 

Consider Be J such, that A c By. By definition 4.2 we have AV3 c 2?y and con
sequently AV3V3 c By. Thus 

^3»3 c (\{By:BeJ,A cz By}. 

Let now Be J, st, s2 e S be such, that sx . A . s2 c 2?y. Then AV3 c (I?y \ s x ) / s 2 

and sj . A„3. s2 c 2?y, so that 

Apv3
 c PKO^ \ *i)/-*2 :BeJ,s1,s2eS,s1. A.s2cz By}. 

In the same way we show 

AV3V3czf\{By/s:BeS, s e S, A . s c By} 
and 

^t,3v3
 c C\{By I s:BeS,seS,s.A cz By}. 

These facts together imply that 
Av3v3

 c Av 
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and consequently 

Suppose that 

Л = A 
^ v з o э л t > з # 

A cz C cz S. 

Since A cz C, by definition 4.2 we obtain 

AV3 cz (\{By :BeJ,A czBy} cz (\{By :BeJ,Ccz By}, 

AV3 cz (\{Byj s : Be J,ssS, A. s cz By} cz 

c n{-5y / s : B e J, s e S, C . s c By}, 

and similarly AV3 is contained in the next two factors of CV3; thus AV3 cz C„3. 
Hence v3 is a closure operator in S. Let further a e S, A cz S. By definition 4.2 
we have 

(**) 04 • <*)„ = (\{By: BeS,A.aczBy}n 

n(\{Byl s.BeJ, se S, A . a . s cz By} n (\{By\s : BeS, seS,s.A.a2 cz By} n. 

n f | { ^ \ J i ) / 5 - : 5 G y , si, s2 e 5, si . A . a . s2 cz #.}. 

Consider Be J such that A . a cz i?y. From definition 4.2 there is AV3 cz By\ a 

and hence AV3. a cz By, according to definition 4.1. This implies that 

A^.a cz (\{By :BeJ,A.aczBy}. 

Let now Be J, sx, s2 e S be such that st . A . a . s2 cz By. 

Hence by def. 4.2 AV3 cz (By \st) / as2 and by def. 4.1 

(AV3a). s2 cz (By \ sO. 

Consequently AV3. a cz (By \st) / s2, according to def. 4.1, and 

Av3 • <* c C\{(By \ si) I s2: B e J, st, s2 e S, st . A . a . s2 cz By}. 

In the same way we show that 

AV3.a cz (\{By/ s: B e J, s e S, A . a . s cz By}, 

Av3-a <= Ci{By \s:BeJ, s e S, s . A . a cz By}. 

In consequence we obtain inclusion 

AV3. a cz (A . a)V3. 

The proof of inclusion 
a . AV3 cz (a . A)V3 

is analogous. 
This completes the proof of the first thesis of theorem 4.2 (see theorem 2.11, 
corollary 2.4). 
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We come now to prove the second thesis of our theorem. Let y be a partial 
jc-operator in S and A e«/; from A c Ay we deduce that 

Aye {By: Be Jy A a B) and since AV3 c f){By: Be fy A c By} we obtain 
AV3 cz Ay. It remained to verify the inverse inclusion 

Ay c AV3. 

By and Let Be J and / 4 c 5 r Since y is a partial x-operator in S we have Ay 

consequently Ay cz f\{By: Be Jy A cz By}. Anologously we can prove that A 
is contained in the next factors of the intersection defining AV3. 
In the theorem 3.3.2 of [1] the hypothesis that y is a partial x-operator unfortunately 
was omitted. 
The following example shows, that the implication 

A G J ==> Av c Ay 

is not true without this hypothesis. 

4.6. Example. Let S = {0, 1, 2} and the operation "." be given by the table 

0 1 2 
0 0 0 0 
1 0 1 2 
2 0 2 1 

Take S = {{1}} and {1}, = {2}. Then {!}„ = {1} and {!}„ * {!},. 

4.7. Definition. Let 
y.2° 

A mapping w: 2s -* 2s with property Aw = Aiy, for each AeS is called an ex
tension of ^ on 2s. 
A mapping w: 2s -* 2 s is said to be an x-extension of y (left x-extension, right 
x-extension) provided it has the properties: 

a) w is an extension of y on 2s, 
b) w is an x-operator (left, right) in S. 

4.8. Definition* We denote by ut the modification of zt (i = 1, 2, 3) (see def. 4.2). 
As in [1] we can prove 

4.9. theorem. Let y: 2s => S -+ 2s. , 
The following statements are equivalent: 

V-° y is a partial x-operator (right, left) in S, 
2° Ay - As% «- ^,3,3 for AeS (Ay - ,4,. » A,iMi9for Aefyi=\y 2), 
3° 1/3(1/2 > **i) if. <wi x-extension (right, left) of y, 
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4° v3(vl9 v2) is an x-extension (right, left) of y, 
5° there exists an x-extension (right, left) of y. 

If 1° holds then u3(u29 uv) is the finest x-operator (right, left) in S, which is an 
x-extension (right, left) of y and v3(vl9 v2) is the coarsest x-operator (right, left) 
in S, which is an x-extension (right, left) of y. 

Proof. We consider the case of z3 9u39v3 only; the remained cases are analogous. 
Notice that 2° => 3° by theorem 4.4, and 1 ° => 4° by theorem 4.5* 
Evidently 4° => 5° and 5° => 1°. 
It suffices to show 1° => 2°. 
Let y be a partial ^-operator in S and A e S. 
According to theorem 4.4 there is Ay c A%3 and AZ3 cz AX3X39 so that 

AyczAZ3. 
Obviously A cz Ay. 
If B e S and B cz A9 then By cz Ay and \J{By:BeS9 B cz A} cz Ay. Let 3 e S, 
Be S9 s. B cz A. Since s. B cz A cz Ay then s. By cz Ay and 

\J{s .By: BeS9 s e S9 s . B cz A} cz Ay. 

In the same way we conclude, that 

[){By.s:BeS9seS9B.s cz A} cz Ay9 

Ufai . By . s2: B e S9 sl9 s2 e S9 sx . B . s2 cz A} cz Ay9 

whence 

and 
Atз <= A, 

Atì — Ay. 

To complete the proof it suffices to examine the inclusion 

^z$z3
 c AZ3. 

If, for example, sl9s2e S, Be S9 s1 . B. s2 cz AZ3, then by def. 2.1 st . By. s2 cz 
cz AZ3 and 

\J{sx . By.s2 :sl9s2e S9 BeS9 st . B. s2 cz AX3} cz AZ3. 

Analogously 
Ufa . By:seS9 Be S9s . B cz AZ3} cz AXy9 

\J{By.s:seS9BeS9B.s cz AZ3} cz AX3 

and consequently 
^z3zi c A%3. 

The proof of the second part of theorem 4.9 is analogous to that in [1] (see 
th. 3.3.4, p. 485). 

Using theorem 4.9 we obtain 
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4.10. Theorem. Let M be nonempty subset of S. 
The following statements are equivalent: 
(a) there exists an x-operator (right, left) in S, say y, such that 0y = M, 
(b) M is an ideal (right, left) in S. 

Proof. We consider the case of left ideal. The other cases are analogous. 
Let y be a left x-operator such that 0y = M. 
Then by theorem 2.10 we have 

S. M = S . 0y c (S. 0)y = 0y = M 

and M is a left ideal of S. 
Conversely let M be a left ideal of S and J = {0}. Put y: $ -• 2s as follows: 
9y := M. Evidently y is a partial x-operator in S and by theorem 4.9 there exists 
a left x-extension, say w, of y. 
Then 0W = 0y = M. ' * 

R E F E R E N C E S 
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