Archivum Mathematicum

Barbara Pilecka-Oborska; Stanisław Serafin

On x-operators in an arbitrary semigroup

Archivum Mathematicum, Vol. 21 (1985), No. 1, 13--22
Persistent URL: http://dml.cz/dmlcz/107211

Terms of use:

© Masaryk University, 1985
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)

Vol. 21 No. 1 (1985), 13-22

ON x-OPERATORS IN AN ARBITRARY SEMIGROUP

BARBARA PILECKA-OBORSKA and STANISLAW SERAFIN

(Received September 30, 1982)

Abstract

In this paper there are defined one-sided and two-sided partial x-operators in an arbitrary semigroup, and the theorem on existence of x-extension (left, right) of a partial x-operator (left right) is proved.

Key words: general closure operator, closure operator, modification of a closure operator, semigroup, left (right) partial x-operator in a semigroup, partial x-operator in a semigroup, x-extension (left, right) of a partial x-operator (left, right).

This note presents an extension of some results of the paper [1] on nonabelian semigroups.

We introduce the notions of left, right (and two-sided) partial x-operators in an arbitrary semigroup and investigate their properties (s. sections 2, 3). In section 4 we receive the theorem on existence of x-extensions of partial (left, right) x-operators.

Following [1] we accept the convention: if I, P are sets and $\left\{A_{i}\right\}_{i \in I} \subset 2^{P}$, then for $I=\emptyset$

$$
\bigcup_{i \in I} A_{i}=\emptyset, \quad \bigcap_{i \in I} A_{i}=P
$$

1. We recall after [1] some definitions and theorems on general closure operators.
1.1 Definition. Let P be a set and

$$
z: 2^{P} \ni A \mapsto A_{z} \in 2^{P} .
$$

The mapping z is a general closure operator in P iff for all $A, B \in 2^{P}$ it holds:
(i) $A \subset A_{z}$,
(ii) $A \subset B \Rightarrow A_{z} \subset B_{z}$.

If moreover
(iii) $A_{z}=A_{z z}$ for $A \in 2^{P}$, then z is called closure operator in P.
1.2 Definition. For general closure operators z_{1}, z_{2} in P we put

$$
z_{1} \leqq z_{2}: \Leftrightarrow A_{z_{1}} \subset A_{z_{2}} \quad \text { for every } A \subset P
$$

We say that z_{2} is coarser than z_{1}.
1.3. Corollary. The relation \leqq is a partial order in the set of all general closure operators in P.
1.4. Definition. Let z be a general closure operator in P. The modification of z is the least (in the sense of \leqq) closure operator in P coarser than z.
1.5. Definition. Let P be a set, z a general closure operator in P. Using transfinite induction for an ordinal ξ we define the general closure operator z_{ξ} as follows: if $M \subset P$, then

$$
\begin{aligned}
& M_{z_{1}}:=M_{z} \\
& M_{z_{\xi}}:= \begin{cases}\left(M_{z_{n}}\right)_{z} & \text { for } \xi=\eta+1>1 \\
\bigcup_{0<\eta<\xi} M_{z} & \text { for a limit ordinal } \xi .\end{cases}
\end{aligned}
$$

1.6. Theorem. There exists an ordinal $\xi>0$ such, that z_{ξ} is the modification of z.
1.7. Definition. Let z be a general closure operator in P and $p \in P$. A set $U \subset P$ is said to be a z-neighbourhood of p provided it fulfils a condition $p \notin(P-U)_{z}$.
1.7. Theorem. Suppose that $p \in P, M \subset P$ and z is a general closure operator in P.

Then it holds: $p \in M_{z} \Leftrightarrow U \cap M \neq \emptyset$ for every z-neighbourhood U of p.
2. In this section $S=(S ;$.) will denote an arbitrary semigroup.
2.1. Definition. Let $\mathscr{I} \subset 2^{s}$ and $y: \mathscr{I} \rightarrow 2^{S}$. A mapping y is said to be a left (right) partial x-operator in S iff:
(a) $A \subset A_{y}$, for every $A \in \mathscr{I}$,
(b) $A \subset B_{y} \Rightarrow A_{y} \subset B_{y}$, for $A, B \in \mathscr{I}$,
(c) $a . A \subset B_{y} \Rightarrow a . A_{y} \subset B_{y}$, for $a \in S, A, B \in \mathscr{I}$,
$\left(A . a \subset B_{y} \Rightarrow A_{y} . a \subset B_{y}\right.$, for $\left.a \in S, A, B \in \mathscr{I}\right)$.
A mapping y is a partial x-operator in S iff it is a left partial x-operator in S and a right partial x-operator in S and moreover it fulfils the condition
(d) $a . A . b \subset B_{y}^{\prime} \Rightarrow a \cdot A_{y} \cdot b \subset B_{y}$, for $a, b \in S, A, B \in \mathscr{I}$. A partial (right, left) x-operator in S with property
(e) $I=2^{s}$
is said to be an x-operator (right, left) in S.
2.2. Corollary. If S is abslian, then every partial right (left) x-operator in S is a partial x-qperator in S. Evidently it holds
2.3. Corollary. If y is an x-operator in S (right, left) then y is a closure operator in S. We shall prove now
2.4. Corollary. If y is a right and a left x-operator in S, then it is an x-operator in S.
Proof. By supposition and (2.3) y is a closure operator in S. Lẹt now $a, b \in S$, $A, B \subset S, a . A . b \subset B_{y}$. Then $(a . A . b)_{y} \subset B_{y y}=B_{y}$. Since $a . A . b \subset(a . A . b)_{y}$ and y is a left x-operator in S we obtain $a .(A . b)_{y} \subset(a . A \cdot b)_{y}$.

Analogously from $A b \subset(A . b)_{y}$ we have $A_{y} b \subset(A b)_{y}$ and consequently $a .\left(A_{y} \cdot b\right) \subset a .(A . b)_{y}$, which completes the proof. Evidently we have also:
2.5. Corollary. If S is a semigroup with the identity element, then the condition (d) of (2.1) implies (c).

The following example shows that $y: \mathscr{I} \rightarrow 2^{S}$ being a left and a right partial x-operator in S must not be a partial x-operator in S.
2.6. Example. Let $X=\{a, b, c\}, 0 \notin X \times X$. Consider the semigroup ($S,$.) where:

$$
\begin{gathered}
S:=X \times X \cup\{0\} \\
(x, y) \cdot(z, t):=\left\{\begin{array}{ll}
(x, t), & \text { when } y \stackrel{\prime}{=} z \\
0, & \text { when } y \neq z
\end{array} \quad \text { for } x, y, z, t \in X\right.
\end{gathered}
$$

and $0 . s=s .0=0$ for $s \in S$.
It is a special case of the Brandt-semigroup. Moreover let

$$
\begin{aligned}
& A=\{(a, a),(b, c)\} \\
& \mathscr{I}=\{A\} \\
& A_{y}=\{(a, a),(a, b),(a, c),(b, a),(b, b),(b, c), 0\}
\end{aligned}
$$

It is elear, that

$$
A . s \subset A_{y} \Rightarrow A_{y} . s \subset A_{y}, \quad \text { for } s \in S
$$

and

$$
s . A \subset A_{y} \Rightarrow s . A_{y} \subset A_{y}, \quad \text { for } s \in S
$$

Thus y is a left and a right partial x-operator in S. But $(c, b) . A .(a, c)=(c, b)$. $\cdot\{(a, c), 0\}=\{0\} \subset A_{y}$ and $(c, b) . A_{y} \cdot(a, c)=(c, b) \cdot\{(a, c),(b, c), 0\}=\{(c, c), 0\} \notin$ $\not \ddagger A_{y}$ and the condition (d) of 2.1 is not fulfilled.
2.7. Definition. Let x be a closure operator in S. We say that the operation ,,." in the semigroup ($S,$.) is right (left) weakly continuous iff for each $a, b \in S$ and x-neighbourhood V of $a . b$ there exists an x-neighborhoodu of b (an x-neighbourhood of a) such that $a \cdot U \subset V(U b \subset V)$.
2.8. Theorem. Let x be a closure operator in S. Then the following statements are equivalent:
(a) x is a right x-operator in $(S, \cdot$.$) ,$
(b) the operation ,," is left weakly continuous,
(c) $\left(\bigcup_{i \in I} A_{i}\right)_{x}, A \subset\left(\bigcup_{i \in I} A_{i}, A\right)_{x}$ for each $A, A_{i} \subset S(i \in I)$,
(d) $\left[\left(\bigcup_{i \in I} A_{i}\right)_{x} \cdot A\right]_{x}=\left[\bigcup_{i \in I}\left(A_{i} \cdot A\right)_{x}\right]_{x}$, for each $A, A_{i} \subset S(i \in I)$.

The proof is like that of the theorem 2.4 in [1] (see [1], p. 480).
It is evident that we have also the dual.
2.9. Theorem. Let x be a closure operator in S. Then the following statements are equivalent:
$\left(\mathrm{a}^{\prime}\right) x$ is a left x-operator in $(S,$.$) ,$
(b^{\prime}) the operation ,,." is right weakly continuous,
(c') $A \cdot\left(\bigcup_{i \in I} A_{i}\right)_{x} \subset\left(\bigcup_{i \in I} A . A_{i}\right)_{x}$ for each $A, A_{i} \subset S,(i \in I)$,
(d') $\left[A \cdot\left(\bigcup_{i \in I} A_{i}\right)_{x}\right]_{x}=\left[\bigcup_{i \in I}\left(A \cdot A_{i}\right)_{x}\right]_{x}$.
From 2.8 and 2.9 it follows
2.10. Theorem. If x is a right (left) x-operator in S, then

$$
\begin{aligned}
& 1^{\circ} A \subset S, a \in S \Rightarrow A_{x} \cdot a \subset(A . a)_{x},\left(A \subset S, a \in S \Rightarrow a . A_{x} \subset(a . A)_{x}\right) \\
& 2^{\circ} A, B \subset S \Rightarrow A_{x} \cdot B \subset(A \cdot B)_{x},\left(A, B \subset S \Rightarrow A \cdot B_{x} \subset(A \cdot B)_{x}\right), \\
& 3^{\circ} A, B \subset S \Rightarrow\left(A_{x} \cdot B\right)_{x}=(A \cdot B)_{x},\left(A, B \subset S \Rightarrow\left(A \cdot B_{x}\right)_{x}=(A \cdot B)_{x}\right)
\end{aligned}
$$

Moreover if x is an x-operator in ($S,$.), then

$$
4^{\circ} A, B \subset S \Rightarrow\left(A_{x}, B_{x}\right)_{x}=(A . B)_{x} .
$$

We shall prove the 4° only, since the statements $1^{\circ}, 2^{\circ}, 3^{\circ}$ follow immediately from 2.8 and 2.9. Suppose that x is an x-operator in ($S,$.) and $A, B \subset S$. By 2.1 x is a right and a left x-operator in $(S,$.$) and from 2^{\circ}$ we have $A_{x} \cdot B \subset(A, B)_{x}$. Then $a . B \subset(A . B)_{x}$ for each $a \in A_{x}$, hence according to (c) of 2.1 there is $a . A_{x} \subset$ $\subset(A . B)_{x}$ for $a \in A_{x}$, which leads to $A_{x} \cdot B_{x} \subset(A . B)_{x}$. Using (b) of 2.1 we conclude that

$$
\left(A_{x} \cdot B_{x}\right)_{x} \subset(A . B)_{x}
$$

On the other hand there is

$$
A \subset A_{x}, \quad B \subset B_{x}
$$

then

$$
A . B \subset A_{x} \cdot B_{x}
$$

and

$$
(A, B)_{x} \subset\left(A_{x} \cdot B_{x}\right)_{x}
$$

and the 4° is proved.
It can be easily verified, that we have
2.11. Theorem. If x is a closure operator in S and the following statement

$$
\begin{array}{r}
a \in S, A \subset S \Rightarrow A_{y} \cdot a \subset(A \cdot a)_{y}, \\
\left(a \in S, A \subset S \Rightarrow a \cdot A_{y} \subset(a . A)_{y}\right)
\end{array}
$$

holds, then x is a right (left) x-operator in (S, .). As in [1] (see [1], lemma 3.1, p. 484) we obtain
2.12. Theorem. Let x be a general closure operator in S with property

$$
a \in S, A \subset S \Rightarrow a . A_{x} \subset(a . A)_{x}\left(a \in S, A \subset S \Rightarrow\left(A_{x}, a\right) \subset(A \cdot a)_{x}\right)
$$

Then the modification of x is a left (right) x-operator in the semigroup S.
3. $S=(S,$.$) is an arbitrary semigroup.$

As in [1] (see [1], def. 2.3, p. 479) for a given closure operator x in S we can introduce the operation ,,"" in 2^{S} as follows $A \circ B=(A, B)_{x}$ for each $A, B \in 2^{S}$. $I(S)$ will denote the image of 2^{S} in the mapping x. For a mapping

$$
y: 2^{s} \supset I \rightarrow 2^{s}
$$

we can introduce the sets

$$
\begin{aligned}
& E(y):=\left\{s \in S: \bigwedge_{A \in S} s . A_{y} \subset A_{y}\right\}, \\
& (y) E:=\left\{s \in S: \bigwedge_{A \in S} A_{y} \cdot s \subset A_{y}\right\} .
\end{aligned}
$$

The theorems 2.8, 2.9, 2.10 of [1] (see [1], p. 481) hold for such defined sets $E(y),(y) E$. If y is a partial right (left) x-operator in S then for the sets $E(y),(y) E$ the theorem 2.11 of [1] holds. The theorem 2.12 of [1] takes now the form: Let x be a left (right) x-operator in S. Then the following statements are equivalent:
(a) the semigroup $(I(S), \circ)$ contains a left identity element (a right identity element).
(b) $\bigwedge_{s \in S} s \in(E(x) . s)_{x}, \quad\left(\bigwedge_{s \in S} s \in(s .(x) E)_{x}\right)$.

If $(\mathscr{I}(S), \circ)$ contains the identity element \mathscr{I}, then $\mathscr{I}=E(x)=(x) E$.
The theorems $2.15,2.16,2.17$ from [1] hold for each x-operator in the sense of definition 2.1 of this note.
4. For the sequel we assume, that $S=(S,$.$) is an arbitrary semigroup.$
4.1. Definition. For $A \subset S, s \in S$ we introduce the sets:

$$
\begin{aligned}
& A / s:=\{x \in S: x, s \in A\} \\
& A / s:=\{x \in S: s, x \in A\} .
\end{aligned}
$$

4.2. Definition. Let $y: 2^{S} \supset \mathscr{I} \rightarrow 2^{S}$. We define now the mappings:

$$
z_{i}: 2^{s} \rightarrow 2^{s}, \quad v_{i}: 2^{s} \rightarrow 2^{s}, . \quad i=1,2,3
$$

as follows: for $A \subset S$ we put

$$
\begin{aligned}
& A_{z_{1}}:=A \cup \bigcup\left\{B_{y}: B \in \mathscr{F}, B \subset A\right\} \cup \bigcup\left\{s, B_{y}: B \in \mathcal{F}, s \in S, s . B \subset A\right\}, \\
& A_{z_{2}}:=A \cup \bigcup\left\{B_{y}: B \in \mathfrak{F}, B \subset A\right\} \cup \bigcup\left\{B_{y} . s: B \in \mathcal{F}, s \in S, B . s \subset A\right\}, \\
& A_{z_{3}}:=A \cup \bigcup\left\{B_{y}: B \in \boldsymbol{S}, B \subset A\right\} \cup \bigcup\left\{s . B_{y}: B \in \boldsymbol{\zeta}, s \in S, s . B \subset A\right\} \cup \\
& \cup \bigcup\left\{B_{y}, s: B \in \mathscr{I}, s \in S, B . s \subset A\right\} \cup \\
& \cup \bigcup\left\{s_{1} \cdot B_{y} \cdot s_{2}: B \in S, s_{1}, s_{2} \in S, s_{1} \cdot B . s_{2} \subset A\right\}, \\
& A_{v_{1}}=\bigcap\left\{B_{y}: B \in \mathscr{F}, B_{y} \supset A\right\} \cap \bigcap\left\{B_{y i} / s: s \in S: B \in \mathcal{S}, B_{y} \supset A . s\right\}, \\
& A_{v_{2}}=\bigcap\left\{B_{y}: B \in \mathscr{I}, B_{y} \supset A\right\} \cap \bigcap\left\{B_{y} / s: s \in S, B \in \mathcal{F}, B_{y} \supset s . A\right\},
\end{aligned}
$$

$$
\begin{aligned}
A_{v_{3}}= & \bigcap\left\{B_{y}: B \in \mathscr{I}, A \subset B_{y}\right\} \cap \bigcap\left\{B_{y} / s: B \in \mathscr{I}, B_{y} \supset A \cdot s\right\} \cap \\
& \cap \bigcap\left\{B_{y} \backslash s: B \in \mathscr{I}, B_{y} \cdot s \supset A\right\} \cap \\
& \cap \bigcap\left\{\left(B_{y} \backslash s_{1}\right) / s_{2}: B \in \mathscr{I}, s_{1} \cdot A \cdot s_{2} \subset B_{y}\right\} .
\end{aligned}
$$

4.3. Corollary. Let S be abelian semigroup. Then $A_{z_{1}}=A_{z_{2}}=A_{z_{3}}, A_{v_{1}}=A_{v_{2}}=$ $=A_{v_{3}}$ for each $A \subset S$.

Using definition 4.2 , corollary 2.4 and theorem 2.12 we conclude that it holds
4.4. Theorem. The mappings $z_{i}(i=1,2,3)$ are generalized closure operators in S with following properties:
(a) $a . A_{z_{1}} \subset(a . A)_{z_{1}}, \quad$ for $a \in S, A \subset S$,
(b) $A_{z_{2}} a \subset(A . a)_{z_{2}}, \quad$ for $a \in S, A \subset S$,
(c) z_{3} fulfils both above conditions (a), (b),
(d) $A_{y} \subset A_{z_{i}}, \quad$ for $A \in \mathscr{I}, i=1,2,3$,
(e) the modification of the operator $z_{3}\left(z_{1}, z_{2}\right)$ is an x-operator (left, right) in S.
4.5. Theorem. The mapping $v_{3}\left(v_{2}, v_{1}\right)$ is an x-operator (left, right) in S. If y is a partial x-operator (left, right) in S, then

$$
A_{v_{i}}=A_{y}, \quad \text { for } A \in \mathscr{I}, \quad i=3,2,1 .
$$

We shall prove the case of v_{3} only. First we shall verify, that v_{3} fulfils the suppositions of theorem 2.11. By definition 4.2 for each $A \subset S$ there is $A \subset A_{v_{3}}$ and $A_{v_{3}} \subset A_{v_{3} v_{3}}$. Moreover,

$$
\begin{align*}
A_{v_{3} v_{3}}= & \bigcap\left\{B_{y}: B \in \mathscr{I}, A_{v_{3}} \subset B_{y}\right\} \cap \bigcap\left\{B_{y} / s: B \in \mathscr{I}, s \in S, A_{v_{3}} . s \subset B_{y}\right\} \cap \tag{*}\\
& \cap \bigcap\left\{B_{y} \backslash s: B \in \mathscr{I}, s \in S, s, A_{v_{3}} \subset B_{y}\right\} \cap \\
& \cap \bigcap\left\{\left(B_{y} \backslash s_{1}\right) / s_{2}: B \in \mathscr{I}, s_{1}, s_{2} \in S, s_{1} \cdot A_{v_{3}} \cdot s_{2} \subset B_{y}\right\} .
\end{align*}
$$

Consider $B \in \mathscr{I}$ such, that $A \subset B_{y}$. By definition 4.2 we have $A_{v_{3}} \subset B_{y}$ and consequently $A_{v_{3} v_{3}} \subset B_{y}$. Thus

$$
A_{v_{3} v_{3}} \subset \bigcap\left\{B_{y}: B \in \mathscr{I}, A \subset B_{y}\right\} .
$$

Let now $B \in \mathscr{I}, s_{1}, s_{2} \in S$ be such, that $s_{1} . A . s_{2} \subset B_{y}$. Then $A_{v_{3}} \subset\left(B_{y} \backslash s_{1}\right) / s_{2}$ and $s_{1} \cdot A_{v_{3}} \cdot s_{2} \subset B_{y}$, so that

$$
A_{v_{3} v_{3}} \subset \bigcap\left\{\left(B_{y} \backslash s_{1}\right) / s_{2}: B \in \mathscr{I}, s_{1}, s_{2} \in S, s_{1} . A . s_{2} \subset B_{y}\right\} .
$$

In the same way we show

$$
A_{v_{3} v_{3}} \subset \bigcap\left\{B_{y} / s: B \in \mathscr{I}, s \in S, A . s \subset B_{y}\right\}
$$

and

$$
A_{v_{3} v_{3}} \subset \bigcap\left\{B_{y} / s: B \in \mathscr{I}, s \in S, s . A \subset B_{y}\right\} .
$$

These facts together imply that

$$
A_{v_{3} v_{3}} \subset A_{v_{3}}
$$

and consequently

$$
A_{v_{3} v_{3}}=A_{v_{3}} .
$$

Suppose that

$$
A \subset C \subset S
$$

Since $A \subset C$, by definition 4.2 we obtain

$$
\begin{gathered}
A_{v_{3}} \subset \bigcap\left\{B_{y}: B \in \mathscr{I}, A \subset B_{y}\right\} \subset \bigcap\left\{B_{y}: B \in \mathscr{I}, C \subset B_{y}\right\}, \\
A_{v_{3}} \subset \bigcap\left\{B_{y} / s: B \in \mathscr{I}, s \in S, A \cdot s \subset B_{y}\right\} \subset \\
\subset \bigcap\left\{B_{y} / s: B \in \mathscr{I}, s \in S, C . s \subset B_{y}\right\}
\end{gathered}
$$

and similarly $A_{v_{3}}$ is contained in the next two factors of $C_{v_{3}}$; thus $A_{v_{3}} \subset C_{v_{3}}$. Hence v_{3} is a closure operator in S. Let further $a \in S, A \subset S$. By definition 4.2 we have

```
(**) \(\quad(A . a)_{v_{3}}=\bigcap\left\{B_{y}: B \in \mathscr{I}, A . a \subset B_{y}\right\} \cap\)
\(\cap \bigcap\left\{B_{y} / s: B \in \mathscr{I}, s \in S, A . a . s \subset B_{y}\right\} \cap \bigcap\left\{B_{y} \backslash s: B \in \mathscr{I}, s \in S, s . A . a_{2} \subset B_{y}\right\} \cap\)
    \(\left.\cap \bigcap\left\{B_{y} \backslash s_{1}\right) / s_{2}: B \in \mathscr{I}, s_{1}, s_{2} \in S, s_{1} \cdot A \cdot a \cdot s_{2} \subset B_{i j}\right\}\).
```

Consider $B \in \mathscr{I}$ such that $A . a \subset B_{y}$. From definition 4.2 there is $A_{v_{3}} \subset B_{y} / a$ and hence $A_{v_{3}}, a \subset B_{y}$, according to definition 4.1. This implies that

$$
A_{v_{3}} \cdot a \subset \bigcap\left\{B_{y}: B \in \mathscr{I}, A . a \subset B_{y}\right\} .
$$

Let now $B \in \mathscr{I}, s_{1}, s_{2} \in S$ be such that $s_{1} \cdot A . a . s_{2} \subset B_{y}$.
Hence by def. $4.2 A_{v_{3}} \subset\left(B_{y} \backslash s_{1}\right) / a s_{2}$ and by def. 4.1

$$
\left(A_{v_{3}} a\right) . s_{2} \subset\left(B_{y} \backslash s_{1}\right) .
$$

Consequently $A_{v_{3}} \cdot a \subset\left(B_{y} \backslash s_{1}\right) / s_{2}$, according to def. 4.1, and

$$
A_{v_{3}} \cdot a \subset \bigcap\left\{\left(B_{y} \backslash s_{1}\right) / s_{2}: B \in \mathscr{I}, s_{1}, s_{2} \in S, s_{1} . A . a . s_{2} \subset B_{y}\right\} .
$$

In the same way we show that

$$
\begin{aligned}
& A_{v_{3}} \cdot a \subset \bigcap\left\{B_{y} / s: B \in \mathscr{I}, s \in S, A . a . s \subset B_{y}\right\} \\
& A_{v_{3}} \cdot a \subset \bigcap\left\{B_{y} \backslash s: B \in \mathscr{I}, s \in S, s . A . a \subset B_{y}\right\} .
\end{aligned}
$$

In consequence we obtain inclusion

$$
A_{v_{3}} \cdot a \subset(A . a)_{v_{3}}
$$

The proof of inclusion

$$
a . A_{v_{3}} \subset(a, A)_{v_{3}}
$$

is analogous.
This completes the proof of the first thesis of theorem 4.2 (see theorem 2.11, corollary 2.4).

We come now to prove the second thesis of our theorem. Let y be a partial x-operator in S and $A \in \mathscr{I}$; from $A \subset A_{y}$ we deduce that
$A_{y} \in\left\{B_{y}: B \in \mathscr{I}, A \subset B\right\}$ and since $A_{v_{3}} \subset \bigcap\left\{B_{y}: B \in \mathscr{I}, A \subset B_{y}\right\}$ we obtain $A_{v_{3}} \subset A_{y}$. It remained to verify the inverse inclusion

$$
A_{y} \subset A_{v_{3}}
$$

Let $B \in \mathscr{I}$ and $A \subset B_{y}$. Since y is a partial x-operator in S we have $A_{y} \subset B_{y}$ and consequently $A_{y} \subset \bigcap\left\{B_{y}: B \in \mathscr{I}, A \subset B_{y}\right\}$. Anologously we can prove that A_{ϑ} is contained in the next factors of the intersection defining $A_{v_{3}}$.
In the theorem 3.3.2 of [1] the hypothesis that y is a partial x-operator unfortunately was omitted.
The following example shows, that the implication

$$
A \in \mathscr{I} \Rightarrow A_{v} \subset A_{y}
$$

is not true without this hypothesis.
4.6. Example. Let $S=\{0,1,2\}$ and the operation "." be given by the table

\cdot	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Take $\mathscr{I}=\{\{1\}\}$ and $\{1\}_{\nu}=\{2\}$. Then $\{1\}_{v}=\{1\}$ and $\{1\}_{v} \nsubseteq\{1\}_{y}$.
4.7. Definition. Let

$$
y: 2^{s} \supset \mathscr{I} \rightarrow 2^{s}
$$

A mapping $w: 2^{S} \rightarrow 2^{S}$ with property $A_{w}=A_{y}$, for each $A \in \mathscr{I}$ is called an extension of y on 2^{s}.
A mapping $w: 2^{s} \rightarrow 2^{s}$ is said to be an x-extension of y (left x-extension, right x-extension) provided it has the properties:
a) w is an extension of y on 2^{S},
b) w is an x-operator (left, right) in S.
4.8. Definition. We denote by u_{i} the modification of $z_{i}(i=1,2,3)$ (see def. 4.2). As in [1] we can prove
4.9. Theorem. Let $y: 2^{s} \supset \mathscr{I} \rightarrow 2^{S}$.

The following statements are equivalent:
$1^{\circ} y$ is a partial x-operator (right, left) in S,
$2^{\circ} A_{y}=A_{z_{3}}=A_{z_{3} z_{3}}$ for $A \in \mathscr{J}\left(A_{y}=A_{z_{i}}=A_{z_{i},}\right.$, for $\left.A \in \mathscr{I}, i=1,2\right)$,
$3^{\circ} u_{3}\left(u_{2}, u_{1}\right)$ is an x-extension (right, left) of y,
$4^{\circ} v_{3}\left(v_{1}, v_{2}\right)$ is an x-extension (right, left) of y,
5° there exists an x-extension (right, left) of y.
If 1° holds then $u_{3}\left(u_{2}, u_{1}\right)$ is the finest x-operator (right, left) in S, which is an x-extension (right, left) of y and $v_{3}\left(v_{1}, v_{2}\right)$ is the coarsest x-operator (right, left) in S, which is an x-extension (right, left) of y.

Proof. We consider the case of z_{3}, u_{3}, v_{3} only; the remained cases are analogous. Notice that $2^{\circ} \Rightarrow 3^{\circ}$ by theorem 4.4 , and $1^{\circ} \Rightarrow 4^{\circ}$ by theorem 4.5.
Evidently $4^{\circ} \Rightarrow 5^{\circ}$ and $5^{\circ} \Rightarrow 1^{\circ}$.
It suffices to show $1^{\circ} \Rightarrow 2^{\circ}$.
Let y be a partial x-operator in S and $A \in S$.
According to theorem 4.4 there is $A_{y} \subset A_{z_{3}}$ and $A_{z_{3}} \subset A_{z_{3} z_{3}}$, so that

$$
A_{y} \subset A_{z_{3}}
$$

Obviously $A \subset A_{y}$.
If $B \in \mathscr{I}$ and $B \subset A$, then $B_{y} \subset A_{y}$ and $\cup\left\{B_{y}: B \in \mathscr{F}, B \subset A\right\} \subset A_{y}$. Let $s \in S$, $B \in \mathscr{I}, s . B \subset A$. Since $s . B \subset A \subset A_{y}$ then $s . B_{y} \subset A_{y}$ and

$$
\bigcup\left\{s . B_{y}: B \in \mathscr{I}, s \in S, s . B \subset A\right\} \subset A_{y}
$$

In the same way we conclude, that

$$
\begin{aligned}
& \bigcup\left\{B_{y}, s: B \in \mathscr{I}, s \in S, B . s \subset A\right\} \subset A_{y} \\
& \bigcup\left\{s_{1} \cdot B_{y} \cdot s_{2}: B \in \mathscr{I}, s_{1}, s_{2} \in S, s_{1} \cdot B \cdot s_{2} \subset A\right\} \subset A_{y}
\end{aligned}
$$

whence

$$
A_{z_{3}} \subset A_{y}
$$

and

$$
A_{z_{3}}=A_{y}
$$

To complete the proof it suffices to examine the inclusion

$$
A_{z_{3} z_{3}} \subset A_{z_{3}}
$$

If, for example, $s_{1}, s_{2} \in S, B \in \mathscr{F}, s_{1} . B . s_{2} \subset A_{z_{3}}$, then by def. $2.1 s_{1}, B_{y} . s_{2} \subset$ $\subset A_{z_{3}}$ and

$$
\bigcup\left\{s_{1} \cdot B_{y}, s_{2}: s_{1}, s_{2} \in S, B \in \mathscr{S}, s_{1} \cdot B . s_{2} \subset A_{z_{3}}\right\} \subset A_{z_{3}}
$$

Analogously

$$
\begin{aligned}
& \bigcup\left\{s . B_{y}: s \in S, B \in \mathscr{F}, s . B \subset A_{z_{3}}\right\} \subset A_{z_{3}} \\
& \bigcup\left\{B_{y}, s: s \in S, B \in \mathcal{F}, B . s \subset A_{z_{3}}\right\} \subset A_{z_{3}}
\end{aligned}
$$

and consequently

$$
A_{z_{3} z_{3}} \subset A_{z_{3}}
$$

The proof of the second part of theorem 4.9 is analogous to that in [1] (see th. 3.3.4, p. 485).

Using theorem 4.9 we obtain
4.10. Theorem. Let M be nonempty subset of S.

The following statements are equivalent:
(a) there exists an x-operator (right, left) in S, say y, such that $\emptyset_{y}=M$,
(b) M is an ideal (right, left) in S.

Proof. We consider the case of left ideal. The other cases are analogous.
Let y be a left x-operator such that $\emptyset_{y}=M$.
Then by theorem 2.10 we have

$$
S . M=S . \emptyset_{y} \subset(S . \emptyset)_{y}=\emptyset_{y}=M
$$

and M is a left ideal of S.
Conversely let M be a left ideal of S and $\mathscr{I}=\{\emptyset\}$. Put $y: \mathscr{I} \rightarrow 2^{S}$ as follows: $\emptyset_{y}:=M$. Evidently y is a partial x-operator in S and by theorem 4.9 there exists a left x-extension, say w, of y.
Then $\emptyset_{w}=\emptyset_{y}=M$.

REFERENCES

[1] L. Skula, On extensions of partial x-operators, Czechoslovak Mathematical Journal, 26 (191) 1976, Praha, (p. 477-505).

Barbara Pilecka-Oborska

Stanislaw Serafin
-Wyższa Szkola Pedagogiczna
ul. Podchorażych 2
30-084 Kraków
Poland

