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ON OSCILLATION OF SOLUTIONS OF LINEAR 
DEVIATING DIFFERENTIAL EQUATION 

RUDOLF OLAH, 2ilina 
(Received January 25, 1982) 

Abstract. A sufficient condition is given that an solutions of the equation y{H)(t) 4- p(t) y(g(t)) = 0, 
n ^ 1, are oscillatory if n is even or odd. It is assumed throughout this paper that p(t)t g(t) are 
continuous on [0, <x>), p(t) > 0, g(t) < t, lim g(t) = oo, g(t) is nondecreasing. The oscillatory 

t->oo 

behaviour of the equation involving retarded and advanced arguments is studied, too. 

Key words. Deviating argument, linear equation of «-th order, oscillation of solutions, non-
oscillatory solution of degree /. 

1. Introduction 

The purpose of this paper is to study the oscillatory behaviour of solutions 
of the linear differential equation with retarded argument 

(1) y(w)(0+P(0yQK0) = 0, » £ l , 

and the asymptotic behaviour of solutions of the linear differential equation with 
advanced argument 
(2) yin)(t)+q(t)y(h(t)) = 09 n^29 

where p(t)9 q(t)9 g(t) and h(t) are continuous functions on [0, oo) such thatp(f) > 0, 
q(t) > 0, g(t) < t9 h(t) > t and limg(0 = oo. 

f-+oo 

The oscillatory behaviour of the equation involving both retarded and advanced 
arguments 
(3) /"\t)+p(t)y(g(t))+q(t)y(h(i)) = 0, n £ l , 

will also be studied. 
A solution X0 °f ^e equation (1) (or (2), (3)) is called oscillatory if it has 

-arbitrarily large zeros, and it is called nonoscillatory otherwise. 

Lemma 1. (Kiguradze). Let y(t) be a solution of the equation (1) (or (2), (3)) 
satisfying the condition 
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y(0>0 for t e [0, oo), 

and let y<n)(t) ^Oforte [0, oo). 
Then there exist a tx e [0, oo) and an integer I e {0, 1,..., n — 1} such that I + n 

is odd and 

(4) /%) > 0 for t e [t,, oo) (i - 0, ..., / - 1), 
(_!)'+* y o ( 0 > 0 f o r | € [ / l f oo) (/ = / , . . . , * - 1), 

(5) ( t - t i ) l y ( ' - ° ( O I ^ ( l +Oly c ," ,"1 )(OI /or te[r 1 ,oo)( i = 0 . . . , 7 - 1 ) , 
1 ^ / ^ if — 1. 

Analogous statement can be made if y(0 < 0 and yin\t) ^ 0 for t e [0, oo). 
An y(t) which satisfies (4) is said to be a (nonoscillatory) solution of degree / 

(see Foster and Grimmer [1]). 

2. Retarded equation 

We consider the equation (1) with retarded argument where p(t) and g(t) are 
continuous on [0, oo), p(0 > 0, g(t) < t, g(t) is nondecreasing and limg(0 = oo. 

f-»oo 

Theorem 1. Suppose that for every le {0, 1, ..., w — 1} such that n + I is odd 
and for some dx e {0, 1, ..., n — / — 1} it holds 

(6) lim sup J [s - gd)]""1"*"1 WO - g(s)T ig(s)J p(s)ds > 
t - 0 0 0(f) 

> l\(n - I -dx- \)\dx\. 

Then every solution of equation (I) is oscillatory. 
Proof. Let y(t) be a nonoscillatory solution of equation (1) such that y(g(t)) > 0 

for / e [t0, oo), t0 §: 0. Then with regard to Lemma 1 there exist tt e [t0, oo) and 
/6 {0,-1, ..., n — 1} such that n + / is odd and (4), (5) hold. For sufficiently large 
h e [ti > °°) In view of (5) we have 

(7) >>(g(0) £ [ g ( ° / 7 * l ] l y%(0)> t £ t2, O g / ^ n - l . 

From the equality 

(8) z « > ( . ) = i ( - r ( ; : ' ^ + , . ( ~* r ' , f(«-o*-'-1zwo.)du. 
i s j V*"~JIi \K-~J — L)l t 

s 7> t }> t2, for A: = n — / we get 

(9) -<%)-*" l V i y - j V f . 7 z(,)(s>+ 

(n І /-7ľ X ) ! { (м -O"-'"-'-1 zb-\u)du. 
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Choose z(t) = yil)(t). Then for j = du dl e {0, 1, ..., n - / - 1}, from (9) with 
regard to (4) we have 

(10) I z«"(g(0) I >= . , 1 , w / [a - gW]""'-""11 ^(*"')(«) I du. 
\n — / — ax — i;i ffvf) 

From (9) for w € [g(0, i]9 </, e {0,1, . . . , n - / - 1}, j = 0, we get 

(11) I z(g(u)) | £ ^ ) ^ t f ) - l * | z<*>(g(0) I. 

From (10) in view of equation (1) we obtain 

I -(a,)(g(0) I >= -rr—T-d—W / -" " «(0]""'"',~11 X*00) I M du. 
^n — * — ax — i j . ff(f) 

From the last inequality using (7) and (11) we have 
/!(„ - I - 4 - l)!d,! £ /[u - g(t)Tl-'l~X\s(t) ~ «(«)]* [gto - ttymdu. 

git) 

So for t sufficiently large we get a contradiction to (6). This completes the proof. 
If for every / e {0, 1, ..., n — 1} we take dx = 0, we get the next corollary. 
Corollary 1. Suppose that for every Is {0, 1, ...,n - 1} such that n + I is 

odd the following holds 

(12) lim sup J [s - g0)]""'" l [g(0]' Ks)ds > /!(n - J - 1)!. 
<->oo f ( 0 

Then every solution of equation (1) is oscillatory. 

Corollary 2. [5]. Let n be odd and let for some de {0, 1, ..., n — 1} hold 

(13) lim sup J [s - rfOr"'"1 [*(0 - *tor P(5)ds > (it - d - 1)! dl. 
f - 0 0 0(f) 

Then every bounded solution of equation (1) is oscillatory. 
Proof. If y(0 is a bounded nonoscillatory solution of equation (1) then / = 0 

and we can apply Theorem 1. 
We introduce the notation: 

G(0 = max {s - g(s) : g(0 £ s % t}. 

Corollary 3. Let n be even and let 

(14) G(t) rg g(0 for t^T9Te [0, oo), 

hold and in addition 

(15) lim sup J [s - g(0r~2 g(s) P(s}ds > (n *- 2)!. 
t-+do g(t) 

Then every solution of equation (1) is oscillatory. 
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Proof. In view of (14) the condition (15) implies (12) and we can apply 

Corollary 4. Let n be odd, let (14) hold and in addition 

(16) lim sup J [s - g(t)f^p(s) ds > (n - 1)!. 
f-*oo g{t) 

Then every solution of equation (1) is oscillatory. 
Proof. In view of (14) the condition (16) implies (12) and we can apply 

Corollary 1. 

Example 1. Every solution of the retarded differential equation 

with regard to the condition (16) is oscillatory. One such solution is y(t) -= sin t 
But the corresponding ordinary differential equation has a nonoscillatory solution. 

Example 2. Consider the differential equation with retarded argument 

07) ^(o + JjLLjf.* \ 0) {>L 

The well-known sufficient condition which guarantees that every solution of 
equation (17) is oscillatory or limy(o(0 = 0, i = 0, 1, 2, 

f->oo 

] 2 - e , j[g(or"£KO^ = oo, *>o, 
is not satisfied. The conditions (14), (16) are satisfied. So every solution of equa
tion (17) is oscillatory. 

Remark 1. Theorem 1 holds for the following differential inequality too 

{y(M)(0 + p(t)y(g(t))} sgn y(g(t)) ^ o. 

3. Advanced equation 

In this section we are concerned with the differential equation (2) with advanced 
argument where #(0 and h(t) are continuous on [0, oo), q(t) > 0, h(t) > t, h(t) is 
nondecreasing. 

Theorem 2. Suppose that the following condition is satisfied 
Ht) 

(18)] lim sup f (s - t)sn'2 q(s)ds > (n - 1)!. 
f-*oo t 

Then equation (2) has no solution of degree / e {2, .'..,» — 1}. 
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Proof. Let y(t) be a positive solution of equation (2) on [f0, oo), t0 ^ 0, the 
degree of which is le {2,..., n — 1}, n ^ 3. It is easy to see that equation (2) 
for n = 2 has only (nonoscillatory) solutions of degree / = 1. With regard to 
Lemma lfrom (8) for j = /, k = it, t > t09 we have 

y{l)W ^ ( n , ? - ! ) ! { (" - 0""f"l«(i«)K*W)dii. 

We integrate the above inequality from t0 to t, t > t0, 

J'("1)(0 * ((n"~/)l" f ^ M >^ M >) d M -
Repeating this procedure we get 

y(o ^ 7 r = ^ r / -(«) K*(«)) d«-
We integrate the last inequality from t to h(t)9 t > t09 

j<*(0) £ 7 — ^ J q(u) y(h(u)) J (s - t0)
n~2 ds du, 

\n — L)\ t t 

i * (0 

y{h(t)) 5; {n _ 1}! J (ti - 0(M - *0r2«(«)K*W)dw-

Then 
*(0 

(it ~ 1)1 ̂  J(u - t)(u - toy~2q(u)du9 
t 

and for t sufficiently large we get a contradiction to (18). This proves the theorem. 

Remark 2. The Theorem 2 holds for the following differential inequality too 

{y(n)(0 + q(t)y(Kt))} sgnyWO) £ 0. 

4. Equation \ritn retarded and advanced arguments 

We shall consider the differential equation (3) with retarded and advanced 
arguments where p(t)9 q(t)9 g(t) and h(t) are continuous on [0, oo), p(t) > 0, #(0 > 
> 0, g(t) and h(t) are nondecreasing, g(t) < t9 limg(0 = oo and h(t) > t. 

f-*oo 

Theorem 3. Let n be even and let the following conditions hold 

(19) lim sup f (s - 0s"~2 q(s)ds > (n - 1)!, 
*->oo t 

(20) l imsupJ[s -g (0]" - , ' - 2 [g (0 -g(s ) ] ' ' g ( s )Ks)ds>(n-d-2) ! ( . ' ! , 
t-*oo 0(f) 

for some e/e {0,1, . , . , n - 2}. 
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Then every solution of equation (3) is oscillatory. 
Proof. Let y(t) be a positive solution of equation (3). Let y(g(t)) > 0 for 

/ e [to, oo), to i= 0- Then from (3) we obtain 

(21) y(n)(t) + q(t)y(h(t))<o, 
(22) y(n)(t)+p(t)y(g(t))<o. 

In view of the condition (19) and Theorem 2, the inequality (21) has no solution 
of degree le {2, ..., n — 1}. So y(t) has degree / = 1 and it is a solution of (22), 
which is a contradiction to the condition (20). This proves the theorem. 

In similar way we can prove the next theorem. 

Theorem 4. Let n ^ 3 be odd. Let (19) and (13) hold. Then every solution of 
equation (3) is oscillatory. 

Remark 3. Let n = 1 and let hold 
t 

limsup J p(s)ds > 1. 
t-oo g(t) 

Then every solution of equation (3) is oscillatory. 

Proof. Let y(t) be a positive solution of (3). Then y(t) is a solution of inequality 

y(t)+p(t)y(g(t))<0, 

which is a contradiction to the condition (13) for n = 1. 

Theorem 5. Let n be even. Let (19) and the following condition holds 

(23) lim sup g(í) J sn~2p(s) ds > (n - 1)!. 
t-*oo t 

Then every solution of equation (3) is oscillatory. 
Proof. Let y(t) be a positive solution of equation (3). Let y(g(t)) > 0 for te 

e [to> °°)> to = 0. From (3) we get (21) and (22). The inequality (21) has no solu
tion of degree / e {2, ..., n — 1}. Then y(t) has the degree / = 1 and it is a solution 
of (22). With regard to Lemma 1 and (22) from (8) for j = 1, k = «, t > t0, we 
have 

At) * {n 1 2 ) , J (u - o""2K«)Kg(«))<J«-
Integrating the last inequality from T to t, t > T ^ t0, we obtain 

x o - (» - 1)! ( * " T) ft" " T)""2p(»)y(g("))dt/. 

For i1 > T such that g(0 > T w e get 

•Kg(O) >= (n i 1}, [8(0 - T] f(« - T)-2p(u)y(g(u)) d«. 
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Since y(t) is nondecreasing then we have 

(» - i)! ̂  [g(0 - T] f (11 - rr2
P(u)dw, 

t 

which is a contradiction to (23) for sufficiently large t. 

Example 3. Consider the equation 

(24) /"(.) + ! > > ( . - i-Tt) + l y ^ + 1 * ) = 0. 

The conditions (19) and (13) are satisfied and so every solution of (24) is oscillatory 
by Theorem 4. The corresponding ordinary differential equation has a non-
oscillatory solution. 
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