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QUICKLY, MODERATELY AND SLOWLY 
OSCILLATORY SOLUTIONS OF A SECOND 

ORDER FUNCTIONAL DIFFERENTIAL EQUATION 

D. C. ANGELOVA, Sofia 
(Received April 11, 1983) 

Abstract. This paper considers the behaviour of quickly, moderately and slowly oscillatory 
solutions of the equation 

« 0 /('))' 4- /(*, y(A(t, y(t)))) = CM. t>t0eR* 

in the cases when lim inf r(t) > 0 and lim inf r(t) = 0 and when the deviation A(tf u) depends 
t~*00 t->00 

on the unknown function and may be of a retarded, advanced or mixed type. 

Key words. Oscillation, nonoscillation, quick oscillation, moderately oscillation, slow 
oscillation. 

1. Introduction 

We are concerned with the asymptotic behaviour of quickly, moderately and 
slowly oscillatory solutions of forced functional differential equations of second 
order 
(1) (r(t) y'(t))' + f(t, y(A(t, y(t)))) -= Q(t)9 tZtoeR1. 

As far as we know the first theorem about the asymptotic behaviour of quickly 
oscillatory solutions of the ordinary differential equations have been obtained by 
Lasota [4] and Luczynski [6]. Their results are generalized by Lasota, Yorke [5] 
and Bernfeld, Lasota [1]. Necessary conditions for existence of quickly oscillatory 
solution of the equation y"(t) + q(t) y(t) = 0 and sufficient conditions which 
causedall its solutions to oscillate quickly have been obtained by Singh [9]. 

For autonomous retarded systems with constant lag 

/(/) » f(y(t - A)) when f:Rn->Rn 

and 
y'(t) =f(y(t),y(t -.A)) when / : R2 - R1 

theorems classifying the behaviour of their quickly oscillatory solutions have been 
proved by Kaplan [2]. v 
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Sufficient conditions under which all bounded quickly oscillatory solutions of 
a more general equation with deviating arguments 

(2) [>„-i(0[... [ ' i (0[ 'o(0 *(')] '] ' . . . ] ' ] ' +a(t)f(x(gl(t))9...9x(gm(t))) = b(t) 

tend to zero as t -> oo, have been given by Philos, Staikos [7]. 

Asymptotically vanishing of moderately oscillatory solutions of the equation 

(3) y"(t) + a(t)y*(t-g0(t)) = Q(t) 

where a e (0, 1] and a is a ratio of odd integers, 

(4) y(n\t)+a(t)y(g(t)) = Q(t), 

(5) (r(t)y'(t))' + a(t)f(y(g(t))) = Q(t) 

and (2) has been investigated in [10], [11], [3] and [8] respectively. Conditions 
under which all moderately oscillatory solutions of (5) for r(t) = 1 are bounded 
have been given in [13]. 

The slowly oscillatory solutions of (5) have been studied in [12], [13]. 
In most of the papers cited it is assumed that the function containing the devia

tion is multipled by some positive function on t and the deviation is a delay 
(in [3, 10—13] and 0 S g0(t) S const in [10]). These hypotheses will not be required 
in the main results of this paper and furthermore the deviation A(t9 v) depends 
on the unknown function and may be of a retarded, advanced or mixed type. 

2. Assumptions, definitions and lemmas 

Here R1 = (-oo, oo), Rn = (-oo, oo)x ... x ( -oo , oo) and R+ = [0, oo). By 

n times 
C(A; B) we denote the set of all continuous functions/: A -> B where A9 B c Rx

9 

by C1(A;B)—the set of continuous differentiate functions f: A -* B and by 

* » - & • 

The functions r(t)9 f(t9 w), A(t9 v) and Q(t) in equation (1) will be assumed to 
satisfy hypotheses (A): 

Al. r(OeC([t0,oo);(0,oo)); 
A2. f(t9 u) e C([t09 oo)xRx; R1), uf(t9 u) > 0 for u # 0 and /( / , . ) is non-

decreasing for t ^ t0; 
A3. A(t9 v) e C([t0, oo) x R1; R*)9 lim A(t9 v) = oo for any fixed veR1; 

A4. e(0eC([t0 ,oo);^); 
A5. One of the following conditions holds: 
(a) A(t9.) is nondecreasing, 
(b) A(t9.) is nonincreasing, 
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(c) A(t9 vj = A(t9 v2) for | v± | = | v2 \9vxv2 £ 0, 
(d) A(t9 vx) = A(t9 v2) for | Vl | = 11;2 |, t ^ = 0 

for r = r0. 
In what follows the term „solution" applies only to nontrivial solutions of 

equation (1) which can be continuously extended for t = f0. Denote by S the set 
of these solutions of (1). 

The dependence of the deviation on the unknown solution y(t) of (1) yields the 
stickness to the zero solution. So it is necessary to precise the term „consecutive" 
zeros of y(t). We say that the point £v e (t0, oo) is a pick point for y(t)9 if y'(£v) = 0 
and | >>(£v) I = SUP I jKO I where TV e [t0, £v) is the largest zero of y(t) on the 

Itv, t v +l ] 

left from £v and TV+ J e (£v, oo) is the smallest zero of y(t) on the right from <JV 

(if the zeros TV and T V + 1 exist on [f0, oo)). If y(t) has only one zero Te [f0, oo) 
then we propose that TV = T and TV + X = oo when Tis on the left from £v and TV = 
= ô» TV+I = ^ when T is on the right from £v. If y(t) has no zeros on [t09 oo) 
then we assume that TV = t0 and TV + 1 = oo. The zeros TV and T V + 1 are said to be 
consecutive. The left and the right end of any interval of stickness to the zero 
solution are said to be consecutive zeros, too. Then the solution y(t) is said to be 
oscillatory if there exists an infinite set {?„}?= t of its consecutive zeros such that 
lim TV = oo; otherwise it is said to be nonoscillatory. The oscillatory solution y(t) 

v-»co 

is said to be quickly, moderately and slowly oscillating if the distance I tv + 1 — tv | 
between every pair of its consecutive zeros tends to zero as v -> oo, it is bounded 
and unbounded, respectively. 

Denote by S9Sq9Sm and Ss the sets of oscillatory, quickly, moderately and 
slowly oscillatory solutions of (1), respectively. It is clear that Sq c Sm and S = 
= Sm u Ss. 

To obtain the main results we need the following two lemmas: 

Lemma 2.1. [8] Let h e C'[t09co) be a moderately oscillatory function and 
lim h'(t) = 0. Then lim h(t) = 0. 

f-»oo *->ao 

Lemma 2.2. [7] Let h(t)e C[t09 oo) be a quickly oscillatory function and h'(t) 
be bounded. Then lim h(t) = 0. 

3. Moderate and quick oscillations 

First of all we study the behaviour of moderately oscillatory solutions of equa
tion (1). Researches in this direction on equations (2) - (5) are made by Singh 

[10, 11,13] and Kusano, Onose [3] in the cases when lim sup - j - - - < oo, 0 < 
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t+c ds 
< liminfr(t) <l limsupr(t) < oo, r(t) = 1 and limsup J -------- < oo for any 

f~>oo f-*oo f-*oo f r\s) 

c > 0, respectively. We distinguish the two cases lim inf r(t) > 0 and lim inf r(t) = 
f-*oo f-*oo 

= 0 and so we include the cases which are not discussed in cited papers. 
Our first theorem gives sufficient conditions for all moderately oscillatory 

solutions of (1) to be bounded. 
Theorem 3.1. Let conditions (A) be fulfilled, A(t, v) <1 t for any fixed veR1 

and there exist F(t) <p(t) e C([/0, oo); R+) such that lim ^ t l ) = <p(t) I^L ^ 
M-oo u u 

00 

<L F(t) forujrO uniformly for t ^ t0 and J F(t) dt < oo. Let either 
to 

00 00 

1. liminf KO = a > 0, f <p(t)dt < oo and J | Q(t)\dt < oo 
f-*oo fo fo 

or 
00 00 

2.1m inf r(t) = 0, J R(t) <p(t) dt < oo and J R(t) \ Q(t) \ dt < oo. 
f - • oo fo fo 

Then all solutions from Sm are bounded. 
Proof. Suppose that there exists y(t) e Sm such that 

(6) 1 m sup | y(t) \ = oo 
v f-»oo 

and sup | tv + 1 r- tv | <i M for every pair of its consecutive zeros, where M =-
y 

= const > 0. 
Using conditions 1 and 2 of theorem 3.1 we may find a number tx ^ t0 

such that 

(7) Uo«<-m 
and 

(8) }R(t)<p(t)dt<±-, 
tl L 

respectively. 
In view of A3 we may find a zero t2 ^ tx of y(t) such that A(t, v) ^ tt for t ^ t2 

and any fixed veR1, and in view of (6) we may choose the sequences {ty}*^ 
(of zeros of y(t)) and {&,}?-* i (of pick points of y(t)) in such way that t2 <i rt < 
< %2 < ... and Mx ^ sup \y(t)\, Afv+1 ^ Mv (v = 1,2, ...), lim My = oo, 

[ f i . fa ] *-*oo 

where Afv =- | XW !• Let £v o e any fixed pick point of y(t) and let for instance 
y(£¥) > 0 (The proof is similar when y(£v) < 0). In view of A5 we get 

tt <i A(t, 0) <i A(t, y(t)) <i A(t, Mv)<lt<i £v 

in the cases (a) and (c) and 
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tt £ A(t> My) £ A(uy(t)) £ A(t90) £t£Zv 

in the cases (b) and (d) for t e [xM, <JV). (Here TM is the largest zero of y(t) which is 
on the left from £v. The index p, may be greater than v since it is possible to exist 
sticknesses to the zero solution). Then | y(A(t, y(t))) \ ^ Afv for *€[%,<!;„] and 
using A2 we obtain 

(9) / ( / , - Mv) g f(t, y(A(t, y(t)))) £ f(t9 Mv) for t e [tM, f J . 

Integrating (1) from f e (t^, £v) to £v and using (9) we get 

(10) r(t)y'(t) = J/(s, y(A(s> y(s))))ds - J Q(s)ds £ J [/(s,Mv) + | Q(01]ds. 
t « » 

Dividing (10) by r(t) and integrating from x„ to £v we have 

Mv g J J ^ f f/(s, Mv) + I fi(s) |] ds dr -

= /a[/(s,Mv) + |e(s)|]dS)dQ -^-) = / (/ ^)[/(',M.) + |6(0l]d*. 

This inequality yields 

'-!(UW*+*!(i£H* 
Then using (7) and (8) we obtain the contradictions 

1 

and 

<y 
respectively. / 

Therefore all solutions from Sm are bounded and theorem 3.1 is proved. 
Now we will find conditions for vanishing at infinity of bounded solutions 

from Sm. 

Theorem 3.2, In addition to conditions (A) suppose that either 
00 00 

1. l iminfr(Oa s a>0» JIQ(0ldf<oo and J \f(t,u)\dt < oo for any fixed 
f ->00 fO *0 

ueR1 

0Г 

1 °° 
2. lim inf г(0 - °> Hm sup -T- - J 16(0I ds == 0 
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1 °° 
and lim sup —r-r- J | f(s, u) | ds = 0 for any fixed u e R1. 

I-* r ( 0 i 
Then all bounded solutions from Sm tend to zero as t -> oo. 
Proof. Let y(t) e Sm be bounded. Then we may find / = const > 0 and tx _ t0 

such that | y(t) | ^ / for t = tt. In view of A3, A5 and A2 we get (9) for Mv = / 
and t = t2 where t2 = tt is such that J(f, v) ^ ^ for f ^ f2 and any fixed v e R1. 

Since the oscillation of y(t) yields the oscillation of y'(t) we may choose a zero 
f3 > t2 of yf(t). Integrating (1) from te(t2, t3) to t3 and using (9) we obtain (10) 
for Mv = / and «JV = t3. Dividing (10) by r(t) we have 

/ ( O ^ - ^ J[/(s,/) + ie(5)l]d5. 

This yields in view of conditions 1 and 2 of theorem 3.2 y'(t) -> 0 as t -> oo. 
From lemma 2.1 we conclude that lim y(t) = 0. 

f~>00 

Theorem 3.2 is proved. 
From theorems 3.1 and 3.2 it follows that all solutions from Sm tend to zero 

as / -> oo. 
Since Sq a Sm we observe that the above results are valid for quickly oscillatory 

solutions of (1). 
The following theorem contains conditions which guarantee the vanishing at 

infinity of all bounded solutions from Sq. 

1. lim inf г(0 = a > 0, sup | Q(t) | < oo and sup | f(t, u) | < oo 
f-*oo fèfo f^fo 

Theorem 3.3. In addition to conditions (A) suppose that either 

lim inf r(0 = a > 0, su] 
f->oo fj>f 

/ for any fixed ue R1 or 

1 °° 
2. lim inf r(0 == 0, lim sup -T-T- J | Q(s) | ds < oo 

f->oo t-*ao r\V t 

1 °° 
and lim sup -r-r- J | /(s, u) \ ds < oo for any fixed u e R1. 

f-*oo r \ 0 f 

Then all bounded solutions from Sq tend to zero as t -+ <x>. 
Proof. Let y(t) e Sq be bounded and | y(t) \ g / for t i> tt = t0 and some / = 

= const > 0. As in the proof of theorem 3.2 we obtain (9) for Mv = / and t ^ 
= t2 = tt. Let TV — t2 and TV+1 be consecutive zeros of y(t) and £ve(Tv, TV+1) 
be a pick point of y(t). Integrating (1) from t e (TV, ^V) to fv and using (9) we obtain 
(10) for Mv = /. Dividing (10) by r(t) and having in mind conditions 1 and 2 of 
theorem 3.3. we conclude that y'(t) is bounded for t = t2. According to lemma 2.2 
lim y(t) = 0 and theorem 3.3 is proved. 

t->00 

The following examples illustrate the above theorems. 
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Example 3.1. Consider the equation 

(H) 

ř 2 7 s i n Л 1 \ 
28 sin t - Юř cos t - Гs inr \ Г / 

+ i+9 1 Ч 4 * ~ 2 , 

t8 0 * - i ) 4 

The theorems proved in [3, 8, 10, 11, 13] do not apply to (11) since r(t) = —r-

r 
Here r(t) = —-, f(t, u) = ~ , J(f, t;) = t - — and 

f2 t5 t8 

( _ 28 sin t - 10ř cos t - ř2 sin ř '"•-«('-7-) 
t8 (t 9 - 1 ) 4 

f3 — 8 1 satisfy conditions (A) and since R(t) = — - — and <p(t) = F(t) = —- ,it is easy to see 
3 f 5 

that condition 2 of theorem 3.1 is fulfilled. According to this theorem all moderately 

oscillatory solutions of (11) are bounded. Indeed, y(t) = —-— is such a solution 

of (11). 
Since condition 2 of theorem 3.2 is also fulfilled we conclude by this theorem 

that all bounded moderately oscillatory solutions of (11) tend to zero as t -• 00. 

In fact, y(t) = —-— is such solution of equation (11). r 
So, all moderately oscillatory solutions of (11) tend to zero as t -+ 00. 

Example 3.2. The equation 

(12) y"(t) + y(t - y2(t)) = sin (t - sin2 i) - sin t 
has y(t) = sin t as a solution. This solution is bounded and moderately oscillatory. 
Theorem 3.2 does not apply since condition 1 of it is violated. Condition 1 of 
theorem 3.3 holds, but this theorem guarantees vanishing at infinity only for 
bounded quickly oscillatory solutions of (12). 

Example 3.3. Consider the equation 

y(t + — -y2(t)\ 
m\ ( y'® V j . V t8 yX') _ 24s in t 2 -16f 2 cos* 2 -4 i 4 s in i 2 ^ 
1 } W / ? ? t 
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,'(, + ^ L J • 
sin I 

+ -r '-^-r*-, t*2. 

Here R(t)=] * .. i l * rffl - F(t) - 4" ' "&*) = < +4" ~ ^ 

and J(t, t;) £ / for t el 2, J - p - r J> <-Kt> v) ^ t for r ^ J-j—r ^ ^ 0. Conditions 

(A) are fulfilled. Since condition 2 of theorem 3.1 is not satisfied, this theorem 
does not apply. But condition 1 of theorem 3.2 holds and hence all bounded 
moderately (and hence, quickly) oscillatory solutions of (13) tend to zero as t -> 

-> oo. Indeed, y(t) -= —r—is such bounded quickly oscillatory solution of (13). 
r 

4. Slow oscillation 

Sufficient conditions under which all oscillatory solutions of (5) belong to Ss 
00 dt 

are given in [12] in the case when J --yy -= oo and a(t) *z 0 and in [13] in the 

case when a(t) = ax(t) + a2(t) where ax(t) > 0 and , { is bounded for large t. 
*i(0 

Theorem 2 of [13] guarantees the unboundedness of slowly oscillatory solutions 
of (5) on the above assumptions for a(t). 

We extend the Singh's investigations for equation (1) in the cases when 
lim inf r(t) > 0 and lim inf r(t) = 0. 

f->oo f-*oo 
oo 

Theorem 4.1. Let conditions (A) be fulfilled, J \f(t, u) \ dt < oo for any fixed 
to 

oo 

ue R1, A(ty v) g tfor any fixed v e R1, \ Q(t) | > 0 o n [f0, oo) and J | Q(t) \ dt = 

= oo, 

/(Md 

to 

= oo, and there exist <p(t), F(t) e C([t0, oo); JR+) such that lim J^ yU) = ^(0, 
| l l | - > 0 0 u 

^ F(t)for u #= 0 uniformly for t ^ tQ and\ F(t) dt < oo. Let ritter 
1/ t0 

00 

1. liminf KO = a > 0 and J <p(0<** < oo 
f-»oo *o 

or 
oo 

2. lim inf r(t) ^0 and J R(t) <p(t) dt < oo. 
f->oo to 

Then all oscillatory solutions of(\) belong to Ss. 
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Proof. Let Q(t) > 0 on [t0, oo) (The proof is similar when Q(t) < 0 on [t0, oo)). 
Suppose that there exists y(t) e Sm and let M == sup | TV+1 - TV | for every pair 

of consecutive zeros of y(t) where M =- const > 0. 
First we will prove that y(t) is bounded. Suppose it is not. 
In view of conditions 1 and 2 of theorem 4.1 we may find tx ^ t0 such that (7) 

and (8) hold, respectively. 
From (1) using the positiveness of Q(t) we obtain the inequality 

(14) (r(t)y'(t)Y £ -f(Uy(A(uy(t)))) for t^t0. 

As in the proof of theorem 3.1 we may choose TM, {V and My such that (9) holds. 
Integrating (14) from r e (rM, £v) to £v and using (9) we have 

(15) r ( 0 / ( 0 ^ / / ( s , M v ) d 5 . 

Dividing (15) by r(t) and integrating from TM to £v we get 

M - S H . . T I > ) / ( ' ' M - ) < " 
which yields 

^iOM^'-
Then using (7) and (8) we obtain the contradictions 

and 

< ^ M f f(t, Mv) . M ? .. . 1 
1 g i r * Af dt - — .^ r )dt< T 

<^1(\ ds\f(t,Mv) . ?„,* / X J 1 

respectively. 
Hence, >>(0 is bounded and we may find / = const > 0 and tx ^ t0 such that 

| y{t) | ^ / for t ^ tx. As in the proof of theorem 3.2 we get (9) for Mv = / and 
^ ^ ^ Let r3 > t2 be a zero of / ( t ) . 

Integrating (1) from t3 to t > t3 and using (9) we have 

r(t) y'(t) = J lQ(s) - /(*, y(A(s, y(s)))y] ds £ {lQ(s) - /(j,1)] d5 - oo 

from which it follows that y(t) is nonoscillatory. 
This contradiction proves theorem 4.1. 
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Theorem 4.2. In addition to conditions of theorem 3.1 suppose that \ Q(t) \ > 0 

on [t0, oo) and lim "f = oo for any fixed u # 0. 
*->oo \j\tiu)\ 

Then all solutions from S belong to Ss. 
Proof. Let Q(t) > 0 on [f0, oo). First we will prove that all solutions of S are 

upper unbounded. Suppose the contrary and let y(t)e Sand y(t) _ I fort ^ tt __ t0 

and some / = const > 0. As in the proof of theorem 3.2 we obtain that 

(16) f{t,y(A(t,y(t)))) _ f(t,I) for t_t2_tx. 

Dividing (1) by f(t, I) and using (16) we get 

(r(t) y'(t))' _ Q(t) f(t, y(Mt, y(t)))) > 6(0 _ { _, ^ 
f(t, l) f(t, l) f(t, l) = f(t, D ř-->oo 

from which it follows that y(t) is nonoscillatory. This contradiction implies the 
upper unboundedness of all oscillatory solutions of (1). 

Similarly we establish that all solutions from S are lower unbounded for Q(t) < 0 
on[/ 0,oo). 

If we suppose that there exists y(t) e Sm then according to theorem 3.1 we con
clude that y(t) is bounded which is a contradiction. 

Theorem 4.2 is proved. 
Finally we discuss the above theorems via several examples. 

Example 4.1. Consider the equation 

(17) f(t) + * ~ y2™ + f * ~ * ' » = 4 + sin (In 0 + 3 cos(ln 0 + 
r 

sin(^ - f4(l + sin (In Q)2) + t sin1/3(* - t4(l + sin (In Q)2) 

for t _ 2. Here r(t) = 1 and <p(t) = F(t) = —r-; Conditions of theorem 4.1 in the 
r 

case 1 are fulfilled. 
Verify that Q(t) > 0. We have 

s i n ( t - t 4 ( l + sin(lnO)2) ß(í) = 2 + sin(ln 0 + 3 cos(ln t) + 
í 3 

+ s in^-Al+sin( ln t ) f ) > 4 + s i n ( l n 0 + 

r 
1 1 29 

+ 3 cos (In 0 z T > -o- + sin (In 0 + 3 cos (In t). 
r r 8 

29 
Denote by V(t) the function V(t) = —- + sin (In t) + 3 cos (In t). Since the 

o 
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3 
relative extrems of W(t) occur for cotg(lnt) = 3 we have that W(t) > — for 

o 
00 

t = 2. Then Q(t) > 0 and J Q(t)dt = oo. 
2 

By theorem 4.1 all oscillatory solutions of (17) are slowly oscillatory. 
We note that theorems from [12, 13] do not apply to (17) since f(t9 u) = 
u + ta1/3 

Ѓ 

Example 4.2. Consider the equation 

0 8 ) ( i / w ) ' + JSL^/SL , i taiai. 
1 t2 - 1 1 

Here r(t) = — , R(t) = — ^ — , cp(t) = F(t) = — r and Q(t) > 0. Conditions of 
t 2 f 

theorem 3.1 in the case 2 hold and 

1 

lim , „ \ , = lim --—-- = lim - — r = oo for any fixed 1/5-O. 
r->ool/(',«0l t-00 M t-00 | w | 

r5 

Then by theorem 4.2 ail oscillatory solutions of (18) are upper unbounded, and 
slowly oscillatory. 

00 

This example does not treat by theorem 4.1. since J | Q(t) \ 6t < 00. 
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