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MONOTONICITY PROPERTIES
OF THE LINEAR COMBINATION
OF DERIVATIVES OF SOME SPECIAL FUNCTIONS

ZUZANA DOSLA-TESAROVA, Brno
(Received February 29, 1984)

Abstract. The principal concern here is with monotonicity properties of the zeros and related
quantities of the linear combination ay® + fy%+Y, i =0,1, ..., where «, # are real numbers
and y = »? is a solution of

Y +a()y +b(t)y =0.

In particular, the results are formulated for the functions aAi(—¢) + pAi’(—1), «C\(#) + BC.(1)
and aCJ(r) + BC,(t), where Ai(—¢) and C,(¢) denote Airy and Bessel functions, respectively,

Key words. Monotonicity properties—“‘Bocher-function’’-Airy function— Bessel function.

1. Introduction

In [4] J. Vosmansky derived certain higher monotomclty properties of i-th
derivatives of solutions of

M Y +a)y + bty =0

in the oscillatoric case. In [2] using the first accompanying equation there are
extended results from [4] to the function

O+ O + 2 ay®)  i=0,1,..

where y(¢) is a solution of (1) and functions a,(f) are defined by the same formulae
as A,(¢) below. The used method does not allow to formulate results for the linear
combination ay® + By**1), as there was deduced in [1] for the equation

¢) Y +f®y=0
in the case i = 0.
The aim of this paper is to investigate monotonicity properties of the zeros

of the linear combination ay® + ByU*V), where y = y® is a solution of (1),
and to apply obtained results on Airy and Bessel functions.
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Z. DOSLA-TESAROVA

Let a(r), b(¢) e C*(0, ). The transformation

u(t) = y(t) exp [—-—;—f a(t) dt]

transforms (1) in (2), where
3) 5 = b(t) - 5-a'(t) - a0,

In [3] it is proved that if y is a solution of (1) then the ,,Bocher-function‘
z = ay + By’ is a solution of

4 " aa""ﬂb' ), ( ab’+ﬁ(ab—ab))
@ = +(a+ﬂa2+ﬁ2b-—aﬁa R G o’ + p*b — afa =0

where «, B are real numbers such that a®> + 2 > 0 and a = a(¢), b = b(f) are
coefficients of (1).
Let us denote

ON K = K1) = o® + p* — ofa,

6 A= A1) = _aa'_—ﬂ_'_ _K

© A=t b iy —apa T K |
7 — =b ab’ + B(a’b — ab’) - —2’— ﬁz(a'b — ab’) .
@ B=50 th «® + b — afa b+aﬁK+ K

Analogously as in [4] let A, = A(f), B, = B(f) and define reccurently for i =
= 1, 2, ... functions A,(f), B(t) # 0 by formulae

Ai = Ai—l - B;{—1/Bi’

(®)
i B;=B;_+ Aj-y — A4;_1B{_,/B;_,
and for i = 0, 1, ... functions F; by
1, 1
(9)1 Fi:‘Bi__z—'Ai-TAiz'

Since the function F = Fy(r) defined by (9), plays an important role in our
study it is useful to express F(f) using coefficients of (1). By routine computation
we get

3[KP 1K 1 K b’ ﬁz(a'b—-ab)
(10) F”f—T[T(] o s i bR
where f(®) and K(¢) are defined by (3) and (5), respectively.
We shall study sequences {R{’}i2,, where R{ is defined for fixed 4 > —1,

. tx+1

11); R’ = RPW, 2) = I W(t) exp {% fAi(f) dr}lptyﬁ@)+ﬂy““"(t) [*dt,
) . ¢ ) P
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MONOTONICITY PROPERTIES

where y = y‘9(f) is an arbitrary (non-trivial) solution of (1), {t{"} denotes any

sequence of consecutive zeros of the function az® + Bz(+V (i = 0, 1, ...), where

z is any solution of (1) which may or may not be linearly independent of y; «, B are

real numbers such that a? 4+ B2 > 0 and W(¢) sufficiently monotonic function.

By special choice of W(t), 4, i and z(7) we can obtain R having different meaning.
A function f(¢) is said to be monotonic of order n over (0, ) if

(12) (=) f®H=z0 k=0,1,..,nte(0, )

and we write fe M,. If (12) holds for n = oo, f(¢) is called completely monotonic
(f(r) e M ). A sequence {t,} is said to be monotonic of order n if

(13) (=14 20 k=0,1,..;j=0,1,...,n

where 4% = t,, A, = A" 't — 4" 't, and we denote {f}e M,. If (13)
holds for n = oo, {#,} is called completely monotonic ({t,} € M,). If strict inequality
holds throughout (12) or (13) then we write fe M, or {t,} € M}, respectively.

2. Preliminaries

Lemma 1. If y = y(© is a solution of (I) then z = ay®® + By%*D i=0,1, ...,
is a solution of
(14)i Z” + Ai(t) Z' + Bi(t) zZ = 0,
where A;, B; are defined by (8);.

Proof. For i =0 Lemma holds according to [3] Let i = 1. Using
[4, Lemma 2.1] we get that if z = z(¢) is a solution of (4), i.e. of (14),, then

z = zU9(¢) is a solution of (14);. From this and from the linearity of the derivation
a conclusion follows.

Lemma 2. [4, p. 96] Let A(1) € My..,, B'({) € M}\,,, B(o0) — A*(0)/4 = & > 0,
B(t) > 0. Then for F,(t) defined by (9), it holds :

Fie M}, Fy(©)=26>0.
Lemma 3. Let i > 0, k < 0, x; > 0, x, < 0 be real numbers such that
(15) i+j+ k>0,
(16) —jxy 2 kx, if j<O.
Let ¢(t) be for t > x, defined by
j k

17 ) = — .

149



Z. DOSLA-TESAROVA

Ifj = 0 then ¢(t) € MX(x,, ).
Ifj < 0 then ¢(f) € M (z,, ), where 1, denotes the unique zero of the equation

t nt+l t nt+l
(18), G,.(t)Ei+j(t 5 ) +k< ) =0 te(x;,0),n=0,1,...
= X1

t— xz
Proof. The n-th (n = 0, 1, ...) derivative of ¢() has the form
e™(t) = (=) nlfit™ "+ 4 j(t — x,)"CFD 4 k(r — x,)" "+ D],

It is evidently seen that ¢™(#) € C(x,, o0) and therefore ™ changes the sign only
in the zeros of the equation ¢™(f) = 0.
The function G,(f) defined by (18), has the following properties:
Hm Gy =i+j+k>0, Git)=(n+ 1) [ —jxy(t —x) "2 — kxy(t — x3)"""2],
t=> o
G <0 and lim G,(f) = +© if j>0,te(x,, ),

t=x+

G\() >0 and lim G,(f) = —o0 if j<0,te(xy,o0).
t—->xy+
Thus, if j> 0 then G,(f) >0 for ¢t > x; and therefore (—1)" ¢™(t) > 0
(n=0,1,..). Let j < 0. Then (18), has the unique zero 7, in (x,, ). The rest
of the proof is the same as [5, proof of Lemma 2.3].

Corollary 1. Let aff > 0, v = 0 be real numbers and let P(t), A(?) be defined by
P(t) := (a® + B> > — aft — p*v?,
1 ap 28%?

19) Alt) 1= — — —— —

: P(t) —t—PTt)— for t > Xis

where
(20) x5 = [aB + Va2B* + 4(a® + B2) B2]2(2 + BY), x> x,.

If v > 3/4B%(a® + B?) then A(f) € My (x,, ).
If v2 < 3/4B%(a® + B?) then A(t) € M) (z,, ©), where 7, denotes the unique
zero of (18), with

. . 2ﬂ2v2
21 i=142024pY), j=-—2° ,
1) . ( ) J X1 = X2 X1(xy — x3)

o 2.2
k=—"F 22V
Xy — X2 X5(x3 — X3)

Proof. The function A(f) can be expressed in the form (17), where i, j, k are
defined by (21). It holds i > 0, x;, > 0, x, <0, x; — x, > 0, x;, + x, > 0. By
routine computation we get k < 0; j > 0<>v? > 3/48%(a®> + B2). From the fact
x,;x; = —B2v?/(a® + B%) we have the validity of (15). If j < O then (16) holds
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MONOTONICITY PROPERTIES

because 2B%v3(x; + x,)/x;x2(x; — x;) < 0 < af. Thus, the conclusion follows
directly from Lemma 3.

Lemma 4. Let i > 0, j < 0, k > 0 be real numbers and let Y(t) be for t > 0
defined by
L2 3j | 4k
\[I(!).=73—+ ?-4' -t—5—

Then

Yy eM; on (0,00) for 3(n+3)j* <8+ 4)ik,

vieMF on (—(n+ 3)j2i,0) otherwise.
Proof. The n-th derivative of () has the form

vt = (-1 ts}(“ 0.0, 0t =in+2)e 4 42- N, .;4)1 '

The function Q, is positive for ¢ € Rif 3j%(n + 3) < 8ik(n + 4) and in the opposite
case is surely positive for ¢t > —(n + 3) j/2i > x,, where x; is the root of Q,, i.e.

x3 = —(n + 3)j/4i + [j*(n + 3)*/4 = 2i(n + 3) (n + 4)/3]"/2.
Since Qi(t) > 0 on (—(n + 3) j/2j, o) for k =0, 1, ..., n the proof is complete.

Corollary 2. Let «f > 0, v = 0 be real numbers and @ = 88%/9a* — v2. Let h(t)
be defined by -

'

22) h(t):=%2- _2pt VB

t3 t*

If @ > 0 then A(f) e M% for t > 0.

If o <0then h(t)e M) for t > (n + 2) ww?/B,mn =0, 1, ... .

Proof. Let us put i = B3, j = —2apv?, k = v?*p% in Lemma 4. Let o > 0.
Then it holds # > 0 for ¢ > 0 and using Lemma 4 —#' € M% fort > 0,i.e. he M
for ¢ > 0. Now, let @ < 0. Then we have A > 0 for ¢ > 2av?/p and —h’ € M, for
t>m+3)av?/f n=0,1,..,q.e.d.

3. Statement of principal results

~ 3.1. General theorems. Using Lemma 1 and [4, Theorem 3.5] we have

Theorem 1. Let i = O be arbitrary fixed integer and W(t) € M,, W(t) > 0. For
the function Fy(t) defined by (9), suppose

FleM,  F;>0 for te(0, ), F(c0) > 0.
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Z. DOSLA-TESAROVA

Then it holds
RN e M,,
and, in particular
{4t} o e My,

consequently, the sequence of the differences of succesive zeros of a function ay® +
+ ByU* Y, where y(¢) is any solution of (1), is monotonic of order n.

If, in addition, W(t) is non-constant function, then the hypothesis F; > 0 may be
omitted. If W(t) € M, and the hypothesis F; > 0 is omitted then it holds {R{"} € M,.

Theorem 2. Suppose in (1)
at)=0.b'(t)eM,, b >0, >0 on (0, 00).

Let W(t) € M (0, o) and let 'R,‘ be defined by (11),.
If aB < O then {R}20 € M.
If af > 0 suppose, in addition, for some p = 0

23) BOHD = 0 (¢~ pEtD) £ (1P o f oo,
Then there exists e = e(n) € N such that {R}{ .y € M.

Remark 1. In the case a(f) = 0 we can (11), rewrite as

a1y Re= | W) exp {i | —‘ﬁ"—} oy + By’ [*dt =
) k ti 2 (Xz + ﬂzb :
th+1 ’ A
= [wey| LEB [,
t Va2 + B?b

Remark 2. Supposing af < 0, W(f) = 1 in (11)’ we obtain some results of [1].

3.2. Application for Airy functions

Consider
(24) Yy +et'ty=0

with ¢ > 0, where ¢ > 0 and u € (0, 1] are parameters. When ¢ = u = 1, (24) is
reduced to the equation

Y +ty=0,

which is satisfied by the linearly independent Airy functions Af( —1) and Bi(—1¥)
of first and second kind, respectively. Using Theorem 2 we obtain the following
result for generalized Airy functions.

Theorem 3. Let p e (0,1] and let y(t) be any non-trivial solution of (24). Then
. for R, defined by (11) it holds

152



MONOTONICITY PROPERTIES

R}ZoeM:  if 4B <0,
{Rk}:?_,e(,,)GM: if aﬂ > 0, n= 0, 1, ee

where e = e(n, a, B, c, ) is sufficiently great integer, i.e.if c =1, aff =1,n=0
itise = 2.
In particular the conclusion holds for the sequence of zeros of the function ay + By’'.

3.3. Application for Bessel functions

By a Bessel function of order v we mean any nontrivial solution C.(f) of the
Bessel equation

1 v2
(25), Y+ = (1 - y=0 te(0, o).
Let us define for ¢t > vand A > —1
dyic+1 ‘ 342 R
26). Ry = W(t aC, + BC, |*dt,
29 * aJ‘k ()[(a2+ﬁ2)t2—a t—-[izvz]‘”zl AGI
dvk+l

Q7). - ' = j W(t) exp l«C, + BCy|*dt,

j [ Ax(0) de

where {d,;} and {d,,} is a sequence of zeros of the function aC, + BC, and aC, +
+ BC; respectively and 4, = A — B'/B.

From [5, Theorem 17, [6, Remark 9.1] it follows that the sequence of differences
of zeros of C, is completely monotonic for every v but the sequence of differences
of zeros of C, is completely monotonic only for v > 1/2. It is interesting to compare
this fact with following theorems.

Theorem 4. Let aff > 0, v > 1/2 be arbitrary numbers. Let W(t) € M, and W(t) >
> 0 for t > v, let R, be defined by (26),.
Let m = m(n) := max (v, av’(n + 2)/f). Let p and e = e(n) be the smallest

integer satisfying d,, = v and d,, ,,, 2 m(n), respectively. Then

{Rvk}:;pEMoo lf V < 2)32/30: ’
{Rv,‘},“ie(,,)eM:, n=0,1,... otherwise,

In particular the conclusion holds for the sequence of differences of zeros of any
Junction aC, + BC,.

Theorem 5. Let aff > 0, v = 0 be arbitrary numbers. Let W(t)e M, and W(t) > 0
for t > v, let R, be defined by (27),. '

Let t, denote the unique zero of (18),; where i, j, k and x, are defined by (21)
and (20), respectively. Let y = y(n) : = max {x1, Tps v, av¥(n + 3)/B}. Let p and
q = q(n) be the smallest integer satisfying d,, 2 v and d,, ., > y(n), respectively.
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Z. DOSLA-TESAROVA
Then .

3 282
R, eMy i B A— ,
{ Vk}k 14 f 4ﬁ2(a2 + ﬁz) ) 3“2
{Ro}i- q(,,)eM,, -2 (n=2,3,...) otherwise.

In particular the conclusion holds for the sequence of differences of successive zeros
of any function aC, + BC,.

4. Proof (_)f Theorems 2, 3, 4, 5

Lemma 5. LétfeMw in(0<t< ) Then f® =0t % ast—> o, k=0,1,...
Proof. It is similar to [7, proof of Theorem 14a], where we suppose fe M,
in(0 £t < o).

Since fe M, in (0 <t < ) itis feM, in (6 £t < ), § > 0. Then from
[7, Theorem 3a, pp. 146] f(?) is analytic for ¢+ > &. For any number a > §

2 sy =)
fO=Y fPa-—7— (@G <t<2a-9).
k=0 : k. &1 -
Since each term of the series is positive when ¢ < a we have

F®a) (‘ a)' <f(t)Sf(6) (6 <t<a)
.E
Allowing ¢ to approach J this becomes

f®a )( ) <f(®) (b<a<wm)
Hence )
fPO=0(@-8)"H=00¢"% (¢->0,k=0,1,..).
Proof of Theorem 2. According to (10) we get

, , 3 Kr 27y 1 K” ’ I ’
rev-Z](&) [+ (%) +on()

where K = a® + p2b. It holds K > 0, K’ € M,,. Using [e.g. 4, Lemma 2.3] we
have 1/Ke M, b'/Ke M, (K"/K) € M, on (0, ).

1. Let aff £ 0. Then af(b'/K)' € M, and thus F'e M, on (0, o0). Since ' > 0
w ¢ have F’ > 0. '

2. Let «f > 0. From I’Hopital rule we get fori = 0, 1, ..., n b4*1) = (¢~ ¢+»),
U 1) 5 o(t~C+P*D) a5 ¢ — o0,
By Lemma 5 we have (1/K)®? = 0(t %), i = 0, 1, ... and thus
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MONOTONICITY PROPERTIES <

(b'/K)(i) = i (;) put ”(1/K)“_” = O(t"(“"’) . ‘-(l-.l)) = O(t-((-i-p)).

i=0
Hence there exists a; = a(i) > 0 such that
(=1)i+PHLpUt) o aBb'(K)* V) >0 fort >0, i=0,..,n

It holds ¢;,, > o, and thus b’ + «f(b'/K)' € M} for t > o,. Together we have
F' e M} for t > a,.

3. It remains to prove F(co) > 0. It holds K’(c0) = B2b’(c0). If b'(0) = O then
K"(0) =0 and Ffoo) = b(0) > 0. If b'(0) = ¢ > 0 then it holds ¢ < o,
K() = 00, K"(c0) = 0. Therefore F(c0) = h(c0) > 0.

Now, the conclusion follows from Theorem 1 for i = 0.

Proof of Theorem 3. In the case of the equation (24) there are a(f) = 0,
b(t) = ct* and thus b’ e M, b > 0, ' > 0 for ¢t > 0, ue(0, 1].

1. Let af < 0 and p e (0, 1]. Then conclusion follows directly from Theorem 2.

2. Let af >0 and pe(0,1). Then (23) is fulfilled for p =1 — u and by
Theorem 2 we have {R,;}i% . € M, . Let us compute e = ¢(0). By routine com-
putation we get

’ 2 201 __ -u ’
b’+aﬁ(b) b'— apuc B F 20 LD et = B g
(BPct + a’tt™*)? Bt

1/(e+1) 201 _ 1/u
for t > T, where T = max {(%) s (%Z) } Ife=1, af=1
c

then ef0) = 2.

3. It remains to prove the limit case u = 1 for af > 0. The functions A(¢), B(f)
in (14), are

A0 = A@O) = —pp*r7H(@® + Bt
B(t) = B(t) = t* + aput*~/(@* + B*t"), pe\0,1].

Since A,(f) - 4,(), B,(H) - B,() uniformly on [5,0), 6 >0 as u— 1_
have ay, () + By, (t) - ay,(t) + Byi(t) uniformly -on compact subintervals of
[6, ). It follows 1, — t,, as p —> 1_, k = 0, 1, ..., where t,x denotes k-th zero .
points of ay, + By, and y,is a solution of (24). From this we obtain fork =0, 1, ...

fuk+1 ’ i t, ket r A
lim Ry, = lim | W(r) M de= | way| -t g _ry,
u—1- u=1l— tue \/a + ﬂ Ct tik Ja + ﬁ ct

Fmally, because {Ri}i%em € M,, we have for k = e(n), e(n) + 1,
0 < lim (—~1)"4"R,; = (—1)"4" lim R,, = (~1)"4"Ry;,  qe.d.

u=1— i B
Remark 3. In the limit case u = 1 the function F defined by (10) is
=t + af/(a® + B*) — 3% /4(a® + B>
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Thus, if «f > O there exists ¢, = #(n) such that F > 0, F' > 0, F"e M, for t > t,,
n = 2,3, ... It shows ,,strength** of the sufficient condition in Theorem 1.

Proof of Theorem 4. In the case of the equation (25), there is a(t) = 1/, b(t) =
=1—v%¢ It holds ae M, e M_,, b >0 for t > v. Let us denote @ =
= 882?/9a® — v2. In the proof we use Theorem 1 for i = 0. We have by (3), (5)

K = o + B2(1 — v¥[t®) — afft, K' = af[t® + 2v?*B?/83,

K" = =2af/t® — 6v*B%[t*, f=1— (v —=1/4))3, [ =20% — 1/
It holds f" € M% for v > %, K'e M, on (v,00) and K > 0 on (v, ©) because K
increases and K(v) = a? + af/v = 0. Let us define the functions G(f), H(f) as
G(H) = (K" + aK')]2K

2
e H(t) = afb’/K + B*(a’b — ab’)/K.
Then,
2p2 2 2 2p2
comde (), e (o)

H = —(—1—) h + —Il<— k', where h(t) is defined by (22).

According to [4, Lemma 2.3] we have
1/KeM,, —(1/K)eM_, —%[(K’/K)z]’eMw, G eM, for t > v.

Using Corollary 2 we get H' e M% for t > v and H' € M} for t > av*(n + 2)/B,
if > 0 and w = 0, respectively.

Since we can write the derivation of F defined by (10) as

1\27)
F'=f’-—%[(-%—)]+6'+ﬂ’,

we obtain F'e MY and F'e M} for ¢t > v and ¢ > awv’(n + 2)/B, if @ > 0 and
o =< 0, respectively.

It is easy to verify F(o0) = f(0) = 1.

The proof is complete.

Proof of Theorem 5. According to Theorem 1 and Lemma 2 it suffices to prove
Ae M}, B e M}, B> 0 for t > y(n) and B(c0) — A*(©)/4 = 6 > 0.

It holds B’ = b’ + H’, where H(f) is defined by (28). Evidently b’ € M* for
t > v and by the same way as in the proof of Theorem 4 we prove H' € M2 for
t > vand H' € M} fort > av’(n + 2)/Bif ® > 0and w < 0, respectively. Together
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B e MY for t >v and B'e M} for t > av’(n + 2)/f if ® > 0 and w S 0, re-
spectively.
~ In the case of the equation (25), the function A(f) has the form (19). From
Corollary 1 it follows A € M* for t > x, and 4 € M} for t > 1, if v> > 3/4p% x
x (@ + B?) and v? < 3/4p%*(a® + B?), respectively.
It is easy to see that B(oo) — A4%(00)/4 = 1. The proof is complete.
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