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ARCHIVŮM MATHEMATICUM (BRNO) 
Vol. 21, No. 3 (1985), 147-158 

MONOTONICITY PROPERTIES 
OF THE LINEAR COMBINATION 

OF DERIVATIVES OF SOME SPECIAL FUNCTIONS 

ZUZANA DOSLA-TESAROVA, Brno 
(Received February 29, 1984) 

Abstract The principal concern here is with monotonicity properties of the zeros and related 
quantities of the linear combination oc/i} + #y u + 1 ) , / -= 0,1,..., where a, ($ are real numbers 
and y = yi0} is a solution of 

y" + a(t)f + b(t)y = 0. 

In particular, the results are formulated for the functions aAi(-t) + flAi'^t), ctCy(t) + f}Cv(t) 
and ocC'¥(t) + pCv(t)t where Ai(—i) and Cv(t) denote Airy and Bessel functions, respectively. 

Key words. Monotonicity properties—"Bocher-function"-Airy function—Bessel function. 

1. Introduction 

In [4] J. Vosmansky derived certain higher monotonicity properties of *-th 
derivatives of solutions of 
(1) y" + a(t)y' + b(t)y = Q 

in the oscillatoric case. In [2] using the first accompanying equation there are 
extended results from [4] to the function 

ay<° + jS(/ ,+1) + y a ^ O / 0 ) I - 0,1, . . . 

where y(t) is a solution of (1) and functions at(t) are defined by the same formulae 
as At(t) below. The used method does not allow to formulate results for the linear 
combination ay{i) + /ty(l+1), as there was deduced in [ l ] for the equation 

(2) y»+f(t)y = 0 

in the case / -== 0. 
The aim of this paper is to investigate monotonicity properties of the zeros 

of the linear combination oy(l) + Pyii+i\ where y -= y(0) is a solution of (1), 
and to apply obtained results on Airy and Bessel functions. 

147 



Z. DOSLA-TESAfiOVA 

Let a(t)9 b(t) e C°°(0, oo). The transformation 

u(0 = y(0exp - l j a ( 0 d r 

transforms (1) in (2), where 

(3) /(,)_b(0_i_„(0-la2(0. 

In [3] it is proved that if y is a solution of (1) then the „Bocher-function" 
z = cay + $y' is a solution of 

(4, ^ + f a + ? _ _ ^ _ _ _ ) z . + ft + ^ _ _ _ ^ _ _ _ ) z _ 0 > 
\ <x2 + p2b-aPaJ \ a2 + p2b- «Pa / 

where a, p are real numbers such that a2 + ft2 > 0 and a = tf(0, b = b(0 are 
coefficients of (1). 

Let us denote 

(5) K = K(0 = a2 + j - 2b - aj-a, 

/_r. __ n aa'- fib' K' 

(6) „_*0_.+,___A__.-_. 

(7) , _ W _ . + ,_i_^_i__. + «*+__£__. 
a2 + j?2b - aj3a -K K 

Analogously as in [4] let __0 = A(0, BQ
 = B(0 a n - define reccurently for i = 

= 1, 2, ... functions At(t)9 B^t) ^ 0 by formulae 

_li = _l i_1-B;_1 /B i , 
1 Bi = B i_1+_l i '_1~A i_1B:_1/JB i_1 

and for i = 0, 1, ... functions Ft by 

(9X Ft = Bi-±.Ai-jAt. 

Since the function F = Fo(0 defined by (9)0 plays an important role in our 
study it is useful to express F(0 using coefficients of (1). By routine computation 
we get 

l-lffl F-f 3 [ " * T . 1 K" • * „ * ' • «/? »' • P2(°'b-«1>') (10) F = / - 1 - ^ - J + T — + Tfl—+ a^-r + - , 

where /(*) and K(0 are defined by (3) and (5), respectively. 
We shall study sequences {i^0}£L0, where R$ is defined for fixed A > —1, 

(11), R<0 = j R ( 0 W A ) = = j ^(Oexp^A iAi(T)dT\\ay^(t) + p/i+1\t)\xdt9 
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MONOTONJCITY PROPERTIES 

where y = y(o)(0 1s an arbitrary (non-trivial) solution of (1), {4°} denotes any 
sequence of consecutive zeros of the function az(i) + j?z('+1) (i = 0, 1, ...), where 
z is any solution of (1) which may or may not be linearly independent of y; a, ft are 
real numbers such that a2 + P2 > 0 and W(t) sufficiently monotonic function. 
By special choice of W(t)> A, i and z(0 we can obtain B^ having different meaning. 

A function f(0 is said to be monotonic of order n over (0, oo) if 

(12) ( - l)V(fc)(0 = 0 * = 0, 1, . . . ,«, t 6 (0, oo) 

and we write fe Mn. If (12) holds for n = oo,f(0 is called completely monotonic 
(f(0 e M^). A sequence {tk} is said to be monotonic of order n if 

(13) (~l)jAJtk = 0 k = 0, 1, ...;j = 0, 1, ..., «, 

where A°tk = tfc, Antk = An~1tk+l - A""1^ and we denote {tk} e M„. If (13) 
holds for n = oo, {ffc} is called completely monotonic ({tfc} e M*,). If strict inequality 
holds throughout (12) or (13) then we write fe M* or {tk} e M*, respectively. 

2. Preliminaries 

Lemma 1. If y = y o ) is a solution of (1) then z = ay(i) + Py(i+1)
9 i = 0, 1, ..., 

is a solution of 

(14)! z' + ^ O z ' + H^Oz-O, 

where Ai, Bt are defined by (S){. 
Proof. For i = 0 Lemma holds according to [3]. Let i = 1. Using 

[4, Lemma 2.1] we get that if z = z(t) is a solution of (4), i.e. of (14)0, then 
z == z(0(0 is a solution of (14)j. From this and from the linearity of the derivation 
a conclusion follows. 

Lemma 2. [4, p. 96] Let A(t) e M*+2, B'(t) e M*+2, 5(oo) - ^2(oo)/4 = 5 > 0, 
5(0 > 0. Then for Ft(t) defined by (9)1 it holds 

F[ e M*, F^oo) = 8 > 0. 

Lemma 3. Let i > 0, k < 0, xx > 0, x2 < 0 fie red/ numbers such that 

(15) / + y + Jfc>0, 

(16) -jxt = fc*2 i/ j < 0. 

Let q>(t) be for t > xt defined by 
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Ifj > 0 then <p(t) e M* (x., oo). 
Ifj < 0 then <p(t) e M^(T„, oo), w/iere T„ denotes the unique zero of the equation 

(18)„ Gn(0 = i + i ( 7 _ ^ y + 1 + k(jZ^j*X= ° ' 6 < * f °°)> * - °> *> -

Proof. The n-th (n = 0,1,...) derivative of 9(0 has the form 

<p(»>(0 = (-l)»/i![/r ( B + 1 ) + j( t - xty<H+1) + Jfc(t - x 2 ) - ( n + 1 ) ] . 

It is evidently seen that <pin)(i) e C(x_, oo) and therefore q>w changes the sign only 
in the zeros of the equation <p(n)(t) = 0. 

The function Gn(0 defined by (18)n has the following properties: 

lim Gn(0 = i+j + k> 0, Gf
n(t) = (n + 1) *B[-fx_(t-x_)"n~2 - kx2(t- x2)-"""2], 

t->oo 

Gn(0 < 0 and lim Gn(0 = + 00 if j > 0, t e (x_, oo), 
*->xi + 

Gn(0 > 0 and lim Gn(0 = -oo if j < 0, / e (x_, oo). 
f-*.vi + 

Thus, if J > 0 then Gn(0 > 0 for t > x_ and therefore (-1)" <p(n)(0 > 0 
(w = 0, 1, ...). Let j < 0. Then (18)n has the unique zero T„ in (x_, oo). The rest 
of the proof is the same as [5, proof of Lemma 2.3]. 

Corollary 1. Let a/? > 0, v _ 0 be real numbers and let P(0, A(t) be defined by 

P(0 := (a2 + p2) t2 - ajSf - j82v2, 

where 

(20) x_,2 = [ajS ± Va2j?2 + 4(a2 + p2) j82v2]/2(a2 + p2), x_ > x 2. 

If v2 ^ 3/4j82(a2 + j82) then A(t) e M* (x_, oo). 
If v2 < 3/4p2(a2 + )32)thenA(0e Af*(Tn, oo), where Tn denotes the unique 

zero of (18)n with 

(21) i = 1 + 2(«2 + /?2), ; ^ — + 2p2y2 

xt — x2 x_(x_ — x2) 
,,_ «)8 .• 2/?2v2 

x^ — x2 x2(x_ — x2) 

Proof. The function A(t) can be expressed in the form (17), where i,j, k are 
defined by (21). It holds 1 > 0, x_ > 0, x 2 < 0, xt - x2 > 0, x_ + x 2 > 0. By 
routine computation we get k < 0; j > 0 <-> v2 > 3/4/?2(a2 + /?2). From the fact 
x_x2 == -~p2v2l(u2 + j82) we have the validity of (15). If j < 0 then (16) holds 
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because 2(}2v2(xi + x2)/xlx2(xl — x2) < 0 < a)?. Thus, the conclusion follows 
directly from Lemma 3. 

Lemma 4. Let i > 0, j < 0, k > 0 be real numbers and let $(t) be for t > 0 
defined by 

11 , 3; f 4fc 
*(*):= — + - T + - -

r r r 

iKO e M* on (0, oo) for 3(n + 3)j2 < S(n + 4) ft, 

^(0 e Af* 0w (- (» + 3)y/2/, oo) otherwise. 

Proof. The n-th derivative of ij/(t) has the form 

*no = c-D" --J--G-(O, axo = K» + 2)u2 + j - ^ i ^ - t + fci--±i-i. 

The function Qn is positive for te R if 3/2(» + 3) < 8ft(n + 4) and in the opposite 
case is surely positive for t > — (n + 3)j/2i > x3, where x3 is the root of QH, i.e. 

x3 = - (» + 3)y/4/ + [;2(« + 3)2/4 - 2i(n + 3) (n + 4)/3]1/2. 

Since Qk(f) > 0 on (-(TI + 3)J/2/, oo) for A: = 0, 1, *.., n the proof is complete. 

Corollary 2. Let a/? > 0, v ^ 0 be real numbers and ca = 8jt?2/9o^ - v2. Let A(t) 
be defined by • 

*2 r3 r4 

If ct> > 0 then h(t) e M* for t > 0. 
If co g 0 then h(t) e M* for t > (n + 2) av2/0, w = 0, 1, ... 
Proof. Let us put / = /?2, J = -2a/fv2, A: = v2/?2 in Lemma 4. Let co > 0. 

Then it holds h > 0 for t > 0 and using Lemma 4 -/*' e Af * for t > 0, i.e. h e M* 
for t > 0. Now, let co <; 0. Then we have A > 0 for t > 2av2/0 and -A' € Af,, for 
f > (n + 3) av2/j8 n = 0, 1, ..., q.e.d. 

3. Statement of principal results 

3.1. General theorems. Using Lemma 1 and [4, Theorem 3.5] we have 

Theorem 1. Let i ;> 0 be arbitrary fixed integer and W(t) e Mn, W(t) > 0. For 
the function Ft(t) defined by (9){ suppose 

Fie Mn, F; > 0 for t e(0, oo), Ft(oo) > 0. 
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Then it holds 

xR^}^0eMt 
and, in particular 

consequently, the sequence of the differences of succesive zeros of a function ocy(i) + 
+ />y(i+1), where y(t) is any solution of (I), is monotonic of order n. 

If, in addition, W(t) is non-constant function, then the hypothesis F\ > 0 may be 
omitted. If W(t) e Mn and the hypothesis F[ > 0 is omitted then it holds {Rk

l)} e Mn. 

Theorem 2. Suppose in (1) 

a(t) = 0, b'(i) e M^, b > 0, b' > 0 on (0, oo). 

Let W(i) G MJO, oo) and let Rk be defined by (11)0. 
IfoLp^Othen{Rk}?=0eMt. 
Ifotp>0 suppose, in addition, for some p _ 0 

(23) i(n + 1) =0( t - ( n + p ) ) b(n+1) # 0 ( r ( n + * + 1)) as t->oo. 

Then there exists e = e(n) e N such that {Rk}k=e(n) e Mn. 

Remark 1. In the case a(t) = 0 we can (11)0 rewrite as 

(11)' Rk ='7V(0exp |A J ~ ^ \\ay + py'fdt = 
tk \ 2 <x2 + p2b) 

fk+1 I av + 6v' lA 

= j w(t)\ 7 + p y = dr. 

I yja2 + p2b I 

Remark 2. Supposing aj? < 0, W(t) = 1 in (11)' we obtain some results of [ l ] . 
3.2. Application for Airy functions 
Consider 

(24) y" + cfy = 0 

with t > 0, where c > 0 and \x e (0, l] are parameters. When c = \i = 1, (24) is 
reduced to the equation 

y" + ty = 0, 

which is satisfied by the linearly independent Airy functions Ai(—i) and Bi( — t) 
of first and second kind, respectively. Using Theorem 2 we obtain the following 
result for generalized Airy functions. 

Theorem 3- Let \i € (0,1] and let y(t) be any non-trivial solution of (24). Then 
for Rk defined by (11)' it holds 
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xRk}^0eMt if* ajSfgO, 

{-Ween)eMn* if ccp > 0, n = 0,1, ... 

wAere e = e(n9 a, /?, c, //) is sufficiently great integer, i.e. if c = 1, a/)? = 1, n = 0 
if is e = 2. 

In particular the conclusion holds for the sequence of zeros of the function ay + fly'. 

3.3. Application for Bessel functions 

By a Bessel function of order v we mean any nontrivial solution Cv(t) of the 
Bessel equation 

(25)v f+Ly' + (l-^.\y = 0 < 6 (0, CO). 

Let us define for t > v and 1 > — 1 

dvk+i j3A/2 

<26)- ^°lw

[(.-+ >v->.-w i , c ' t > c : i ' J ' ' 
dvk+l 

(27)v Я ; t = í Ж(ř)exp 
ď 

A ; J^(t)dT lac; + дc;'iлdí, 

where {dvk} and {dvfc} is a sequence of zeros of the function aCv + PCV and <x.Cv + 
+ PC" respectively and Ax = A - £'/.#. 

From [5, Theorem l ] , [6, Remark 9.1] it follows that the sequence of differences 
of zeros of Cv is completely monotonic for every v but the sequence of differences 
of zeros of Cv is completely monotonic only for v > 1/2. It is interesting to compare 
this fact with following theorems. 

Theorem 4. Let ccP > 0, v > 1/2 be arbitrary numbers. Let W(i) e Mn and W(t) > 
> 0 for t > v, let Rvk be defined by (26)v. 

Let m = m(n) := max (v, av2(» + 2)/P). Let p and e = e(n) be the smallest 
integer satisfying dvp = v and dVte(n) ^ m(n), respectively. Then 

{Rvk}^peMt if v2<2/?2/3a2, 

{-̂ vk}fc--e(W)eM*, n = 0,1, ... otherwise, 

In particular the conclusion holds for the sequence of differences of zeros of any 
function <xCv + PCV. 

Theorem 5. Let a/? > 0, v ;> 0 be arbitrary numbers. Let W(t) e Mn and W(t) > 0 
for t > v, let R!vk be defined by (27)v. 

Let rn denote the unique zero of (18)'n, where ij, k and xt are defined by (21) 
and (20), respectively. Let y = y(n) := max {xl9 T„, v, av2(w + 3)//?}. Let p and 
q = q(n) be the smallest integer satisfying dvp ^ v and dViq(n) > y(n), respectively, 
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Then 

{R'yk}?=qin)eMZ-2 (n = 2, 3,...) otherwise. 

In particular the conclusion holds for the sequence of differences of successive zeros 
of any function aC'y + pC^. 

4. Proof of Theorems 2, 3» 4, 5 

Lemma 5. Let / e ¥«, in (0 < t < oo). 77te« /(fc) = 0(t~k) as t -+ oo, k -= 0,1, ... 
Proof. It is similar to [7, proof of Theorem 14a], where we suppose feM^ 

in (0 ^ t < oo). 
Since fe Mm in (0 < t < oo) it is / e M^ in (<5 ̂  t < oo), 5 > 0. Then from 

[7, Theorem 3a, pp. 146] f(t) is analytic for t > 8. For any number a> 8 

f(t) = £ fk)(a) ^ ^ - (8<t<2a- S). 

Since each term of the series is positive when t < a we have 

/<*>(*) (' 7 a)fc £ f(t) £ f(8) (8<t<a) 
Klim 

Allowing t to approach S this becomes 

flk\a)(3~k,
a)t <•/(<*) (<5<a<oo). 

Hence 
/<*>(*) = 0 ((t - ,5)-*) = 0(*"*) (/ -> oo, A: - 0, 1,...). 

Proof of Theorem 2. According to (10) we get 

where IT = a2 + 02b. It holds K>0, K'eMx. Using [e.g. 4, Lemma 2.3] we 
have \IK 6 M„, fc'/tf e M„, (K"IK)' e M„ on (0, oo). 

1. Let afi = 0. Then aP(b'/K)' e Mx and thus F ' e A/„ on (0, oo). Since b' > 0 
w e have F ' > 0. 

2. Let «0 > 0. From l'Hopital rule we get for / = 0,1, ..., n 6 ( '+1) = 0 ( r ('+'>), 
6 ( ,+ J> # 0(r ( '+ '+ 1>) as / - oo. 
By Lemma 5 we have (l/J-)(0 = 0(J* "*), / = 0,1, ... and thus 
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(&'/*)«> - | 0\bu+t\iiKf-J) = o(r^p). r«~J)) m o(r<,+»). 

Hence there exists <rt = <x(i) > 0 such that 

( - l )V + * + 1 (6 ( l + 1 > + <xP(b'/K)ii+i)) > 0 for t > <r„ / - 0 , . . . , n. 

It holds <rí+1 > <rt and thus V + <xp(b'/K)' e M* for t > <rn. Together we háve 
F e A f * for t > an. 

3. It remains to prove Fíoo) > 0. It holds K'(ao) = P2b\oo). If 6'(oo) = 0 then 
iT(oo) = 0 and Ffoo) = b(oo) > 0. If b\oo) = o 0 then it holds c < oo, 
£(oo) = oo, £"(00) = 0. Therefore F(oo) = 6(oo) > 0. 

Now, the conclusion follows from Theorem 1 for i = 0. 

Proof of Theorem 3. In the čase of the equation (24) there are a(t) == 0, 
b(t) = ct» and thus V e M w , b > 0, V > 0 for t > 0, ne(0,1], 

1. Let <x.p g 0 and ^ e (0,1] . Then conclusion follows directly from Theorem 2. 
2. Let ap > 0 and ju e (0, 1). Then (23) is fulfilled for p » 1 - /x and by 

Theorem 2 we háve {i^jJřUoo 6 ^ * - ^ e t u s c o m P u t e e — *(0)- By routine com-
putation we get 

\ K J (P2ct + *2tl-»)2 * pt2 

for t > T, where T = max j / ^ Y ' ^ 1 * , f^^^Y^l. If c = 1, <x/p - 1 

then efO) = 2. 
3. It remains to prove the limit čase n = 1 for a/? > 0. The functions ^(/), B(t) 

in (14)0 are 
^ ( 0 - A(t) = - ^ V " V ( « 2 + Z*2'*) 

* , (0 = *(') = * + *Piď*-l/(*2 + )8V), M 6 vo, 1]. 
Since >4M(r) -• ^ ( 0 , #M(0 -+ Bt(t) uniformly on [<5, oo), < 5 > 0 a s / < - * l _ w e 
háve ayM(/) + /%(0 -+ aj^ř) -f Py\{t) uniformly on compact subintervals of 
[5, oo). It follows t^ -*• tik as ^ -+ 1_, fc = 0, 1, ..., where í^ denotes fc-th zero 
points of oyM + /fyj, a n d ^ i s a solution of (24). From this we obtain for k = 0 ,1 , . . . 

lim RMfc 
B - » l -

= lim 
M - l -

í ^(0 
*M»c 

a-y* + Wu |A í l , k + l 

d í = l W(t) a^i + fiy'i 
V«2 + /?2cíM I "« I Va2 + /?2cí 

Finally, because {Jř^}".^,) e M*, we háve for fc = e(n), e(«) + 1, ... 

x dt = R !*• 

0 ^ lim ( - íy -d"!^ = (-1)M" lim R^ - (-1)"4"RU, q.e.d. 

Remark 3. In the limit čase /t = 1 the function F defined by (10) is 

F - ř + ajS/(«2 + ť0 - 3jS2/4(a2 + p2t)z. 
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Thus, if aj8 > 0 there exists tn = t(n) such that F > 0, F' > 0, F" e Mn for f > tnt 

n = 2, 3, ... It shows ,,strength" of the sufficient condition in Theorem 1. 

Proof of Theorem 4. In the case of the equation (25)v there is a(t) = l/t9b(t) = 
= 1 - v2/t2. It holds a e M^, V e M^, b > 0 for t > v. Let us denote co = 
= 8j82/9a2 - v2. In the proof we use Theorem 1 for i = 0. We have by (3), (5) 

K = a2 + JS2(1 - v2/t2) - aj8/r, K' = aj3/*2 + 2v2)32/*3, 

K" = -2ajff/73 - 6v2jS2/t4, f= 1 - (v2 - l/4)/r2, f = 2(v2 - 1/4)/*3. 

It holds f' e M* for v > —, K' e Mw on (v, oo) and K > 0 on (v, oo) because K 

increases and K(v) = a2 + a/?/v = 0. Let us define the functions G(t), H(t) as 

G(t) = (K" + aK')/2K 
(28) ' ' 

H(t) = ajSb'/K + 02(a'b - ab')/K. 
Then, 

H' = •~(-^-)h + —h', where ft(t) is defined by (22). 

According to [4, Lemma 2.3] we have 

1/KeMn, - ( 1 / K y e M , , - 1 [ (K ' /K ) 2 ] ' eMo0, G'eM„ for t > v. 

Using Corollary 2 we get H' e M* for f > v and H' e M* for t > otv2(n + 2)/p, 
if co > 0 and co g 0, respectively. 

Since we can write the derivation of F defined by (10) as 

F'-r-i[{^)']^^: 
we obtain F' e M* and F' e M* for t > v and t > av2(n + 2)/ft, if co > 0 and 
co :g 0, respectively. 

It is easy to verify F(oo) =f(oo) = 1. • . 
The proof is complete. 

Proof of Theorem 5. According to Theorem 1 and Lemma 2 it suffices to prove 
A G M*9 B' e M*9 B>0fort> y(ri) and B(oo) - ,42(oo)/4 = 8 > 0. 

It holds B' = *' + # \ where H(t) is defined by (28). Evidently V e M* for 
t > v and by the same way as in the proof of Theorem 4 we prove H' e M* for 
t > v and H' e M* for t > av2(n + 2)/j8 if co > 0 and co ^ 0, respectively. Together 
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B' e M* for / > v and B' e M* for t > av2(n + 2)/p if co > 0 and co <; 0, re­
spectively. 

In the case of the equation (25)v the function A(t) has the form (19). From 
Corollary 1 it follows A e M* for t > xt and A e M* for t > xn if v2 ^ 3/4/?2 x 
x (a2 + ft2) and v2 < 3/4j?2(<x2 + j82), respectively. 

It is easy to see that 2?(oo) — A2(oo)/4 = 1. The proof is complete. 
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