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NECESSARY AND SUFFICIENT CONDITIONS 
FOR THE CONVERGENCE OF APPROXIMATE 

PICARD'S ITERATES 
FOR NONLINEAR BOUNDARY VALUE PROBLEMS 

RAVI P. AGARWAL, Singapore, J A R O M l R VOSMANSKT?, Brno 
(Received April 3, 1984) 

Abstract. Nonlinear boundary value problem in R„ is considered and necessary and sufficient 
conditions for the convergence of approximate sequence of Picard's iterates to its unique solution 
are given. The generalized normed (vector norm) linear space and component-wise calculation 
are used. 

Key words. Picard's iterates, approximate sequence, convergence to solution, component-wise, 
generalized norm space, boundary value problem, spectral radius, error criterion. 

1. Introduction 

This is in continuation to our work [1] on nonlinear boundary value problems 

0.1) i f = «<*•'> 

(1.2) /(*) = 0, 

where x and g(x, t) are n dimensional vectors and f(x) is an operator from C(7) 
into R*, C(I) is the space of all real n vector functions continuous on / = [a, ft]. 

In what follows, a particular equation say (a . ft) of [1] will be refered as (1 . a, /?). 
Besides otherthings, theorem 1.4.1 ensures that the sequence {xm(t)} obtained 

from the iterative process 

xm^(t) = Ht[g(xM{t)9 t) - A(t)xm(t)-] + .ff2[L[*J ±f(xm)l 

(1.4.1) x0(t) = x(t)i m = 0,l,... 

converges to the unique solution x*(t) of (1.1), (1.2). However, in practical evalua
tion of these iterates, only an approximate sequence {ym(t)} is constructed which 
depends on approximating g and / by some simpler g* and /*. Therefore, the 
computed sequence {ym(t)} satisfies the iterative process 
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(1 3) ^ + l ( 0 = ^ f e ^ - W ' ° " ^'>*»«] + #aM>J ± / ^J ]» 
yo(0 = *0(0 = *(0; m = 0, l , . . . 

In section 2, we shall approximate g and / by g* and / * following relative error 
and absolute error criterion, and present two corresponding results. The important 
feature of these results is the necessary and sufficient conditions for the convergence 
of the approximate sequence {ym(t)} to the solution x*(t) of (1.1), (1.2). 

2. Convergence of the Approximate Iterates 

As in [1—3], we shall consider the inequalities between two vectors in RH 

component-wise whereas between two nxn matrices element-wise the generalized 
normed (vector norm) linear space B as C(7), where || x || = (max | xt(t) |, ..., 

..., max | xn(t) |). In (1.1), (1.2) the function g(x, t) is assumed to be continuously 
tel 

differentiate with respect to x in Rn x I and gx(x, t) represents the Jacobian matrix 
of g(x91) with respect to x; f(x) is continuously differentiate in C(I) and/,(x) 
denotes the linear operator mapping C(I) into R". 

Theorem 2.1. With respect to (1.1), (1.2) we assume that there exists an approximate 
solution x(t) and conditions (l.i) —(l.iii) of theorem 1.4.1 are satisfied. Further, let 
for all x(t) € S(x9 r), the following inequalities (corresponding to the relative error 
in approximating g and /by g* and/*) be satisfied 

(2.1) || g(x(t)91) - g*(x(t), t) || :g Ax || *(*(0, 0 ||, 

(2.2) l l /W-/*(*) II ̂ -42 11/00 II, 

where At and A2 are nxn nonnegative matrices with Q(AX)9 Q(A2) < 1. We also 
assume that Q(KA) < 1, where 

(2.3) KA = Mt(E + Ax) M3 + M2(E + A2) M4 + MXAX \\ A(t) \\ + M2A2 || L \\ 

and 
rA=(E- KJ-1 (Mi5t + M282 + MtAt(E - A.y1 || g*(Z(t), 0 II + 

(2.4) + M2A2(E - A,)"1 ||/*(x) ||) £ r. 

Then, 
(1) all the conclusions (1) —(5) of theorem 1.4.1 hold, 
(2) the sequence {ym(t)} obtained from (1.3) remains in S(x9 rA), 
(3) the sequence {ym(t)} converges to x*(t) the solution 0/(1.1), (1.2) if and only if 

(1.3) lim || ym+t(t) - Htlg(ym(t)91) - A(t)yJti] - HzM>J ± fiyJl II - 0 
m->oo 

also, 
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II x* - ym+l \\<.(E- KJ-1 [M^E - J.)"1 || g*(ym(t), t) || + 
(2.6) + M2A2(E - A^-1 || f*(yj || + K0 \\ ym+l - ym | | ] . 

Proof. Since Q(KA) < 1 implies Q(K0) < 1 and obviously rA = (E — KQ)'1 . 
. (Mt5t + M252), the conditions of theorem 1.4.1 are satisfied and part (1) follows. 

To prove part (2), we note that X(t) e S(X, rA), and hence if x(t) e S(X, rA), it is 
sufficient to show that 7X0 e $(•*> rj)> where 

(2.7) Tx(t) = HfeW), 0 - A(t) x(ty\ + H2{L{x\ ± / • (* ) ] . 

For this, from (1.4.2) and (2.7), we have successively 

Tx(t) - x(t) = //.Dr*(*(0,0 - g(x(t),0 - A(t)(x(t)- x(t)) - t,(t)~ + 
+ H2[Llx - x] ± (f*(x) - f(X)) ± e'] = 

= //1[g*(x(0,.v) - g(x(t), t) + 

+ J [g,(*(0 + «iW0 - *(0), 0 - .4(0] WO -x(t))d&t -1 (0] + 
0 , 

+ H2[±(f*(x) - f(x)) ± J [fx(x + 02(X - x)) ±L](x- X)d02 ±e'] 
o 

and hence 
(2.8) || Tx-X || = M.[J. || g(x(t), t) || + M3rA +5.] +M2[A2 \\f(x) \\ +M4rA +5 2 ] . 

Since Q(A1), Q(A2) < 1, for all x(t)e S(X, rA) inequalities (2.1) and (2.2) provide 

(2.9) || *(*(0,0 II << (E - A,)'1 || g*(x(t), t) ||, 

(2.10) ||/(x) || <. (E - A,)-1 (E - A,)'1 \\f*(x) ||. 

Next, we have 

II g(x(t), t) || = || g(x(t), t) - g(x(t), t) - A(t) (x(t) - X(t) || + 

+ lls(*(0,OII + \\A(t)\rA 

and hence from (2.9), we get 

(2.11) || g(x(t), t) || £ M3rA +(E-Ai)~
1 || g*(X(t), t) || + || A(t) || rA. 

Similarly, we find 

(2.12) || f(x) || = M4rA +(E-A2y
1 \\ f*(X) \\ + || L \\ rA. 

Using (2.11) and (2.12) in (2.8), we obtain 

|| Tx - X || = KArA + 

+ (M.5. + M252 + M1A1(E- A^1 II g*(X(t), 0 II + M2A2(E- J2)~* \f*(X) \) S 
<.KArA+(E-KA)rA-*rA. 

This completes the proof of part (2). 
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Next, we shall prove part (3). From the definition ofxm+l(t) and ym+t(t), we have 

* . + i (0 - y - + i ( 0 -»-.v.+i(0+-ffilXy-XO, 0 - At) yjt)] + H2[L[ym] ±f(yj] + 
+ H.WxJt), 0 - g(yjt), t) - A(t) (xjt) - ym(t))] + 

+ H2\L{xm - ym] ± (f(xm) -f(ym))] 

and hence, as in part (2), we find 

II * . + i - .vm + 11| _\ || ym+l(t) - H.igiyjt),0- A(t)ym(ty]~ H2_L[yM] ±f(yj] || + 
(2.13) + (MXM3 + M2MA) || xM - ym ||. 

Using the similar arguments for xjt) — ym(t) and substituting the obtained 
inequality in (2.13), we get 

\\xm+t- ym+l\\ _i 

£ jt *~~~l II y**-(f) - H__g(ytf), t) - A(t)y,(t)] - H2_L_y^ ± f(y,)] || + 

+ K2
0\\xm_1 - J ^ - I I I -

Continuing in this way, we obtain 

(1-10) \\xm+l-ym+t\\_l 

= I K"''« fl+iO) - Ht_g(yi(t), t) - A(t)yi(t)] - H2lL_yi] ± /(),,.)] || = Am (say). 
i = 0 

Using (2.14) in the triangle inequality, we find 

(2.15) I U * - > W i l l = - 4 m + | |xm + 1 - JC* ||. 

In (2.15), theorem 1.4.1 ensures that lim || xm+1 — x* || = 0. Thus, the condition 
m->co 

(2.5) is necessary and sufficient for the convergence of the sequence {ym(t)} to x*(t) 
follows from the generalized Toeplitz lemma [4] „for square matrix A = 0 with 

m 

Q(A) < 1, let sm = £ Am~~idi; m = 0, 1, ... Then, lim sm = 0 if and only if 
»=-0 m-*co 

lim dm = 0." 
m-.oo 

Finally, we shall prove (2.6). For this, we have 

**(0 - .v«+i(0 = #i[iK**(0, t) - g+(yjt), t) - A(t) (x*(t) - yjt))] + 
+ H2[L[x* - ym_ ± (f(x*) - f(yjj] 

and as in part (1), we have 

II *• - ym*i II = Mj_M3 || x* -ym\\+ A_(E - J,)"1 || g*(yjt), t) ||] + 
+ M2_MA || x* -ym\\+ A2(E - J,)"1 ,f*(yj ||] = 

ZK0lx*-ym+1 || + _M_A_(E - A^1 || g*(yjt), t) || + 
+ M2A2(E - A2)~

l \\f*(ym) || + K0 \\ ym+i - ym | | ] , 
which is same as (2.6). 
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Theorem 2.2. With respect to (1.1), (1.2) we assume that there exists an approximate 
solution x(t) and conditions (l.i)—(l.iii) of theorem 1.4.1 are satisfied. Further, 
let for all x(t) e S(x, r), the following inequalities be satisfied 

(2.16) || g(x(t)91) - g*(x(t), t) || ZA39 

(2.17) ! ! / ( * ) - / * ( * ) II =-4 4 , 

where A3 andA4 are nxn nonnegative matrices. We also assume that Q(K0) < 1, and 

r* = (E - Ko)"1 [M t(A3 + <5t) + M2(A4 + <52)] g r. 
Then, 

(1) a// the conclusions (1) —(5) of theorem 1.4.1 hold, 
(2) the sequence {ym(t)} obtained from (1.3) remains in S(x, r*), 
(3) condition (2.5) w necessary and sufficient for the convergence of{ym(t)} to x*(t) 

the solution 0/(1.1), (1.2) and 

II ** - y„+i II = (J? - Ko)"1 [ M ^ 3 + AM4 + *o II y«+i - ym II]. 

Proof. The proof is contained in the proof of theorem 2.1. 

Remark. Inequalities (2.16), (2.17) correspond to the absolute error in approxi
mating g and f by g* andf*. 
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