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A REMARK CONCERNING x-SYSTEMS 

JIŘÍ KARÁSEK, Brno 
(Received January 2,1984) 

Abstract. The paper deals with certain closure operators in commutative semigroups introduced 
by K. E. Aubert. It is shown that they form a complete lattice with respect to a natural ordering. 
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K. E. Aubert studied so-called x-systems in commutative semigroups in [1]. 
In Chapter 1, there is a proposition (Proposition 8) claiming that the family 3FS 

of all x-systems of finite character in a commutative semigroup S forms a complete 
sublattice of the complete lattice S£s of all x-systems in S with respect to a certain 
ordering > . In this remark, an example is given showing that the mentioned 
proposition is incorrect. A weaker theorem is proved below. 

An x-system in a commutative semigroup S is defined to be a mapping x of the 
set of all subsets of S into itself satisfying the conditions: 

1.1 A £ ^xfor any A £ S, 
1.2 A Q Bx=> Ax^ Bx for any A ^ S9 B ^ S9 

1.3' ABX £ Bx for any A £ S9 B £ S9 

1.3" ABX £ (AB)X for any A £ S, B £ S. 
An x-system in S is said to be of finite character if, for any A £ S9 Ax == \JNX 

(N £ A9 N is finite). The family of all x-systems in S (of all x-systems of finite 
character in S) is denoted by S£S

($FS). An ordering > is defined in Se^SF^ 
as follows: 

xx >- x2 if AXi £ AX2 for any A £ S. 

Theorem. The family &r
s of all x-systems of finite character in Sforms a sublattice 

of the complete lattice S£s of all x-systems in S with respect to the ordering > , 
i.e. when {Xi}iet is a finite family of x-systems of finite character then A *i ar*d 

iel 

V xt are both x-systems of finite character. Moreover, 9?s is a meet subsemilattice 
iel 

ofses. 
Proof. In [1], the proof of Proposition 8, it is shown that &s is a meet sub

semilattice ofSPs. Assume that x = V ** where {*<}*6r is a finite family of x-systems 
iel 
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of finite character. By [1], Proposition 7, Ax = fl .Ax< for all A £ 5. Clearly 
i e l 

.4X .2 U .rVx where N denotes a finite set. Conversely, assume that a e Ax = fl AXi. 
NCA > ' e l 

Then a e Alx. for all i e I. It follows that for all i e / there is a finite set Nl e A 
such that a e Nxr Consider N° = U Nl. N° is finite, N° := ,4 and a e N*t for all 

i s / . Hence a e fl Nx. = Nx £ (J Nx, where N denotes a finite set. Thus x is 

of finite character. 

Example. The following example shows that if {Xi}i€j is an infinite family of 
x-systems of finite character, then x = V xi neec- n o t be an x-system of finite 

character. 
Let S be the set of all ordinals less than or equal to the least infinite ordinal (o 

with their usual ordering. Let M = S — {to}. Define ab = min (a, b) for a e S, 
b 6 S. S is then clearly a commutative semigroup. Further, define a family {xt}i€ M 

of mappings of the set of all subsets of S into itself as follows: 
\S if there is a e A such that i ^ a, 
[{yeS: 3 ze A: y ^ z} if there is no a e A such that i g a. 

First, we shall show that {x(}ieM is a family of x-systems in S. Evidently, A £ AXi 

for all A £ £ and all ieM, so that the condition 1.1 is satisfied. Assume that 
A £ BXi for some A, B ^ S and some / 6 Af. Let r e AXi. If there is a e .4 s 2?x< 

such that i ^ a, then we have two possibilities: 
(a) There is b e B such that i <; b. Then BXi = S. 
(b) There is z e 2? such that a g z. Then i ^ z and f*X| = S again. 

Consequently, r e BXi in both cases. If there is z e A ^ BXi such that r ^ z, then 
we have two possibilities: 

(a) There is a e B such that i g a. Then fix. = S. 
(b) There is n e 2? such that z ^ u. Then r ^ « and reBXi. 

Again, reBXi in both cases. Hence, the condition 1.2 is satisfied. Now, assume 
that r e ABXi for some A, B ^ S and some i e M. There are s 6 A, t e BXt such 
that r = jf. If there is a e B such that i g a, then 5X< = 5 and reBxr If there is 
no a e . 8 such that i g a, then there is ze .5 such that t ^ z. Then, however, 
r ^ z and reBxr The condition 1.3' is satisfied. Again, assume that reABXi. 
Then there are s e A, te BXi such that r = st. If there is a e AB such that i g a, 
then (AB)Xi == 5 and r e (-4.ff)Xl. If there is no a e AB such that i £ a and there 
is b e B such that i ^ A, then there is no c e A such that i :g c. From this it follows 
that s < i. Two possibilities can occur: 

(a) t > y for all yeB. Then t ^ b ;> i > s, so that r = s/ = ^ = sb e Al.fi c 
£ (AB)xr 

(b) There is rfe.B such that t <> d. Then r = ^ ^ sdeAB. Thus re(ALB)X|. 
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If there is no b e B such that i g b, then there is z e B such that t <J z. From this 
it follows that r = st S szeAB. Thus r e (AB)Xi. The condition 1.3* is satisfied. 

Now, we shall show that {Xi}i€M is a family of x-systems of finite character. 
Assume that A i= S and ie M. Clearly AXi 2 U Nxt where # denotes a finite set. 

NCA 

Let r G y4x.. If there is a e A such that i ^ a, then r e {a}Xi = S. If there is no a e -4 
such that i :g a, then there is zeA such that r —: z. Thus re {z}X|. Hence re 
e U NXi where N is a finite set in both cases. 

NCA 

x = V *t is, however, not an x-system of finite character. In fact, Mx = 
ieM 

= f| MXi = S, while Nx = f| -Vx, = {y e 5: 3 z e N: y £ z} for any N c Af such 

that 1Vis finite, so that U -Y* = M ^ 5 = Mx. 
JVCM 
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