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Abstract. Let k be an integer, k ^ 2, Mk = {1, 2, ..., 2k - 1}, let i^k be the set of all 
(k — l)-element subsets of Mk. The odd graph Ok is the graph whose vertex set is "fr

k and in which 
two vertices are adjacent if and only if they are disjoint as sets. Various properties of odd graph 
are studied. 

Key words. Odd graph, chromatic number, distance, diameter, radius, geodetic graph, domination 
number, domatic number. 

In [2] the concept of the odd graph is introduced. Here we shall show some of 
its properties. 

Let k be an integer, k ^ 2. Let Mk = {1, 2, ..., 2k - 1}, let ir
k be the set of 

all subsets of Mk which have the cardinality k — 1. The odd graph Ok is the graph 
whose vertex set is ir

k and in which two vertices are adjacent if and only if they 
are disjoint (as sets). 

The graph 02 is the complete graph K3 with three vertices, the graph Oz is the 
well-known Petersen graph. 

First we determine the chromatic numbers of odd graphs. 

Theorem 1. The chromatic number of every odd graph is equal to 5. 
Proof. Consider an odd graph Ok. Let °UY be the set of all sets belonging 

to fr
k and containing the number 1, let <W2 be the set of all sets belonging to 

Vk - ^ x and.containing the number 2, let $r3 ==- Tk - (<%t u <%2). Any two 
elements of %x are non-adjacent (as vertices of Ok)9 because their intersection 
contains the number 1 and therefore it is non-empty. Hence (%l is an independent 
set in Ok and analogously so is <^2. Now let Xe <%39 Ye<%3. Then the sets X9 Y 
are subsets of the set Mk — {1, 2}. This set has the cardinality 2k — 3, while each 
of the sets X9 Y has the cardinality k - 1. If X9 Y were disjoint, their Union X u Y 
would have the cardinality 2(k - 1) which is greater than the cardinality of Mk — 
— {1,2}; this is impossible. Therefore X n Y + 0 for any two elements X, Y 
of (JU3 and °U3 is an independent set in Ok9 too. The vertices of Ok can be coloured 
by three colours 1, 2, 3 in such a way that by the colour i (i == 1, 2, 3) the vertices 
belonging to 45̂  are coloured. This colouring is admissible; no two vertices of the 
same colour are adjacent. We have proved that x(Ok) f* 3, where x(Ok) is the 
chromatic number of Ok. 
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Now we shall construct the sets Xx, ...,Xk and Yx, ..., Yk as follows. We put 
Xx = {1, ..., k — 1}. If Xx is constructed for some i, then we put Yt = Mk — 
— (X| u {2k — /}). If Y( is constructed for some i, then we put Xi+X = Mk — 
- (Ff u {/}). The reader himself may verify that then Yk = Xx. Further J , n 7, = 
= 0 for i = 1, ..., k and Xi+l n Yf = 0 for i = 1, ..., k - 1. Therefore X1? Yx> 

X2, Y2, ..., Xk, Yk = Xx are vertices of a circuit in O* having the length 2k — 1 
which is an odd number. Hence Ok is not bipartite and x(Ok) = 3. Together with 
the previous inequality this yields x(Ok) = 3. 

Now we shall study the distance in Ok. 

Theorem 2. Let U, V be two vertices of the graph Ok, let \ U n V| = m. Then 
the distance of the vertices U, V in Ok is A(m) = min (2m -f 1, 2k — 2m — 2). 

Remark. The vertices of Ok are denoted by capital letters, because they are sets. 
Proof. If for two pairs Ux, Vx and U2, V2 of vertices of Qk we have | Ux n Vx | = 

=-» | U2 n V2 |, then evidently there exists a permutation of the set Mk which maps 
Ux onto U2 and Vx onto V2; this permutation induces an automorphism of Ok 

which again maps Ux onto U2 and Vx onto V2. This implies that the distance 
of two vertices of Ok is a function of the cardinality of their intersection and we 
may denote it by zl(m), where m is this cardinality. Now let us have two vertices U, 
Vof Ok, let m = | Un V\. If m = 0, then f/n V = 0 and the vertices U, Vare 
adjacent; their distance is 1, therefore A(Q) = 1, which fulfills the assertion. If m = 
= k - 1, then U = V, because | U\ = | V| = k - 1. The distance of U and V 
is 0, therefore zl(k — 1) = 0, which again fulfils the assertion. Now let m be an 
arbitrary integer such that 2 ^ m = k - 2. We have | U - V | = | V - U | = 
= k - 1 - m, | Mk - (J7u V) | = m + 1. Let P be the shortest path in Ok 

connecting C/and V. Let U0 (or V0) be the vertex of P adjacer.t to C/(or Vrespect-
ively). Evidently d(U,V) = d(U0, V0) + 2, where d denotes the distance of two 
vertices. We have U n U0 = Vn V0 = 0, therefore the intersection U0 n V0 e 
C /\/k - (U u V) and | U0 n V0 | g m -F 1. On the other hand, the set U0 can 
have at most k — 1 —m elements in common with V and the other vertices of U0 

belong to Mk ~ (U u V), hence | t/0 n (Affc — (U u V)) | ^ m and analogously 
| V0 n (Mk - ( t / u V)) | = m. This implies | U0 n V0 | ^ m - 1. Thus there are 
three possibilities for the cardinality of U0 n V0, namely m — 1 or m or m + 1. 
As Pis the shortest path connecting Uand V, the sets U0, V0 must be chosen so 
that their distance might be the least possible, i.e, d(U0, V0) = min(.d(m .— 1)> 
A(m\ A(m+ 1)). As A(m) = d(U, V) = J(C/0, V0) + 2, the equalities d(£/0, V0) = 
=- zl(m) and | U0 n V0 | = m are impossible.There can be only either d(£/0, V0) = 
= m - J and ,4(m) = _4(m - 1) + 2, or d(U0, V0) = m -f 1 and zl(m) = 4(m + 1) + 
+ 2. Suppose that ,4(m) = A(m - 1) + 2 holds, hence d(U0, V0) = zl(m - 1) 
and | UQ n V0 | = m -r- 1. If m = 1, then C/0, V0 are adjacent and </(£/, V) = 
= J(l) = 3 (evidently it cannot be less) which fulfills the assertion. If m ^ 2, 
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consider the interrelation between A(m - 1) and A(m — 2). Analogously there is 
A(m - 1) = A(m - 2) + 2 or A(m - 1) = A(m) + 2. But, as we have supposed 
A(m) = A(m — 1) + 2, we must have A(m - 1) = A(m - 2) + 2. Inductively 
we can prove that if A(m) = A(m — 1) + 2 for some m, then A(p) = A(p — 1) + 2 
for each integer p such that 2 g p g m. Analogously if A(m) = A(m + 1) + 2 
for some m, then A(q) = A(q + 1) + 2 for each integer q such that m £ q ^ 
g k - 2. As we have proved 4(0) = \,A(k - 1) = 0, the function A(m) is uniquely 
determined as A(m) = min(2m + 1, 2k - 2m - 2). 

Corollary. The diameter and the radius of the graph Ok are both equal to k — 1. 
The number k — 1 is evidently the maximum of A(m); it is attained in m = 

-= (fc — l) for fc odd and in m = — k — 1 for k even. As Ok is vertex-transitive, 

its radius is equal to its diameter. 

Theorem 3. The graph Ok for every integer k ;> 2 is geodetic. 
Proof. In the proof of Theorem 2 we have shown that for given vertices U, V 

the vertices U0, V0 (the vertices adjacent to U and V respectively in the shortest 
path connecting U and V) are determined uniquely. Thus by induction we can 
prove that whole the shortest path between U and V is uniquely determined. 

The graph Ok is an example of a geodetic graph of the diameter k — 1 which is 
simultaneously regular of the degree k. 

In the sequel we shall use a certain labelling of edges of Ok. 
Let e be an edge of Ok, let U, V be its end vertices. Then by X(e) we denote the 

element of the one-element set Mk — (U u V). 
An edge-dominating set in a graph G is a subset D of the edge set E(G) of G 

with the property that to each edge e e E(G) — D there exists an edge / e D such 
that the edges e,/have a common end vertex. The minimal number of vertices 
of an edge-dominating set in G is called the edge-domination number of G. 

Analogously to the domatic number of a graph [1] we may define the edge-
domatic number of a graph G. 

An edge-domatic partition of a graph G is a partition of the edge set E(G) of G, 
all of whose classes are edge-dominating sets in G. The maximal number of classes 
of an edge-domatic partition of G is called the edge-domatic number of G. 

\ 1 2k — 2\ 
Theorem 4. The edge-domination number of the graph Ok is equal to — . . f J 

2 v k - 1/ 
and its edge-domatic number is equal to 2k — 1. 

Proof. Letfe Mk and let Ej be the set of all edges e of Ok such that X(e) = / 
Let/be an edge of Ok not belonging to Ej, let X(f) = fc. Then A; =f= j . Let CjV Fbe 
the end vertices of/ Exactly one of the sets U, V contains the element/; without 
loss of generality let it be U. Let W = Mk — (Vu {j}); then V and W are joined 
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by an edge belonging to Ej. As/was chosen arbitrarily, we have proved that Es 

is an edge-dominating set (for an arbitrary j). 
Now let us look for the cardinality of Ej. If Xis an arbitrary subset of Mk — {j} 

of the cardinality k - 1 and Y = Mk — (X u {j})9 then the vertices X9 Y are 
joined by an edge belonging to Ej and vice versa. The number of subsets of Mk — 

( 2k — 2\ 
j . Having in mind that for 

a subset X of Mk — {j} of the cardinality k - 1 the set Y = M* - (X u {j}) is 
also a subset of Mfc — {;} of the cardinality k — 1, we find that the number of 

unordered pairs {X, Y} of described sets is — I J and this is also the cardinal­

ity of Ej. This number does not depend onj, thus all the sets Ej forj = 1, ..., 2k - 1 
have equal cardinalities. The edge-domination number of Ok is thus at most 
I 2k — 2\ 

— [ . J and its edge-domatic number is at least 2k — 1. 

The edge-domatic number of a graph is evidently equal to the domatic number [1] 
of its line-graph. The degree of each vertex of the line-graph of Ok is 2k -- 2 and 
this implies [1] that its domatic number (and thus the edge-domatic number of Ok) 
is at most 2k — 1. We have proved that the edge-domatic number of Ok is 2k — } . 

Now suppose that there exists an edge-dominating set D of a cardinality d < 

< — f , 1. For each edge e e D the set consisting of e and all edges having 

a common end vertex with e has the cardinality 2k — 1. As each edge of Ok either 
is in D9 or has an end vertex in common with an edge of D, the number of edges 

of Ok is at most d(2k - 1) < -1 (2k - 1) ( 2 k ~ 2\ = -i- k (2k ~ [ J . But the 

number at the right-hand side of this inequality is the number of edges of Ok. 

{ The number of vertices is f . j and the graph is regular of the degree k. J As 

d(2k — 1) is less, we have a contradiction. Thus each Ej is an edge-dominating set 
1 /2k — 2\ 

of the least cardinality and the edge-domination number of Ok is — I _ J. 

Theorem 5. Let Tk be a tree with the vertex set {a, b, ci9 ..., ck„i9 di9 ..., dk„t} 
and with the edges ab9 aci9 bd( for i = 1, ..., k — 1. Then the graph Ok can be 

1 /2k — 2\ 
decomposed into — I , J pairwise edge-disjoint subgraphs which are all iso­

morphic to Tk. Moreover, each of these subgraphs contains exactly one edge from 
each set Ejforj = 1, ..., 2k — 1. 

Proof. Let ye {1, ..., 2k — 1}, let Ej have the same meaning as in the proof 
of Theorem 4. Let ei9 e2 be two elements of Ej. Suppose that these edges have 
a common end vertex U. Let Vt (or V2) be the end vertex of ei (or e2 respectively) 
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distinct from U. Then Mk - (U \J VX) = Mk - (£/u V2) = {j} and U n Vt -
= t / n V2 = 0. This implies Vx = V2 and also et = e2, because 0* is a graph 
without multiple edges. We have proved that there exist no two distinct edges 
of Ej which would have an end vertex in common. Now suppose that to the edges 
ex, e2 of Ej there exists an edge/which has common end vertices with both ei9 e2. 
Let Ux (or U2) be the common end vertex of ex (or e2 respectively) and/. Let Vx 

(or V2) be the end vertex of ex (or e2 respectively) distinct from Ux and U2. Then 
Mk - (Ux u Vx) = Mk - (U2 u V2) = {j}9 Ux n Vx = U2 n V2 = Ux n t/2 = 0. 
This implies that none of the sets Ux, U2, Vx, V2 contains j . As Ux n U2 = 0, 
we have Mk — (C/x u U2) = {j} a n d / e ^ - . According to the above proved this 
is possible only if ex = e2 = / . Therefore if X(ex) = X(e2) and ex =t= e2, then the 
distance between an arbitrary end vertex of ex and an arbitrary vertex of e2 is 
at least 2. 

Now let e be an edge of Ok. Let G(e) be the subgraph of Ok consisting of the 
edge e, all edges having a common end vertex with e and of end vertices of all 
of these edges. This is a tree isomorphic to Tk. If ex, e2 are two distinct edges 
of G(e), then either they have a common end vertex, or there exists an edge of G(e) 
which has common end vertices with both of them. According to the above proved 
the labellings of edges of G(e) are pairwise different. 

Let 3T(J) be the set of subtrees G(e) for all edges eeEj. Any two distinct trees 
from 2T(J) are edge-disjoint; otherwise there would exist two distinct edges of Ej 
with a common end vertex or with the property that there exists an edge having 
common vertices with both of them. The cardinality of 3T(j)h equal to that of Ej9 

1 (2k — 2\ 
namely — I , _ ) . Each tree from 3T(j) has 2k — 1 edges. Hence the union 

1 f2k — 2\ 1 (2k — l \ 
of all trees from y(j) has —| J. (2k - 1) = — k f , _ * ) edges and this 
is the number of edges of Ok. We have proved that 3T(]) is the required decom­
position. 

To contract an edge of a graph means to delete this edge and to identify its 
end vertices. 

Theorem 6. The graph Ok(j) obtained from Ok by contracting every edge e with 
X(e) = j , where j is an integer between I and 2k — 1, is a bipartite graph. 

Proof. By the described contractions each tree from &*(j) is transformed into 
a star. Hence Ok(j) is a graph which is the union of edge-disjoint stars with the 
property that each of them contains all edges incident with its centre in Qk(j). 
Every graph with this property is bipartite. "" / 

Let &(ri) be the set of all linear orderings of the set {1, ..., n}. Let ni9 n2 be 
elements of &(n). We say that nX9 n2 are dihedrally equivalent, if either nx = n2,. 
or n2 can be obtained from nx by acyclic permutation, by reversing or by a super-
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position of a cyclic permutation and a reversing. The relation thus defined is 
evidently an equivalence on the set ^(n). 

Let C be a circuit of the length n whose edges are labelled by pairwise different 
numbers from the set {1, . . . ,«}. If we run around C and write the labels of the 
traversed edges, we may obtain different linear orderings of the set {1, ...,«} 
according to in which vertex we have started and in which sense we have gone. 
These orderings form one class of the dihedral equivalence. We may say that to C 
a class of the dihedral equivalence on 0>(ri) corresponds. 

The number of classes of the dihedral equivalence on &(ri) is evidently equal 

tol(*- 1)!. 

Theorem 7. The graph Ok with the labelling X is the union of— (2k — 2)!circuits 

of the length 2k — 1 which correspond to pairwise different classes of the dihedral 
equivalence on 0>(2k — 1). Each edge of Ok belongs to (k — l)!2 and each vertex 

to — k\(k — 1)! such circuits. 

Proof. Let ^ be a class of the dihedral equivalence oh &>(2k — 1). Let n e <€ 
and [ai9 ..., 02*-i] — n- Le t £/i = {ai I * even, 2 _ i _ 2k — 2}. We construct 
the sets U29 ..., £/2fc-i recursively. If Ut is constructed for some /, then Ui+l = 
= Mk — (Ut u {/}). Any two vertices Ui9 Ui+l are adjacent in Ok. Further it may 
be easily proved that Mk — (U2k„x u {2k — 1}) = Ux and the vertices U2k-l9 Ut 

are adjacent, too. We have obtained a circuit in Ok; evidently this circuit corresponds 
to <€. We may construct such a circuit for each class of the dihedral equivalence 
on &(2k — 1). From the construction it is evident that circuits corresponding 
to the same class are identical and that each edge of Ok is contained in some 
of these circuits. The family of the mentioned circuits will be denoted by G. 

The graph Ok is evidently vertex-transitive and edge-transitive. (A graph is 
vertex-transitive, if to any two of its vertices there exists its automorphism which 
maps one vertex onto the other. Analogously the edge-transitivity is defined.) 
This implies that for any two vertices Vx, Vz of Ok the number of circuits of <£ 
containing Vt is equal to the number of those containing V2 and an analogous 
assertion holds for edges, too. Thus the number of circuits from (£ containing any 
vertex is obtained by dividing the sum of lengths of all circuits of <£, namely 

— (2k - 2)! (2k - 1), by the number of vertices of Ok9 namely I , J; the 

result is — k\(k - 1)!. If we divide the number ~^(2k - 2)! (2k - 1) by the 
2 v ' " 2 

Lk(
2k~l\ 

2 \.k- l)9 

of C containing any edge, namely (k — l)!2. 

number of edges of Ok9 namely — k ( u _ t J, we obtain the number of circuits 
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